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Abstract—We give a polynomial time approximation scheme
(PTAS) for computing the supremum of a Gaussian process. That
is, given a finite set of vectors V ⊆ R

d, we compute a (1+ε)-factor
approximation to EX←Nd [supv∈V |〈v,X〉|] deterministically in
time poly(d) · |V |Oε(1). Previously, only a constant factor deter-
ministic polynomial time approximation algorithm was known
due to the work of Ding, Lee and Peres [1]. This answers an
open question of Lee [2] and Ding [3].

The study of supremum of Gaussian processes is of consid-
erable importance in probability with applications in functional
analysis, convex geometry, and in light of the recent breakthrough
work of Ding, Lee and Peres [1], to random walks on finite
graphs. As such our result could be of use elsewhere. In
particular, combining with the recent work of Ding [3], our result
yields a PTAS for computing the cover time of bounded degree
graphs. Previously, such algorithms were known only for trees.

Along the way, we also give an explicit oblivious estimator for
semi-norms in Gaussian space with optimal query complexity.

Our algorithm and its analysis are elementary in nature
using two classical comparison inequalities in convex geometry—
Slepian’s lemma and Kanter’s lemma.

I. INTRODUCTION

The study of supremum of Gaussian processes is a major

area of study in probability and functional analysis as epito-

mized by the celebrated majorizing measures theorem of Fer-

nique and Talagrand (see [4], [5] and references therein). There

is by now a rich body of work on obtaining tight estimates

and characterizations of the supremum of Gaussian processes

with several applications in analysis [5], convex geometry [6]

and more. Recently, in a striking result, Ding, Lee and Peres

[1] used the theory to resolve the Winkler-Zuckerman blanket
time conjectures [7], indicating the usefulness of Gaussian

processes even for the study of combinatorial problems over

discrete domains.

Ding, Lee and Peres [1] used the powerful Dynkin iso-
morphism theory and majorizing measures theory to establish

a structural connection between the cover time (and blanket

time) of a graph G and the supremum of a Gaussian process

associated with the Gaussian Free Field on G. They then use

this connection to resolve the Winkler-Zuckerman blanket time

conjectures and to obtain the first deterministic polynomial

time constant factor approximation algorithm for computing

the cover time of graphs. This latter result resolves an old

open question of Aldous and Fill (1994).

Besides showing the relevance of the study of Gaussian

processes to discrete combinatorial questions, the work of

Ding, Lee and Peres gives evidence that studying Gaussian

processes could even be an important algorithmic tool; an

aspect seldom investigated in the rich literature on Gaussian

processes in probability and functional analysis. Here we ad-

dress the corresponding computational question directly, which

given the importance of Gaussian processes in probability,

could be of use elsewhere. In this context, the following

question was asked by Lee [2] and Ding [3]1.

Question I.1. For every ε > 0, is there a determinis-

tic polynomial time algorithm that given a set of vectors

v1, . . . , vm ∈ R
d, computes a (1 + ε)-factor approximation

to EX←Nd [supi |〈vi, X〉|]2.

There is a simple randomized algorithm for the problem:

sample a few Gaussian vectors and output the median supre-

mum value for the sampled vectors. This however, requires

O(d log d/ε2) random bits. Using Talagrand’s majorizing mea-

sures theorem, Ding, Lee and Peres give a deterministic

polynomial time O(1)-factor approximation algorithm for the

problem. This approach is inherently limited to not yield a

PTAS as the majorizing measures characterization is bound to

lose a universal constant factor. Here we give a PTAS for the

problem thus resolving the above question.

Theorem I.2. For every ε > 0, there is a deterministic algo-
rithm that given a set of vectors v1, . . . , vm ∈ R

d, computes a
(1+ ε)-factor approximation to Ex←Nd [supi |〈vi, x〉|] in time
poly(d) ·mÕ(1/ε2).

Our approach is comparatively simpler than the work of

Ding, Lee and Peres, using some classical comparison in-
equalities in convex geometry. To the best of our knowledge

these inequalities have not been used before in the context

of algorithm design and we believe our techniques could be

useful elsewhere.
We explain our result on estimating semi-norms with re-

spect to Gaussian measures mentioned in the abstract in

Section II-B.
We next discuss some applications of our result to comput-

ing cover times of graphs as implied by the works of Ding,

1We remark that Lee [2] and [3] actually ask for an approximation
to EX←Nd [supi〈vi, X〉]. However, this formulation results in a some-
what artificial asymmetry and for most interesting cases these two are
essentially equivalent: if EX←Nd [supi〈vi, X〉] = ω(maxi ‖vi‖2), then
EX←Nd [supI |〈vi, X〉|] = (1+ o(1))EX←Nd [supi〈vi, X〉] (this follows
from standard concentration bounds for supremum of Gaussian processes).
We shall overlook this distinction from now on.

2Throughout, N denotes the univariate Gaussian distribution with mean 0
and variance 1 and for a distribution D, X ← D denotes a random variable
with distribution D. By a α-factor approximation to a quantity X we mean
a number p such that p ≤ X ≤ αp.
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Lee and Peres [1] and Ding [3].

A. Application to Computing Cover Times of Graphs

The study of random walks on graphs is an important area

of research in probability, algorithm design, statistical physics

and more. As this is not the main topic of our work, we avoid

giving formal definitions and refer the readers to [8], [9] for

background information.

Given a graph G on n-vertices, the cover time, τcov(G), of

G is defined as the expected time a random walk on G takes

to visit all the vertices in G when starting from the worst

possible vertex in G. Cover time is a fundamental parameter

of graphs and is extensively studied. Algorithmically, there is

a simple randomized algorithm for approximating the cover

time - simulate a few trials of the random walk on G for

poly(n) steps and output the median cover time. However,

without randomness the problem becomes significantly harder.

This was one of the motivations of the work of Ding, Lee

and Peres [1] who gave the first deterministic constant factor

approximation algorithm for the problem, improving on an

earlier work of Kahn, Kim, Lovász and Vu [10] who obtained a

deterministic O((log log n)2)-factor approximation algorithm.

For the special case of trees, Feige and Zeitouni [11] gave a

FPTAS.

Ding, Lee and Peres also conjectured that the cover time of

a graph G (satisfying a certain reasonable technical condition)

is asymptotically equivalent to the supremum of an explicitly

defined Gaussian process—the Gaussian Free Field on G.

However, this conjecture though quite interesting on its own,

is not enough to give a PTAS for cover time; one still needs a

PTAS for computing the supremum of the relevant Gaussian

process. Our main result provides this missing piece, thus re-

moving one of the obstacles in their posited strategy to obtain a

PTAS for computing the cover time of graphs. Recently, Ding

[3] showed the main conjecture of Ding, Lee and Peres to be

true for bounded-degree graphs and trees. Thus, combining

his result (see Theorem 1.1 in [3]) with Theorem I.2 we get

a PTAS for computing cover time on bounded degree graphs

with τhit(G) = o(τcov(G))3. As mentioned earlier, previously,

such algorithms were only known for trees [11].

II. OUTLINE OF ALGORITHM

The high level idea of our PTAS is as follows. Fix the set of

vectors V = {v1, . . . , vm} ⊆ R
d and ε > 0. Without loss of

generality suppose that maxv∈V ‖v‖2 = 1. We first reduce the

dimension of V by projecting V onto a space of dimension of

O((logm)/ε2) á la the classical Johnson-Lindenstrauss lemma

(JLL). We then give an algorithm that runs in time polynomial

in the number of vectors but exponential in the underlying

dimension. Our analysis relies on two elegant comparison

inequalities in convex geometry—Slepian’s lemma [12] for

the first step and Kanter’s lemma [13] for the second step. We

discuss these modular steps below.

3The hitting time τhit(G) is defined as the maximum over all pairs of
vertices u, v ∈ G of the expected time for a random walk starting at u to
reach v. See the discussion in [3] for why this is a reasonable condition.

A. Dimension Reduction

We project the set of vectors V ⊆ R
d to R

k for k =
O((logm)/ε2) to preserve all pairwise (Euclidean) distances

within a (1+ε)-factor as in the Johnson-Lindenstrauss lemma

(JLL). We then show that the expected supremum of the

projected Gaussian process is within a (1 + ε) factor of the

original value. The intuition is that, the supremum of a Gaus-

sian process, though a global property, can be controlled by

pairwise correlations between the variables. To quantify this,

we use Slepian’s lemma, that helps us relate the supremum of

two Gaussian processes by comparing pairwise correlations.

Finally, observe that using known derandomizations of JLL,

the dimension reduction can be done deterministically in time

poly(d,m, 1/ε) [14], [15].

Thus, to obtain a PTAS it would be enough to have

a deterministic algorithm to approximate the supremum of

a Gaussian process in time exponential in the dimension

k = O((logm)/ε2). Unfortunately, a naive argument by

discretizing the Gaussian measure in R
k leads to a run-time of

at least kO(k); which gives a mO((log logm)/ε2) algorithm. This

question was recently addressed by Dadush and Vempala [16],

who needed a similar sub-routine for their work on computing

M-Ellipsoids of convex sets and give a deterministic algorithm

with a run-time of (log k)O(k). We resolve this question fully

by giving an optimal oblivious estimator for norms in Gaussian

space, which when combined with the dimension reduction

step gives a PTAS for computing the supremum.

B. Oblivious Estimators for Semi-Norms

Let ϕ : Rk → R+ be a semi-norm, i.e., ϕ is homogeneous

and satisfies triangle inequality. For normalization purposes,

we assume that 1 ≤ Ex←Nk [ϕ(x)] and that the Lipschitz

constant of ϕ is at most kO(1). Note that the supremum

function ϕV (x) = supv∈V |〈v, x〉| satisfies these conditions.

Our goal will be to compute a (1 + ε)-factor approximation

to Ex←Nk [ϕ(x)] in time 2Oε(k).

Theorem II.1. For every ε > 0, there exists a deterministic al-
gorithm running in time (1/ε)O(k) and space poly(k, 1/ε) that
computes a (1 + ε)-factor approximation to EX←Nk [ϕ(X)]
using only oracle access to ϕ.

Our algorithm has the additional property of being an

oblivious linear estimator: the set of query points does not

depend on ϕ and the output is a positive weighted sum of the

evaluations of ϕ on the query points. Further, the construction

is essentially optimal as any such oblivious estimator needs

to make at least (1/ε)Ω(k) queries (see Section VII). In

comparison, the previous best bound of Dadush and Vempala

[16] needed (log k)O(k) queries.

A natural first approach to compute EX←Nk [ϕ(X)], would

be to first discretize the one-dimensional Gaussian distribution

with a constant granularity δ = f(ε) to get a distribution

μ and then evaluate the expectation with respect to the

product distribution μk. We will show that this seemingly naive

approach in fact does very well, giving an approximation that

remarkably does not depend on the dimension k. We do so by
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using a classical comparison inequality—Kantor’s lemma—

that allows us to “lift” a simple estimator for the univariate

case to the multi-dimensional case.
More concretely, we first construct a symmetric distribution

μ on R that has a simple piecewise flat graph and sandwiches
the one-dimensional Gaussian distribution in the following

sense. Let ν be a “shrinking” of μ defined to be the probability

density function (pdf) of (1−ε)x for x← μ. We show that if μ
has granularity about ε3/2, then, for every symmetric interval

I ⊆ R, μ(I) ≤ N (I) ≤ ν(I).
Kantor’s lemma [13] then says that for pdf’s μ, ν as above

that are in addition unimodal, the above relation carries

over to the product distributions μk, νk: for every symmetric

convex set K ⊆ R
k, μk(K) ≤ N k(K) ≤ νk(K). This

last inequality immediately implies that semi-norms cannot

distinguish between μk and N k: for any semi-norm ϕ,

Eμk [ϕ(x)] = (1 ± ε)ENk [ϕ(x)]. We then suitably prune the

distribution μk to have small support and prove Theorem IV.1.

Our main result, Theorem I.2, follows by first reducing

the dimension as in the previous section and applying The-

orem IV.1 to the semi-norm ϕ : R
k → R+, ϕ(x) =

supi |〈ui, x〉| for the projected vectors {u1, . . . , um}.
III. DIMENSION REDUCTION

The use of JLL type random projections for estimating the

supremum comes from the following comparison inequality

for Gaussian processes. We call a collection of real-valued

random variables {Xt}t∈T a Gaussian process if every finite

linear combination of the variables has a normal distribution

with mean zero. For a reference to Slepian’s lemma we refer

the reader to Corollary 3.14 and the following discussion in

[4].

Theorem III.1 (Slepian’s Lemma [12]). Let {Xt}t∈T and
{Yt}t∈T be two Gaussian processes such that for every
s, t ∈ T , E[(Xs−Xt)

2] ≤ E[(Ys−Yt)
2]. Then, E[supt Xt] ≤

E[supt Yt].

We also need a derandomized version of the Johnson-

Lindenstrauss Lemma.

Theorem III.2 ([14]). For every ε > 0, there exists a
deterministic (dm2(logm + 1/ε)O(1))-time algorithm that
given vectors v1, . . . , vm ∈ R

d computes a linear mapping
A : Rd → R

k for k = O((logm)/ε2) such that for every
i, j ∈ [m], ‖vi−vj‖2 ≤ ‖A(vi)−A(vj)‖2 ≤ (1+ε)‖vi−vj‖2.

Combining the above two theorems immediately implies the

following.

Lemma III.3. For every ε > 0, there exists a deterministic
(dm2(logm + 1/ε)O(1))-time algorithm that given vectors
v1, . . . , vm ∈ R

d computes a linear mapping A : Rd → R
k

for k = O((logm)/ε2) such that

E
x←Nd

[sup
i
|〈vi, x〉|] ≤ E

y←Nk
[sup

i
|〈A(vi), y〉|] ≤

(1 + ε) E
x←Nd

[sup
i
|〈vi, x〉|]. (III.1)

Proof: Let V = {v1, . . . , vm} ∪ {−v1, . . . ,−vm} and

let {Xv}v∈V be the Gaussian process where the joint dis-

tribution is given by Xv ≡ 〈v, x〉 for x ← N d. Then,

Ex←Nd [supi |〈vi, x〉|] = E[supv Xv].
Let A : Rd → R

k be the linear mapping as given by Theo-

rem III.2 applied to V . Let {Yv}v∈V be the “projected” Gaus-

sian process with joint distribution given by Yv ≡ 〈A(v), y〉
for y ← N k. Then, Ey←Nk [supi |〈vi, y〉|] = E[supv Yv].

Finally, observe that for any u, v ∈ V ,

E[(Xu −Xv)
2] = ‖u− v‖22 ≤ ‖A(u)−A(v)‖22 =

E[(Yu − Yv)
2] ≤ (1 + ε)2 E[(Xu −Xv)

2].

Combining the above inequality with Slepian’s

lemma Lemma III.1 applied to the pairs of processes

({Xv}v∈V , {Yv}v∈V ) and ({Yv}v∈V , {(1 + ε)Xv}v∈V ) it

follows that

E[sup
v

Xv] ≤ E[sup
v

Yv] ≤ E[sup
v
(1+ε)Xv] = (1+ε)E[sup

v
Xv].

The lemma now follows.

IV. OBLIVIOUS ESTIMATORS FOR SEMI-NORMS IN

GAUSSIAN SPACE

In the previous section we reduced the problem of com-

puting the supremum of a d-dimensional Gaussian process to

that of a Gaussian process in k = O((logm)/ε2)-dimensions.

Thus, it suffices to have an algorithm for approximating the

supremum of Gaussian processes in time exponential in the

dimension. We will give such an algorithm that works more

generally for all semi-norms.

Let ϕ : R
k → R+ be a semi-norm. That is, ϕ satisfies

the triangle inequality and is homogeneous. For normalization

purposes we assume that 1 ≤ ENk [ϕ(X)] and the Lipschitz

constant of ϕ is at most kO(1).

Theorem IV.1. For every ε > 0, there exists a set S ⊆ R
k

with |S| = (1/ε)O(k) and a function p : Rk → R+ computable
in poly(k, 1/ε) time such that the following holds. For every
semi-norm ϕ : Rk → R+,

(1− ε)

(∑
x∈S

p(x)ϕ(x)

)
≤ E

X←Nk
[ϕ(X)] ≤

(1 + ε)

(∑
x∈S

p(x)ϕ(x)

)
.

Moreover, successive elements of S can be enumerated in
poly(k, 1/ε) time and O(k log(1/ε)) space.

Theorem II.1 follows immediately from the above.

Proof of Theorem II.1: Follows by enumerating over the

set S and computing
∑

x∈S p(x)ϕ(x) by querying ϕ on the

points in S.

We now prove Theorem IV.1. Here and henceforth, let γ
denote the pdf of the standard univariate Gaussian distribution.

Fix ε > 0 and let δ > 0 be a parameter to be chosen later.

Let μ ≡ μδ be the pdf which is a piecewise-flat approximator
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to γ obtained by spreading the mass γ gives to an interval

I = [iδ, (i+1)δ) evenly over I . Formally, μ(z) = μ(−z) and

for z > 0, z ∈ [iδ, (i+ 1)δ),

μ(z) =
γ([iδ, (i+ 1)δ))

δ
. (IV.1)

Clearly, μ defines a symmetric distribution on R. We will

show that for δ � ε sufficiently small, semi-norms cannot

distinguish the product distribution μk from N k:

Lemma IV.2. Let δ = (2ε)3/2. Then, for every semi-norm
ϕ : Rk → R,

(1− ε) E
X←μk

[ϕ(X)] ≤ E
Z←Nk

[ϕ(Z)] ≤ E
X←μk

[ϕ(X)].

We first prove Theorem IV.1 assuming the above lemma,

whose proof is deferred to the next section.

Proof of Theorem IV.1: Let μ̂ be the symmetric distribu-

tion supported on δ(Z+ 1/2) with pdf defined by

μ̂(δ(i+ 1/2)) = μ([iδ, (i+ 1)δ)),

for i ≥ 0. Further, let X ← μk, X̂ ← μ̂k, Z ← N k.

We claim that E[ϕ(X̂)] = (1 ± ε)E[ϕ(Z)]. Let Y be

uniformly distributed on [−δ, δ]k and observe that random

variable X ≡ X̂ + Y in law. Therefore,

E[ϕ(X)] = E[ϕ(X̂ + Y )] = E[ϕ(X̂)]± E[ϕ(Y )] =

E[ϕ(X̂)]± δ E[ϕ(Y/δ)] = E[ϕ(X̂)]± δ E
Z′∈u[−1,1]k

[ϕ(Z ′)] =

E[ϕ(X̂)]± δ E[ϕ(Z)] (Lemma V.7). (IV.2)

Thus, by Lemma IV.2,

E[ϕ(X̂)] = (1±O(ε))E[ϕ(Z)] (IV.3)

We next prune μ̂k to reduce its support. Define p : Rk → R+

by p(x) = μ̂k(x). Clearly, p(x) being a product distribution

is computable in poly(k, 1/ε) time.

Let S = (δ(Z+ 1/2))
k ∩ B2(3

√
k), where B2(r) ⊆ R

k

denotes the Euclidean ball of radius r. As ϕ has Lipschitz

constant bounded by kO(1), a simple calculation shows that

throwing away all points in the support of X̂ outside S does

not change E[ϕ(X̂)] much. It is easy to check that for x /∈ S,

p(x) ≤ exp(−‖x‖22/4)/(2π)k/2. Therefore,

E[ϕ(X̂)] =
∑
x

p(x)ϕ(x) =
∑
x∈S

p(x)ϕ(x) +
∑
x/∈S

p(x)ϕ(x)

=
∑
x∈S

p(x)ϕ(x)±
∑
x/∈S

exp(−‖x‖22/4)
(2π)k/2

· (kO(1)‖x‖2) =

x
∑
x∈S

p(x)ϕ(x)± o(1). (IV.4)

From Equation IV.3 and the above equation we get (recall

that E[ϕ(Z)] ≥ 1)

E[ϕ(Z)] = (1±O(ε))

(∑
x∈S

p(x)ϕ(x)

)
,

which is what we want to show.

We now reason about the complexity of S. First, by a simple

covering argument |S| < (1/δ)O(k):

|S| < V ol (B2(3
√
k) + [−δ, δ]k)

V ol ([−δ, δ]k) = (1/δ)O(k) = (1/ε)O(k),

where for sets A,B ⊆ R
k, A+B denotes the Minkowski sum

and V ol denotes Lebesgue volume. This size bound almost

suffices to prove Theorem IV.1 except for the complexity

of enumerating elements from S. Without loss of generality

assume that R = 3
√
n/δ is an integer. Then, enumerating

elements in S is equivalent to enumerating integer points in

the n-dimensional ball of radius R. This can be accomplished

by going through the set of lattice points in the natural lexico-

graphic order, and takes poly(k, 1/ε) time and O(k log(1/ε))
space per point in S.

V. PROOF OF LEMMA IV.2

Our starting point is the following definition that helps us

compare multivariate distributions when we are only interested

in volumes of convex sets. We shall follow the notation of [17].

Definition V.1. Given two symmetric pdf’s, f, g on R
k, we say

that f is less peaked than g (f � g) if for every symmetric
convex set K ⊆ R

k, f(K) ≤ g(K).

We also need the following elementary facts. The first

follows from the unimodality of the Gaussian density and the

second from partial integration.

Fact V.2. For any δ > 0 and μ as defined by Equation IV.1,
μ is less peaked than γ.

Fact V.3. Let f, g be distributions on R
k with f � g. Then

for any semi-norm ϕ : Rk → R, Ef [ϕ(x)] ≥ Eg[ϕ(x)].

Proof: Observe that for any t > 0, {x : ϕ(x) ≤ t} is

convex. Let random variables X ← f , Y ← g. Then, by

partial integration, E[ϕ(X)] =
∫∞
0

ϕ′(t)Pr[ϕ(X) > t]dt ≥∫∞
0

ϕ′(t)Pr[ϕ(Y ) > t]dt = E[ϕ(Y )].
The above statements give us a way to compare the expec-

tations of μ and γ for one-dimensional convex functions. We

would now like to do a similar comparison for the product

distributions μk and γk. For this we use Kanter’s lemma [13],

which says that the relation � is preserved under tensoring

if the individual distributions have the additional property of

being unimodal.

Definition V.4. A distribution f on R
n is unimodal if f can

be written as an increasing limit of a sequence of distributions
each of which is a finite positively weighted sum of uniform
distributions on symmetric convex sets.

Theorem V.5 (Kanter’s Lemma [13]; cf. [17]). Let μ1, μ2 be
symmetric distributions on R

n with μ1 � μ2 and let ν be a
unimodal distribution on R

m. Then, the product distributions
μ1 × ν, μ2 × ν on R

n × R
m satisfy μ1 × ν � μ2 × ν.

We next show that μ “sandwiches” γ in the following sense.

Lemma V.6. Let ν be the pdf of the random variable y =
(1− ε)x for x← μ. Then, for δ ≤ (2ε)3/2, μ � γ � ν.
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Proof: As mentioned above, μ � γ. We next show that

γ � ν. Intuitively, ν is obtained by spreading the mass that

γ puts on an interval I = [iδ, (i+ 1)δ) evenly on the smaller
interval (1−ε)I . The net effect of this operation is to push the

pdf of μ closer towards the origin and for δ sufficiently small

the inward push from this “shrinking” wins over the outward

push from going to μ.

Fix an interval I = [−iδ(1 − ε) − θ, iδ(1 − ε) + θ] for

0 ≤ θ < δ(1− ε). Then,

ν(I) = ν ( [−iδ(1− ε), iδ(1− ε)] )+

2 ν ( [iδ(1− ε), iδ(1− ε) + θ] ) (V.1)

= γ ( [−iδ, iδ] ) + 2 θ · γ( [iδ, (i+ 1)δ) )

δ(1− ε)
.

We now consider two cases.

Case 1: i ≥ (1 − ε)/ε so that iδ(1 − ε) + θ ≤ iδ. Then,

from the above equation,

ν(I) ≥ γ ( [−iδ, iδ] ) ≥
γ ( [−iδ(1− ε)− θ, iδ(1− ε) + θ] ) = γ(I).

Case 2: i < (1 − ε)/ε. Let α = (i + 1)δ = δ/ε. Then, as

1− x2/2 ≤ e−x
2/2 ≤ 1,

γ((iδ, iδ+θ]) ≤ θ·γ(0), γ( [iδ, (i+1)δ) ) ≥ δ·γ(0)·(1−α2/2).

Therefore,

ν(I) = γ(I)− 2γ ( (iδ, iδ(1− ε) + θ] ) +
2θ · γ( [iδ, (i+ 1)δ) )

δ(1− ε)

≥ γ(I)− 2γ ( (iδ, iδ + θ] ) +
2θ · γ( [iδ, (i+ 1)δ) )

δ(1− ε)

≥ γ(I)− 2θγ(0) +
2θ · δ · γ(0) · (1− α2/2)

δ(1− ε)

= γ(I) +
2θγ(0)

1− ε
· (ε− α2/2) ≥ γ(I),

for α2 ≤ 2ε, i.e., if δ ≤ (2ε)3/2.

Lemma IV.2 follows easily from the above two claims.

Proof of Lemma IV.2: Clearly, μ, ν, γ are unimodal and

product of unimodal distributions is unimodal. Thus, from the

above lemma and iteratively applying Kanter’s lemma we get

μk � γk � νk. Therefore, by Fact V.3, for any semi-norm ϕ,

E
μk
[ϕ(X)] ≥ E

γk
[ϕ(Y )] ≥ E

νk
[ϕ(X)] = E

μk
[ϕ((1− ε)X)] =

(1− ε) E
μk
[ϕ(X)].

We now prove the auxiliary lemma we used in proof of

Theorem IV.1.

Lemma V.7. Let ρ be the uniform distribution on [−1, 1].
Then, γ � ρ and for any semi-norm ϕ : Rk → R, Eρk [ϕ(x)] ≤
Eγk [ϕ(x)].

Proof: It is easy to check that γ � ρ. Then, by Kanter’s

lemma γk � ρk and the inequality follows from Fact V.3.

VI. A PTAS FOR SUPREMUM OF GAUSSIAN PROCESSES

Our main theorem, Theorem I.2, follows immediately from

Lemma III.3 and Theorem II.1 applied to the semi-norm ϕ :
R

k → R defined by ϕ(x) = supi≤m |〈A(vi), x〉|.

VII. LOWERBOUND FOR OBLIVIOUS ESTIMATORS

We now show that Theorem IV.1 is optimal: any oblivious

linear estimator for semi-norms as in the theorem must make

at least (C/ε)k queries for some constant C > 0.

Let S ⊆ R
k be the set of query points of an oblivious

estimator. That is, there exists a function f : RS
+ → R+ such

that for any semi-norm ϕ : Rk → R+, f((ϕ(x) : x ∈ S)) =
(1 ± ε)EY←Nk [ϕ(Y )]. We will assume that f is monotone

in the following sense: f(x1, . . . , x|S|) ≤ f(y1, . . . , y|S|) if

0 ≤ xi ≤ yi for all i. This is clearly true for any linear

estimator (and also for the median estimator). Without loss of

generality suppose that ε < 1/4.

The idea is to define a suitable semi-norm based on S: define

ϕ : Rk → R by ϕ(x) = supu∈S |〈u/‖u‖2, x〉|. It is easy to

check that for any v ∈ S, ‖v‖2 ≤ ϕ(v). Therefore, the output

of the oblivious estimator when querying the Euclidean norm

is at most the output of the estimator when querying ϕ. In

particular,

(1− ε) E
Y←Nk

[‖Y ‖2] ≤ f((‖x‖2 : x ∈ S)) ≤
f((ϕ(x) : x ∈ S)) ≤ (1 + ε) E

Y←Nk
[ϕ(Y )]. (VII.1)

We will argue that the above is possible only if |S| > (C/ε)k.

Let Sk−1 denote the unit sphere in R
k. For the remaining

argument, we shall view Y ← N k to be drawn as Y = RX ,

where X ∈ Sk−1 is uniformly random on the sphere and

R ∈ R is independent of X and has a Chi-squared distribution

with k degrees of freedom. Let S(ε) = ∪u∈S{y ∈ Sk−1 :
|〈u/‖u‖2, y〉| ≥ 1− 4ε}.

Now, by a standard volume argument, for any y ∈ Sk−1,

PrX [|〈X, y〉| ≥ 1 − 4ε] < (O(ε))k. Thus, by a union bound,

p = PrX [X ∈ S(ε)] < |S| · (O(ε))k. Further, for any y ∈
Sk−1 \ S(ε), ϕ(y) < 1− 4ε. Therefore,

E
X
[ϕ(X)] = Pr[X /∈ S(ε)] · E[ϕ(X)|X /∈ S(ε)]+

Pr[X ∈ S(ε)] · E[ϕ(X)|X ∈ S(ε)] ≤
(1− p)(1− 4ε) + p.

Thus,

E[ϕ(Y )] = E[ϕ(RX)] = E[R] · E[ϕ(X)] ≤
E[‖Y ‖2] · ((1− p)(1− 4ε) + p). (VII.2)

Combining Equations VII.1 and VII.2, we get

1− ε ≤ (1 + ε) · ((1− p)(1− 4ε) + p) < 1− 3ε+ 2p.

As p < |S| ·(O(ε))k, the above leads to a contradiction unless

|S| > (C/ε)k for some constant C > 0.
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