
Learning-Graph-Based Quantum Algorithm for k-distinctness

Aleksandrs Belovs

Faculty of Computing, University of Latvia
Riga, Latvia

stiboh@gmail.com

Abstract—We present a quantum algorithm solving the k-
distinctness problem in a less number of queries than the
previous algorithm by Ambainis. The construction uses a
modified learning graph approach. Compared to the recent
paper by Belovs and Lee, the algorithm doesn’t require any
prior information on the input, and the complexity analysis is
much simpler.

Keywords-quantum computing, query complexity

I. INTRODUCTION

The element distinctness problem consists of computing

function f : [m]n → {0, 1} that evaluates to 1 iff there is a

pair of equal elements in the input, i.e., f(x1, . . . , xn) = 1
iff ∃i �= j : xi = xj . (Here we use notation [n] =
{1, 2, . . . , n}.) The quantum query complexity of the ele-

ment distinctness problem is well understood. It is known

to be Θ(n2/3), with the algorithm given by Ambainis [1],

and the lower bound shown by Aaronson and Shi [2] and

Kutin [3] for the case of large alphabet size Ω(n2), and by

Ambainis [4] in the general case.

Ambainis’ algorithm for the element distinctness problem

was the first application of the quantum random walk frame-

work to a “natural” problem (i.e., one seemingly having

little relation to random walks), and it had significantly

changed the way quantum algorithms have been developed

since then. The core of the algorithm is quantum walk

on the Johnson graph. This primitive has been reused in

many other algorithms: triangle detection in a graph given

by its adjacency matrix [5], matrix product verification [6],

restricted range associativity [7], and others. Given that the

behavior of quantum walk is well-understood for arbitrary

graphs [8], [9], it is even surprising that the applications

have been mostly limited to the Johnson graph.

The k-distinctness problem is a direct generalization of

the element distinctness problem. Given the same input, the

function evaluates to 1 iff there is a set of k input elements

that are all equal, i.e., a set of indices a1, . . . , ak ∈ [n] with

ai �= aj and xai
= xaj

for all i �= j.
The situation with the quantum query complexity of the k-

distinctness problem is not so clear. (In this paper we assume

k = O(1), and consider the complexity of k-distinctness as

n → ∞.) As element distinctness reduces to k-distinctness

by repeating each element k − 1 times, the lower bound

of Ω(n2/3) carries over to the k-distinctness problem (this

argument is attributed to Aaronson in Ref. [1]). This simple

lower bound is the best known so far.

In the same paper [1] with the element distinctness algo-

rithm, Ambainis applied quantum walk on the Johnson graph

in order to solve the k-distinctness problem. This resulted

in a quantum algorithm with query complexity O(nk/(k+1)).
This was the best known algorithm for this problem prior to

this paper.

The aforementioned algorithms work by searching for a

small subset of input variables such that the value of the

function is completely determined by the values within the

subset. For instance, the values of two input variables are

sufficient to claim the value of the element distinctness

function is 1, provided their values are equal. This is

formalized by the notion of certificate complexity as follows.

An assignment for a function f : D → {0, 1} with

D ⊆ [m]n is a function α : S → [m] with S ⊆ [n]. The size
of α is |S|. An input x = (xi) ∈ [m]n satisfies assignment

α if α(i) = xi for all i ∈ S. An assignment α is called

a b-certificate for f , with b ∈ {0, 1}, if f(x) = b for

any x ∈ D satisfying α. The certificate complexity Cx(f)
of f on x is defined as the minimal size of a certificate

for f that x satisfies. The b-certificate complexity C(b)(f)
is defined as maxx∈f−1(b) Cx(f). Thus, for instance, 1-

certificate complexity of element distinctness is 2, and 1-

certificate complexity of triangle detection is 3.

Soon after the Ambainis’ paper, it was realized [10] that

the algorithm developed for k-distinctness can be used to

evaluate, in the same number of queries, any function with

1-certificate complexity equal to k. Now we know that for

some functions this algorithm is tight, due to the lower

bound for the k-sum problem [11]. The goal of the k-

sum problem is to detect, given n elements of an Abelian

group as input, whether there are k of them that sum up to

a prescribed element of the group. The k-sum problem is

noticeable in the sense that, given any (k−1)-tuple of input

elements, one has absolutely no information on whether they

form a part of an (inclusion-wise minimal) 1-certificate, or

not.

The aforementioned applications of the quantum walk

on the Johnson graph (triangle finding, etc.) went beyond

O(nk/(k+1)) upper bound by utilizing additional relations

between the input variables: the adjacency relation of the

edges for the triangle problem, row-column relations for

2012 IEEE 53rd Annual Symposium on Foundations of Computer Science

0272-5428/12 $26.00 © 2012 IEEE

DOI 10.1109/FOCS.2012.18

207

the matrix products, and so on. For instance, two edges in

a graph can’t be a part of a 1-certificate for the triangle

problem, if they are not adjacent.

The k-distinctness problem is different in the sense that

it doesn’t possess any structure of the variables. But it does

possess a relation between the values of the variables: two

elements can’t be a part of a 1-certificate if their values

are different. However, it seems that quantum walk on the

Johnson graph fails to utilize this structure efficiently.

In this paper, we use the learning graph approach to

construct a quantum algorithm that solves the k-distinctness

problem in O
(
n1−2k−2/(2k−1)

)
queries. The learning graph

is a novel way of construction quantum query algorithms.

Somehow, it may be thought as a way of designing a

more flexible quantum walk than just on the Johnson graph.

And compared to the quantum walk design paradigms from

Ref. [8], [9], it is easier to deal with. In particular, it doesn’t

require any spectral analysis of the underlying graph.

Up to date, the applications of learning graphs are as

follows. Belovs [12] introduced the framework and used it to

improve the query complexity of triangle detection. Zhu [13]

and Lee, Magniez and Santha [14] extended this algorithm to

the containment of arbitrary subgraphs. Belovs and Lee [15]

developed an algorithm for the k-distinctness problem that

beats the O(nk/(k+1))-query algorithm given some prior

information about the input. Belovs and Reichardt [16]

use a construction resembling learning graph to obtain an

optimal algorithm for finding paths and claws of arbitrary

length in the input graph. Also, they deal with time-efficient

implementation of learning graphs.

The paper is organized as follows. In Section II we define

the (dual of the) adversary bound. It is the main technical

tool underlying our algorithm. Also, we describe learning

graphs and the previous algorithm for the k-distinctness

problem. In Section III, we describe the intuition behind

our algorithm, and describe the changes we have made to

the model of the learning graph. In Sections IV and V we

describe the k-distinctness algorithm.

II. PRELIMINARIES

In this paper, we are mainly concerned with query

complexity of quantum algorithms, i.e., we measure the

complexity by the number of queries to the input the

algorithm makes in the worst case. For the definition of

query complexity and its basic properties, a good reference

is [17].

In Section II-A we describe a tight characterization of

the query complexity by a relatively simple semi-definite

program (SDP): the adversary bound, Eq. (1). This is the

main technical tool underlying our algorithm.

Although Eq. (1) is an SDP, and thus can be solved

in polynomial time in the size of the program, the latter

is exponential in the number of variables, and becomes

very hard to solve exactly as its size grows. The learning

graph [12] is a tool for designing feasible solutions to

Eq. (1), whose complexity is easier to analyze. We define

it in Sections II-B and II-C. In the first one, we describe

the model following Ref. [12], [15]. In the second one,

we describe a common way of constructing learning graphs

for specific problems, and give an example of a learning

graph for the k-distinctness problem corresponding to the

Ambainis’ algorithm.

A. Dual Adversary Bound

The adversary bound, originally introduced by Ambainis

[18], is one of the most important lower bound techniques

for quantum query complexity. A strengthening of the ad-

versary bound, known as the general adversary bound [19],

has recently been shown to characterize quantum query

complexity, up to constant factors [20], [21].

The (general) adversary bound is a semi-definite program,

and admits two equivalent formulations: the primal, used

to prove lower bounds; and the dual, used in algorithm

construction. We use the latter.

Definition 1. Let f : D → {0, 1} with D ⊆ [m]n be a

function. The adversary bound Adv±(f) is defined as the

optimal value of the following optimization problem:

minimize max
x∈D

∑
j∈[n]

Xj [[x, x]] (1a)

subject to
∑

xj �=yj

Xj [[x, y]] = 1 if f(x) �= f(y) (1b)

Xj � 0 for all j ∈ [n] (1c)

where the optimization is over positive semi-definite matri-

ces Xj with rows and columns labeled by the elements of

D, and X[[x, y]] is used to denote the element of matrix X
on the intersection of the row and column labeled by x and

y, respectively.

The general adversary bound characterizes quantum query

complexity. Let Q(f) denote the query complexity of the

best quantum algorithm evaluating f with a bounded error.

Theorem 2 ([19]–[21]). Let f be as above. Then, Q(f) =
Θ(Adv±(f)).

B. Learning graphs: Model-driven description

In this section we briefly introduce the simplest model of

learning graph following Ref. [12], [15].

Definition 3. A learning graph G on n input variables is

a directed acyclic connected graph with vertices labeled

by subsets of [n], the input indices. It has arcs connecting

vertices labeled by S and S ∪ {j} only, where S ⊆ [n] and

j ∈ [n] \ S. The root of G is the vertex labeled by ∅. Each

arc e is assigned positive real weight we.

Note that it is allowed to have several (or none) vertices

labeled by the same subset S ⊆ [n]. If there is unique vertex

of G labeled by S, we usually use S to denote it. Otherwise,

we denote the vertex by (S, a) where a is some additional

208

parameter used to distinguish vertices labeled by the same

subset S.

A learning graph can be thought of as a way of modeling

the development of one’s knowledge about the input during

a query algorithm. Initially, nothing is known, and this is

represented by the root labeled by ∅. At a vertex labeled

by S ⊆ [n], the values of the variables in S have been

learned. Following an arc e connecting vertices labeled by

S to S ∪ {j} can be interpreted as querying the value of

variable xj . We say the arc loads element j. When talking

about a vertex labeled by S, we call S the set of loaded
elements.

The graph G itself has a very loose connection to the func-

tion being calculated. The following notion is the essence

of the construction.

Definition 4. Let G be a learning graph on n input variables,

and f : D → {0, 1} be a function with domain D ⊆ [m]n.

A flow on G is a real-valued function pe(x) where e is an

arc of G and x ∈ f−1(1). For a fixed input x, the flow

pe = pe(x) has to satisfy the following properties:

• vertex ∅ is the only source of the flow, and it has value

1. In other words, the sum of pe over all e leaving ∅ is

1;

• a vertex labeled by S is a sink iff it contains a 1-

certificate for f on input x. Such vertices are called

accepting. Thus, if S �= ∅ and S is not accepting then,

for a vertex labeled by S, the sum of pe over all in-

coming arcs equals the sum of pe over all out-going

arcs.

We always assume a learning graph G is equipped with

a function f and a flow p that satisfy the constraints of

Definition 4. Define the negative complexity of G and the

positive complexity for input x ∈ f−1(1) as

C0(G) =
∑
e∈E

we and C1(G, x) =
∑
e∈E

pe(x)2

we
, (2)

respectively, where E is the set of arcs of G. The positive
complexity and the (total) complexity of G are defined as

C1(G) = max
x∈f−1(1)

C1(G, x), C(G) = max{C0(G), C1(G)},
(3)

respectively. The following theorem links learning graphs

and quantum query algorithms:

Theorem 5 ([15]). Assume G is a learning graph for a
function f : D → {0, 1} with D ⊆ [m]n. Then there exists
a bounded-error quantum query algorithm for the same
function with complexity O(C(G)).

Proof sketch.: We reduce to Theorem 2. For each arc

e from S to S ∪ {j}, we define a block-diagonal matrix

Xe
j =

∑
α Yα, where the sum is over all assignments α on

S. Each Yα is defined as ψψ∗ where, for each z ∈ D:

ψ[[z]] =

⎧⎪⎨
⎪⎩
pe(z)/

√
we, f(z) = 1, and z satisfies α;√

we, f(z) = 0, and z satisfies α;

0, otherwise.

Finally, we define Xj in (1) as
∑

eX
e
j where the sum is

over all arcs e loading j.
Condition (1c) is trivial, and the expression for the ob-

jective value (1a) is straightforward to check. The feasibil-

ity (1b) is as follows. Fix any x ∈ f−1(1) and y ∈ f−1(0).
By construction, Xe

j [[x, y]] = pe(x), if xS = yS where S is

the origin of e; otherwise, it is zero. Thus, only arcs e from

S to S ∪{j}, such that xS = yS and xj �= yj , contribute to

the sum in (1b). These arcs define a cut between the source

∅ and all the sinks of the flow pe = pe(x), hence, the total

value of the flow on these arcs is 1, as required.

C. Learning graphs: Procedure-driven description
In this section, we describe a way of designing learning

graphs that was used in Ref. [12] and other papers. The

learning graph, introduced in Section II-B, may be consid-

ered as a randomized procedure for loading values of the

variables with the goal of convincing someone the value of

the function is 1. For each input x ∈ f−1(1), the designer

of the learning graph builds its own procedure. The goal is

to load a 1-certificate for x. Usually, for each positive input,

one specific 1-certificate is chosen. The elements inside the

certificate are called marked. The procedure is not allowed

to err, i.e., it always has to load all the marked elements in

the end. The value of the complexity of the learning graph

arises from the interplay between the procedures for different

inputs.
We illustrate this concepts with an example of a learning

graph corresponding to the k-distinctness algorithm by Am-

bainis [1]. Fix a positive input x, i.e., one evaluating to 1. Let

M = {a1, a2 . . . , ak} be such that xa1 = xa2 = · · · = xak
.

It is a 1-certificate for x. The elements inside M are marked.

One possible way of loading the marked elements consists of

k+1 stage and is given in Table I. The internal randomness

of the procedure is concealed in the choice of the r elements

on stage I. (Here r = o(n) is some parameter to be specified

later.) Each choice has probability q =
(
n−k

r

)−1
.

I. Load r elements different from a1, . . . , ak .
II.1 Load a1.
II.2 Load a2.

.

.

.
II.k Load ak .

Table I
LEARNING GRAPH FOR THE k-DISTINCTNESS PROBLEM

CORRESPONDING TO THE ALGORITHM FROM REF. [1].

Let us describe how a graph G and flow p is constructed

from the description in Table I. At first, we define the key

209

vertices of G. If d is the number of stages, the key vertices

are V0 ∪ · · · ∪ Vd, where V0 = {∅} and Vi consists of all

possible sets of variables loaded after i stages.

For a fixed input x and fixed internal randomness, the

sets Si−1 ∈ Vi−1 and Si ∈ Vi of variables loaded before

and after stage i, respectively, are uniquely defined. In this

case, we connect Si−1 and Si by a transition e. For that, we

choose an arbitrary order t1, . . . , t� of elements in Si \Si−1,

and connect Si−1 and Si by a path:

Si−1, (Si−1∪{t1}, e), (Si−1∪{t1, t2}, e), . . . , (Si\{t�}, e), Si

in G. Here, additional labels e in the internal vertices

assure that the paths corresponding to the transitions do not

intersect, except at the ends. We say transition e and all arcs

therein belong to stage i.
In the case like in the previous paragraph, we say the

transition e is taken for this choice of x and the randomness.

We say a transition is used for input x, if it is taken for some

choice of the internal randomness. The set of transitions of

G is the union of all transitions used for all inputs in f−1(1).
For instance, stage II.2 of the learning graph from Table I

consists of all transitions from S to S∪{j} where |S| = r+1
and j /∈ S.

The flow pe(x) is defined as the probability, over the

internal randomness, that transition e is taken for input x.

All arcs forming the transition are assigned the same flow.

Thus, the transition e is used by x iff pe(x) > 0. In the

learning graph from Table I, pe(x) attains two values only:

0 and q.

So far, we have constructed the graph G and the flow

p. It remains to define the weights we. This is done using

Theorem 6 below. But, for that, we need some additional

notions.

The length of stage i is the number of variables loaded on

this stage, i.e., |Si \Si−1| for a transition e from Si−1 to Si

of stage i. In our applications in this paper this number is

independent on the choice of e. We say the flow is symmetric
on stage i if the non-zero value of pe(x) is the same for all

e on stage i and all x. The flow in the learning graph from

Table I is symmetric.

If the flow is symmetric on stage i, we define the speciality
Ti of stage i as the ratio of the total number of transitions

on stage i, to the number of ones used by x. In a symmetric

flow, this quantity doesn’t depend on x.

Finally, we define the (total) complexity of stage i, Ci(G),
similarly as C(G) is defined in (2) and (3) with the summa-

tion over Ei, the set of all arcs on stage i, instead of E. It

is easy to see that C(G) is at most
∑

i Ci(G).

Theorem 6 ([12]). If the flow is symmetric on stage i, the
arcs on stage i can be weighted so that the complexity of
the stage becomes Li

√
Ti.

Proof sketch: Let q be the non-zero value of the flow

on stage i. Assign weight q/
√
Ti to all arcs on stage i.

Now we are able to calculate the complexity of the

learning graph in Table I. The length of stage I is r, and the

length of stage II.i is 1 for all i. It is also not hard to see that

the corresponding specialities are O(1) and O(ni/ri−1). For

example, a transition from S to S∪{j} on stage II.k is used

by input x iff a1, . . . , ak−1 ∈ S and j = ak. For a random

choice of S and j /∈ S, the probability of j = ak is 1/n,

and the probability of a1, . . . , ak−1 ∈ S, given j = ak, is

Ω(rk−1/nk−1). Thus, the total probability is Ω(rk−1/nk)
and the speciality is the inverse of that.

Thus, the complexity of the algorithm, by Theorems 6

and 5, is O(r +
√
nk/rk−1). It is optimized when r =

nk/(k+1), and the complexity is O(nk/(k+1)).

III. OUTLINE OF THE ALGORITHM

In this section we describe how the learning graph from

Table I is transformed into a new learning graph with a better

complexity. Many times when learning graphs were applied

to new problems, they were modified accordingly [12], [15],

[16]. This paper is not an exception, thus, we also describe

the modifications we make to the model of a learning graph.

The main point of the learning graph in Table I and similar

ones is to reduce the speciality of the last step, loading ak.

In the learning graph from Table I, it is achieved by loading

r non-marked elements before loading the certificate. This

way, the speciality of the last step gets reduced from O(nk)
to O(nk/rk−1). We say that a1, . . . , ak−1 are hidden among

the r elements loaded on stage I. The larger the set we hide

the elements into, the better.

Unfortunately, we can’t make r as large as we like, be-

cause loading the non-marked elements also counts towards

the complexity. At the equilibrium point r = nk/(k+1), we

attain the optimal complexity of the learning graph.

In Ref. [15] a learning graph was constructed with better

complexity. It uses a more general version of the learn-

ing graph than in Section II-B, with weights of the arcs

dependent on the values of the element loaded so far. Its

main idea is to hide a1, . . . , ak−1 as one entity, not k − 1
independent elements. By gradually distilling vertices of the

learning graph having large number of (k − 1)-tuples of

equal elements, the learning graph manages to reduce the

speciality of the last step without increasing the number of

elements loaded, because {a1, . . . , ak−1} gets hidden among

a relatively large number of (k−1)-tuples of equal elements.

But this learning graph has serious drawbacks. Due to

dealing with the values of the variables in the distilling

phase, the flow through the learning graph ceases to be

symmetric and depends heavily on the input. This makes

the analysis of the learning graph quite complicated. What

is even worse, the learning graph requires strong prior

knowledge on the structure of the input to attain reasonable

complexity.

In this paper we construct a learning graph that combines

the best features of both learning graphs. Its complexity is

210

the same as in Ref. [15]. Also, it has the flow symmetric

and almost independent on the input, like the one in Table I.

This has three advantages compared to the learning graph

in Ref. [15]: its complexity is easier to analyze, it doesn’t

require any prior information on the input, and it is more

suitable for a time-efficient implementation along the lines

of Ref. [16]. This is achieved at the cost of a more involved

construction.

Let us outline the modifications the learning graph from

Table I undergoes in order to reduce the complexity. Again,

we assume x is a positive input, and M = {a1, . . . , ak} is

such that xa1 = · · · = xak
.

1) We achieve a symmetric flow with smaller speciality

of the last step by finding a way to load more non-

marked elements in the first stages of the learning

graph. There is an indication that it is possible in

some cases: the values of r Boolean variables can be

learned in less than r queries, if there is a bias between

the number of ones and zeros [22]. More precisely, if

the number of ones is �, the values can be loaded in

O(
√
r�) queries.

2) We start with dividing the set S of loaded elements

into k subsets: S = S1 � · · · �Sk−1, where � denotes

disjoint union. Set Si has size ri = o(n). We use Si to

hide ai when loading ak. This step doesn’t reduce the

speciality, but this division will be necessary further.

3) Consider the situation before loading ak. If an element

j ∈ S2 is such that xj �= xt for all t ∈ S1, this

element cannot be a part of the certificate (i.e., it can’t

be a2), and its precise value is irrelevant. (This is the

place where we utilize the relations between the values

of the variables as mentioned in the introduction.)

In this case, we say j doesn’t have a match in S1,

and represent it by a special symbol �. Otherwise,

we uncover the element, i.e., load its precise value.

Similarly, when loading Si with i > 2, we uncover

those elements only that have a match among the

uncovered elements of Si−1.

4) Usually, the number of elements in Si having a match

in Si−1 is much smaller than the total number of

elements in Si. Similarly to Point 1, we can reduce

the complexity of loading elements in Si because

of this bias. Thus, we have ri = ω(r1), while the

complexity of loading remains O(r1). Now we have

more elements to hide ai in between, hence, the

speciality of loading ak gets reduced.

5) When loading ak, we do want ai to be in Si for

i ∈ [k − 1], because that is where we hide them.

On the other hand, in order to keep the speciality of

loading non-marked elements in S1, . . . , Sk−1 equal

to O(1), we would like to add a1 to S1 only after all

elements in Sk−1 have been already loaded. Thus, we

load a1, . . . , ak−1 between these two stages and put

I.1 Load a set S1 of r1 elements not from M .
I.2 Load a set S2 of r2 elements not from M , uncov-

ering those elements only that have a match in S1.

.

.

.
I.(k − 1) Load a set Sk−1 of rk−1 elements not from M ,

uncovering those elements only that have a match
among uncovered elements of Sk−2.

II.1 Load a1 and add it to S1.

.

.

.
II.(k − 1) Load ak−1 and add it to Sk−1.

II.k Load ak .

Table II
AN ILLUSTRATIVE (NOT CORRECT) VERSION OF THE LEARNING GRAPH

FOR k-DISTINCTNESS

them in S1, . . . , Sk−1. This is summarized in Table II.

6) Since the uncovering of elements in Si, for i > 1,

depends on the values contained in Sj with j < i,
adding ai to Si afterwards is a bit of cheating. This

does cause some problems we describe in more detail

in Section IV-C. We describe a solution in Section V.

In order to account for these changes, we use the follow-

ing modifications to the learning graph model.

A) In Section V, we are forced to drop the flow notion

from Definition 4. We use Theorem 2 directly, bor-

rowing some concepts from the proof of Theorem 5.

Namely, the notion of a vertex and an arc leaving it.

Also, we keep the internal randomness intuition from

Section II-C. The loading procedure still doesn’t err

in some sense formalized in (11).

B) We change the way the vertices of the learning graph

are represented. Firstly, we keep track to which Si

each loaded element belongs, like said in Point 2.

Also, we assume the condition on uncovering of ele-

ments, and use the special symbol � as a notation for a

covered element, as described in Point 3. Technically,

this corresponds to modification of the definition of an

assignment α in Yα in the proof of Theorem 5.

C) Instead of having a rank-1 matrix Yα as in the proof

of Theorem 5, we define it as a rank-2 matrix. The

weight of the arc depends now on the value of the

variable being loaded as well, although in a rather

restricted form. Thus, we are able to make use of the

bias as described in Point 4, and to account for the

introduction of � in Point 3.

In Sections IV and V we describe the algorithm for k-

distinctness. In order to simplify the exposition, we first

give a version of the learning graph from Table II that

illustrates the main idea of the algorithm, but has a flaw.

We identify it in Section IV-C and then describe a work-

around in Section V. The complexity analysis of the second

algorithm is analogous to the first one, so we do it for the

first algorithm.

211

IV. ALGORITHM FOR k-DISTINCTNESS: FIRST ATTEMPT

The aim of this and the next sections is to prove the

following theorem:

Theorem 7. For arbitrary but fixed integer k ≥ 2, the k-
distinctness problem can be solved by a quantum computer
in O

(
n1−2k−2/(2k−1)

)
queries with a bounded error.

As mentioned in Section III, we do not rely on previous

results like Theorem 6 in the proof, and use Theorem 2

directly. The construction of the algorithm deviates from the

graph representation: a bit in Section IV, and quite strongly

in Section V. However, we keep the term “vertex” for an

entity describing some knowledge of the values of the input

variables, and the term “arc” for a process of loading a value

of a variable (possibly, only partially). Each arc originates

in a vertex, but we do not specify where it goes. Inspired by

Section II-C, the vertices are divided into key ones denoted

by the set of loaded variables S with additional structure.

The non-key vertices are denoted by (S,R) where S is the

set of loaded variables, and R is an additional label used

to distinguish vertices with the same S, as described in

Section II-B. Also, we use the “internal randomness” term

from Section II-C.

Throughout Sections IV and V, let f : [m]n → {0, 1}
be the k-distinctness function. The section is organized as

follows. In Section IV-A, we rigorously define the learning

graph from Table II; in Section IV-B, analyze its complexity;

and, finally, describe the flaw mentioned in Point 6 of

Section III in Section IV-C.

Similarly to the analysis in Ref. [1], we may assume there

is unique k-tuple of equal elements in any positive input.

One of the simplest reductions to this special case is to take

a sequence Ti of uniformly random subsets of [n] of sizes

(2k/(2k + 1))in, and to run the algorithm, for each i, with

the input variables outside Ti removed. One can prove that

if there are k equal elements in the input then there exists

i such that, with probability at least 1/2, Ti will contain

unique k-tuple of equal elements. The complexities of the

executions of the algorithm for various i form a geometric

series, and their sum is equal to the complexity of the

algorithm for i = 0 up to a constant factor. Refer to Ref. [1]

for more detail and alternative reductions.

A. Construction

Let x be a positive input, and let M = {a1, a2, . . . , ak}
denote the unique k-tuple of equal elements in x. The key

vertices of the learning graph are V1∪· · ·∪Vk, where Vs, for

s ∈ [k], consists of all (k−1)-tuples S = (S1, . . . , Sk−1) of

pairwise disjoint subsets of [n] of the following sizes. For

Vs, we require that |Si| = ri + 1 for i < s, and |Si| = ri
for i ≥ s.

Again, a vertex R = (R1, . . . , Rk−1) ∈ V1 completely

specifies the internal randomness. We assume that, for any

R ∈ V1, an arbitrary order t1, . . . , tr of the elements in⋃
R = R1 ∪ · · · ∪Rk−1 is fixed so that all elements of Ri

precede all elements of Ri+1 for all i ≤ k − 2. (Here r =∑
i ri.) We say R ∈ V1 is consistent with x if {a1, . . . , ak}∩

(
⋃
R) = ∅.

For each x ∈ f−1(1), there are exactly
(

n−k
r1,...,rk−1

)
choices of R ∈ V1 consistent with x. We take each

of them, in the sense of Section II-C, with probability

q =
(

n−k
r1,...,rk−1

)−1
.

For a fixed input x and fixed randomness R ∈ V1

consistent with x, the elements are loaded in the following

order:

t1, t2, . . . , tr, tr+1 = a1, tr+2 = a2, . . . , tr+k = ak. (4)

The non-key vertices of G are of the form v = (R ∩
{t1, . . . , t�}, R), where R ∈ V1, 0 ≤ � < r, and {ti} are

from (4). Here we use notation R∩T = (R1∩T, . . . , Rk−1∩
T). The first element of the pair describes the set of loaded

elements.

Let us describe the arcs Av
j of G, where, again, j is the

variable the arc loads, and v is the vertex of G it originates

in. The arcs of the stages I.s have v = (R∩{t1, . . . , t�}, R)
and j = t�+1 with 0 ≤ � < r. The arc belongs to stage

I.s iff t�+1 ∈ Rs. The arcs of stage II.s have v = S, with

S ∈ Vs, and j /∈ ⋃
S.

For a fixed x ∈ f−1(1) and fixed internal randomness

R ∈ V1 consistent with x, the following arcs are taken:

A
(R∩{t1,...,t�},R)
t�+1

and AR[a1,...,a�]
a�+1

. (5)

Here R[a1, a2, . . . , a�] = (R1 ∪ {a1}, R2 ∪ {a2} . . . , R� ∪
{a�}, R�+1, . . . , Rk−1). We say x satisfies all these arcs.

Note that, for a fixed x, no arc is taken for two different

choices of R.

Again, for each arc Av
j , we assign a matrix Xv

j � 0, so

that Xj in (1) are given by Xj =
∑

v X
v
j . Assume Av

j is

fixed. Let S = (S1 . . . , Sk−1) be the set of loaded elements.

Define an assignment on S as a function α :
⋃
S → [m] ∪

{�}, where � represents the covered elements of stages I.s
for s > 1. Thus, α must satisfy � /∈ α(S1) and α(Si+1) ⊆
α(Si) ∪ {�} for 1 ≤ i ≤ k − 2. An input z ∈ [m]n satisfies
assignment α iff, for each t ∈ ⋃

S,

α(t) =

⎧⎪⎨
⎪⎩
zt, t ∈ S1;

zt, t ∈ Si for i > 1 and zt ∈ α(Si−1);
�, otherwise.

Each input z satisfies unique assignment on S. Again, we

say inputs x and y agree on S, if they satisfy the same

assignment on S.

We define Xv
j as

∑
α Yα where the sum is over all

assignments α on S. The definition of Yα depends on

whether Av
j is on stage I.s with s > 1, or not. If Av

j is

212

not on one of these stages then Yα = qψψ∗ where, for each

z ∈ [m]n,

ψ[[z]] =

⎧⎪⎨
⎪⎩

1/
√
w, f(z) = 1, and z satisfies α and Av

j ;√
w, f(z) = 0, and z satisfies α;

0, otherwise.

Here w is a positive real number: the weight of the arc. It

only depends on the stage of the arc, and will be specified

later. Thus, Xv
j consists of the blocks of the following form:

x y
x q/w q
y q qw

(6)

Here x and y represent inputs mapping to 1 and 0, re-

spectively, all satisfying some assignment α. The inputs

represented by x have to satisfy the arc Av
j as well.

If Av
j is on stage I.s with s > 1, the elements having

a match in Ss−1 and the ones that don’t must be treated

differently. In this case, Yα = q(ψψ∗ + φφ∗), where

ψ[[z]] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1/
√
w1,

f(z) = 1, zj ∈ α(Ss−1),
and z satisfies α and Av

j ;
√
w1, f(z) = 0, and z satisfies α;

0, otherwise;

and

φ[[z]] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1/
√
w0,

f(z) = 1, zj /∈ α(Ss−1),
and z satisfies α and Av

j ;

√
w0,

f(z) = 0, zj ∈ α(Ss−1),
and z satisfies α;

0, otherwise.

Here w0 and w1 are again parameters to be specified later.

In other words, Xv
j consists of the blocks of the following

form:

xj ∈ α(Ss−1) q/w1 0 q q
xj /∈ α(Ss−1) 0 q/w0 q 0
yj ∈ α(Ss−1) q q q(w0 + w1) qw1

yj /∈ α(Ss−1) q 0 qw1 qw1

(7)

Here x and y are like in (6). Note that if xj and yj are both

represented by � in the assignments on (S1, . . . , Ss−1, Ss ∪
{j}, Ss+1, . . . , Sk−1) they satisfy then Xv

j [[x, y]] = 0.

B. Complexity

Similarly to Section II-C, let us define the complexity

of stage i on input z ∈ [m]n as
∑

j∈[n]X
′
j [[z, z]], where

X ′j =
∑

v X
v
j with the sum over v such that Av

j belongs

to stage i. Also, define the complexity of stage i as the

maximum complexity over all inputs z ∈ {0, 1}n. Clearly,

the objective value (1a) of the whole program is at most the

sum of the complexities of all stages.

Let us start with stage I.1. We set w = 1 for all arcs on

this stage. There are r1
(

n
r1,...,rk−1

)
arcs on this stage, and,

by (6), each of them contributes at most q to the complexity

of each z ∈ {0, 1}n. Hence, the complexity of stage I.1 is

O
(
qr1

(
n

r1,...,rk−1

))
= O(r1).

Now consider stage II.s for s ∈ [k]. The total number of

arcs on the stage is (n−r−s+1)
(

n
r1+1,...,rs−1+1,rs,...,rk−1

)
.

By (6), each of them contribute qw to the complex-

ity of each y ∈ f−1(0). Out of these arcs, for any

x ∈ f−1(1), exactly
(

n−k
r1,...,rk−1

)
satisfy x. And each of

them contribute q/w to the complexity of x. Thus, the

complexities of stage II.s for any input in f−1(0) and

f−1(1) are O (nsw/(r1 · · · rs−1)), and 1/w, respectively.

By setting w = (ns/(r1 · · · rs−1))
−1/2

, we get complexity

O
(√

ns/(r1 · · · rs−1)
)

of stage II.s. The maximal com-

plexity is attained for stage II.k.

Now let us calculate the complexity of stage I.s for s > 1.

The total number of arcs on this stage is rs
(

n
r1,...,rk−1

)
.

Consider an input z ∈ [m]n, and a choice of the internal

randomness R = (R1, . . . , Rk−1) ∈ V1. An element j is

uncovered on stage I.s for this choice of R if and only if

there is an s-tuple (b1, . . . , bs) of elements with j = bs
such that bi ∈ Ri and zbi

= zbj
for all i, j ∈ [s].

By our assumption on the uniqueness of a k-tuple of

equal elements in a positive input, the total number of

such s-tuples is O(n). And, for each of them, there are(
n−s

r1−1,...,rs−1,rs+1,...,rk−1

)
choices of R ∈ V1 such that bi ∈

Ri for all i ∈ [s]. By (7), the complexities of this stage for

an input in f−1(0) and in f−1(1) are, respectively, at most

O
(

r1···rs

ns−1 w0 + rsw1

)
and O

(
r1···rs

ns−1w1
+ rs

w0

)
. By assigning

w0 =
√
ns−1/(r1 · · · rs−1) and w1 =

√
r1 · · · rs−1/ns−1,

both these quantities become O
(
rs
√
r1 · · · rs−1/ns−1

)
.

With this choice of the weights, the value of the objective

function in (1a) is, up to a constant factor,

r1 +r2

√
r1
n

+ · · ·+rk−1

√
r1 · · · rk−2

nk−2
+

√
nk

r1 · · · rk−1
(8)

Assuming all terms in (8) except the last one are equal, and

denoting ρi = logn ri, we get that

ρi+
1
2
(ρ1+· · ·+ρi−1)− i− 1

2
= ρi+1+

1
2
(ρ1+· · ·+ρi)− i

2
or, equivalently,

ρi+1 =
1 + ρi

2
, for i = 1, . . . , k − 2.

Assuming the first term, r1, equals the last one, we get ρ1 =
1− 2k−2/(2k − 1), hence, the complexity of the algorithm

is O
(
n1−2k−2/(2k−1)

)
.

C. (In)feasibility

Assume x and y are inputs such that f(x) = 1 and

f(y) = 0. Let R = (R1, . . . , Rk−1) ∈ V1 be a choice of

the internal randomness consistent with x. Let Zj be the

213

matrix corresponding to the arc loading j that is taken for

input x and randomness R (i.e., the one from (5) with sub-

index j, or the zero matrix, if there are none).

We would like to prove that∑
j:xj �=yj

Zj [[x, y]] = q. (9)

(This is what we meant by saying in Point A of Section III

that the learning graph doesn’t err for all choices of the

internal randomness.) Unfortunately, it doesn’t always hold.

Assume x, y and R ∈ V1 are such that x and y agree on R.

Thus, the contribution to (9) is 0 from all arcs of stages I.s.
Now assume that xa1 = ya1 and there exists b ∈ R2 such

that yb = xa1 . This doesn’t contradict that x and y agree

on R, because yb is represented by � in the assignment it

satisfies on R.

But x and y disagree on R[a1], because yb gets uncovered

there. Thus, the contribution to (9) is 0 from all arcs of stages

II.s as well. Thus, equation (9) doesn’t hold. We deal with

this problem in the next section.

V. FINAL VERSION

In Section IV-C, we saw that the learning graph in Table II

is incorrect. This is due to faults. A fault is an element b of

Ri with i > 1 such that yb = xa1 . This is the only element

that can suddenly uncover itself when adding ai−1 to Ri−1

on stage II.(i − 1), because we have assumed x contains

a unique k-tuple of equal elements, hence, if R ∈ V1 is

consistent with x, no b in
⋃
R satisfies xb = xa1 .

But since y is a negative input, there are at most k −
1 = O(1) faults for every choice of x. Thus, all we need

is to develop a fault-tolerant version of the learning graph

from Table II that is capable of dealing with this number of

faults.

As an introductory example, consider case k = 3. In this

case, a fault may only occur in R2. A fault may come in

action only if ya1 = xa1 , hence, we may assume there

are at most k − 2 faults in any y. Split R2 into k − 1
subsets {R2(d)}d∈[k−1]. We know that at least one of them

is not faulty, but it is not enough: we have to assure the

contribution from these arcs is q exactly, no matter how

many of R2(d) are faulty, i.e., a variant of (9). We achieve

this by splitting R1 into 2k−1−1 parts {R1(D)} labeled by

non-empty subsets D of [k− 1]. We uncover an element in

R2(d) if and only if it has a match in R1(D) for some

D � d. By adding a1 to R1(D), we can test whether⋃
d∈D R2(d) contains a fault. This is enough to guarantee (9)

by an application of the inclusion-exclusion principle. The

construction in Section V-A is a generalization of this idea

for arbitrary k.

A. Construction

The key vertices of the learning graph are V1 ∪ · · · ∪
Vk, where Vs consists of all collections of pairwise disjoint

subsets S =
(
Si(d1, d2, . . . , di−1, D)

)
labeled by i ∈ [k−1],

dj ∈ [k − j], and ∅ ⊂ D ⊆ [k − i]. There are additional

requirements on the sizes of these subsets.
For a non-empty subset D ⊂ N, let μ(D) denote the

minimal element of D. (Actually, any fixed element of D
works as well.) For each sequence (D1, . . . , Ds−1), where

Di is a non-empty subset of [k − i], let Vs(D1, . . . , Ds−1)
consist of all collections

(
Si(d1, d2, . . . , di−1, D)

)
such that

|Si(d1, . . . , di−1, D)|

=

{
ri + 1, i < s, dj = μ(Dj), and D = Di;

ri, otherwise.

Finally, let Vs be the union of Vs(D1, . . . , Ds−1) over all

choices of (D1, . . . , Ds−1).
Again, a vertex in R =

(
Ri(d1, d2, . . . , di−1, D)

) ∈ V1

completely specifies the internal randomness. For each of

them, we fix an arbitrary order t1, . . . , tr of elements in
⋃
R

so that all elements of Ri precede all elements of Ri+1 for

all i ≤ k−2. We say R is consistent with x, if {a1, . . . , ak}
is disjoint from

⋃
R. Let q be the inverse of the number of

R ∈ V1 consistent with x. (Clearly, this number is the same

for all choices of x.)
The elements still are loaded in the order from (4). We

use a similar convention to name the arcs of the learning

graph as in Section IV. Arcs of stages I.s are of the

form A
(R∩{t1,...,t�},R)
t�+1

for R ∈ V1 and 0 ≤ � < r.

Here, R ∩ T =
(
Si(d1, d2, . . . , di−1, D)

)
is defined by

Si(d1, d2, . . . , di−1, D) = Ri(d1, d2, . . . , di−1, D)∩T . Arcs

of stage II.s are of the form AR
j with R ∈ Vs and j /∈ ⋃

R.
For any x ∈ f−1(1) and R ∈ V1 consistent with

x, the following arcs are taken. On stage I.s, for s ∈
[k − 1], these are arcs A

(R∩{t1,...,t�},R)
t�+1

, where t�+1 be-

longs to one of Rs. On stage II.s, for s ∈ [k],
we have many arcs loading as. For each choice of

(Di)i∈[s−1] where Di is a non-empty subset of [k − i],
the arc A

R[D1←a1,...,Ds−1←as−1]
as is taken where R[D1 ←

a1, . . . , Ds−1 ← as−1] =
(
Si(d1, d2, . . . , di−1, D)

)
is

defined by Si(d1, . . . , di−1, D) = Ri(d1, . . . , di−1, D) ∪
{ai}, if i < s, dj = μ(Dj), and D = Di, and

Si(d1, . . . , di−1, D) = Ri(d1, . . . , di−1, D), otherwise.
For each arc Av

j , we define a positive semi-definite matrix

Xv
j so that Xj in (1) are given by

∑
v X

v
j . Fix an arc

Av
j and let S =

(
Si(d1, d2, . . . , di−1, D)

)
be the set of

loaded elements. This time, we define an assignment on

S as a function α :
⋃
S → [m] ∪ {�} such that � /∈⋃

D α(S1(D)), and, for all i > 1 and all possible choices

of d1, . . . , di−1 and D, α(Si(d1, d2, . . . , di−1, D)) ⊆ {�} ∪⋃
K�di−1

α(Si−1(d1, . . . , di−2,K)).
An input z ∈ [m]n satisfies assignment α iff, for each

t ∈ ⋃
S, α(t) = zt, if t ∈ S1(D) or t ∈ Si(d1, . . . , di−1, D)

and zt ∈
⋃

K�di−1
α(Si−1(d1, . . . , di−2,K)), and α(t) = �,

otherwise. We say inputs x and y agree on S, if they satisfy

the same assignment α.

214

Like before, we define Xv
j as

∑
α Yα where the sum is

over all assignments α on S. For the arcs on stage I.1,

Yα are defined as in (6), and the arcs on stage I.s, for

s > 1, are defined as in (7) with α(Ss−1) replaced by⋃
K�ds−1

α(Ss−1(d1, . . . , ds−2,K)).
Now consider stage II.s. Let AS

j be an arc with S ∈
Vs(D1, . . . , Ds−1). In this case, Yα = qψψ∗ where

ψ[[z]] =

⎧⎪⎨
⎪⎩

1/
√
w, f(z) = 1, and z satisfies α and AS

j ;

±√w, f(z) = 0, z satisfies α;

0, otherwise;

where there is + in the second case, if and only if s +
|D1| + · · · + |Ds−1| is odd. Thus, depending on the parity

of s + |D1| + · · · + |Ds−1|, XS
j consists of the blocks of

one of the following two types:

x y
x q/w q
y q qw

or

x y
x q/w −q
y −q qw

(10)

Complexity: Before we go on proving the correctness

of this modified learning graph, let us consider the complex-

ity issue. The complexity analysis follows the same lines as

in Section IV-B. The complexity of stages I.s is proved simi-

larly, by taking Ri =
⋃

d1,...,di−1,D Ri(d1, . . . , di−1, D), and

noting that |Ri| = O(k!)ri = O(ri). Of course, having a

match in Ri−1 is not sufficient for an element in Ri to

be uncovered, but this only reduces the complexity. The

analysis of stage II.s is also similar, but this time instead

of one arc loading element as for a fixed choice of x and

R ∈ V1, there are 2O(k2) = O(1) of them.

B. Feasibility

Fix inputs x ∈ f−1(1) and y ∈ f−1(0), and let R ∈ V1

be a choice of the internal randomness consistent with x.

Compared to the learning graph in Section IV, for a fixed

j ∈ [n], many arcs of the form Av
j may be taken, thus, we

have to modify the Zj notation. Let Z be the set of arcs

taken for this choice of x and R. The complete list is in

Section V-A. We prove that∑
Av

j
∈Z : xj �=yj

Xv
j [[x, y]] = q. (11)

Since, again, no arc is taken for two different choices of

R ∈ V1, this proves feasibility (1b).

If x and y disagree on R then (11) holds. It is not hard

to check that there exists i ∈ [r] such that x and y disagree

on R ∩ {t1, . . . , ti′} if and only if i′ ≥ i. Let j = ti, T =
{t1, . . . , ti−1}, S = R ∩ T and S′ = R ∩ (T ∪ {j}). We

claim that X
(S,R)
j [[x, y]] = q and xj �= yj .

Indeed, let α be the assignment x and y both satisfy on S,

and let αx and αy be the assignments x and y, respectively,

satisfy on S′. By the order imposed on the elements in (4),

we get that α(t) = αx(t) = αy(t) for all t ∈ T . Since x and

y disagree on S′, it must hold that αx(j) �= αy(j). Hence,

xj �= yj , and at least one of the is not represented by � in

the assignment on S′. Thus, X
(S,R)
j [[x, y]] = q by (6) or (7),

in dependence on whether A
(S,R)
j belongs to stage I.1 or

not.

We claim the contribution to the sum in (11) from the

arcs in Z loading ti′ for i′ ∈ [r + k] \ {i} is zero. For

i′ > i, this follows from that x and y disagree before loading

ti′ . Now consider i′ < i. Inputs x and y agree on S =
R ∩ {t1, . . . , ti′}. Let j′ = ti′ and α be the assignment x
and y both satisfy on S. We have either xj′ = yj′ , or they

both are represented by � in α. In both cases, the contribution

is zero (in the second case, by (7)).

Now assume x and y agree on R. The contribution to (11)

from the arcs of stages I.s is 0 by the same argument as in

the previous paragraph. Let s be the first element such that

xas �= yas . We claim that if s′ �= s, the contribution to (11)

from the arcs AS
as′ ∈ Z with S ∈ Vs′ is 0.

Indeed, if s′ < s then xas′ = yas′ . If s′ > s, for

each choice of (Di)i∈[s′−1], x and y disagree on R[D1 ←
a1, . . . , Ds′−1 ← as′−1], because, by construction, all ai

with i < s′ are uncovered in the assignment of x.

The total contribution from the arcs AS
as
∈ Z with S ∈ Vs

is q. This is a special case of Lemma 8 below. Before stating

the lemma we have to introduce additional notations. For a

vertex S = R[D1 ← a1, . . . , D� ← a�] of the learning

graph with � < s, let the block B(S) on this vertex be

defined as the set of vertices R[D1 ← a1, . . . , Ds−1 ←
as−1], where ∅ ⊂ Di ⊆ [k − i] for i = � + 1, . . . , s − 1.

Also, define the contribution of the block on this vertex

as C(S) =
∑

S′∈B(S)X
S′
as

[[x, y]]. We prove the following

lemma by induction on s− �:
Lemma 8. Let R and s be as above. If x and y agree on
S = R[D1 ← a1, . . . , D� ← a�] then the contribution from
the block on S is (−1)�+|D1|+···+|D�|q. Otherwise, it is 0.

Note that if � = 0, the lemma states that the contribution

of the block on R is q. But this block consists of all arcs of

the form AS
as

from Z . Thus, this proves (11).

Proof of Lemma 8: If x and y disagree on S, they dis-

agree on any vertex from the block, hence, the contribution

is 0.

Now assume x and y agree on S. If � = s − 1,

there is only S in the block. Hence, the contribution is

(−1)�+|D1|+···+|D�|q by (10), because x and y agree on S
and xas �= yas . Now assume � < s−1, and the lemma holds

for � replaced by � + 1. The block B(S) can be expressed

as the following disjoint union:⊔
∅⊂D�+1⊆[k−�−1]

B(R[D1 ← a1, . . . , D�+1 ← a�+1]).

Let I be the set of i ∈ [k − � − 1] such that⋃
D R�+2(μ(D1), . . . , μ(D�), i,D) does not contain a fault.

215

It is not hard to see that x and y agree on R[D1 ←
a1, . . . , D�+1 ← a�+1] if and only if D�+1 ⊆ I . Since

ya1 = · · · = yas−1 = xa1 and there is at most k−1 element

in y equal to xa1 , there are at most k−1−(s−1) < k−�−1
faults. Hence, I is non-empty. Using the inductive assump-

tion,

C(S) =
∑

∅⊂D�+1⊆[k−�−1]

C(R[D1 ← a1, . . . , D�+1 ← a�+1])

=
∑

∅⊂D�+1⊆I

(−1)�+1+|D1|+···+|D�+1|q

= (−1)�+|D1|+···+|D�|q,

by inclusion-exclusion.

VI. CONCLUSION

A quantum query algorithm for k-distinctness is pre-

sented in the paper. The algorithm uses the learning graph

framework. The improvement in complexity is due to a

sequence of new ideas enhancing the framework: partial

assignments in the vertices of the learning graph, arcs with

the weight dependent on the variable being loaded, fault-

tolerant learning graphs, and others.

The future research may concentrate on the following

problems. Is it possible to use some of these ideas to

improve the quantum query complexity of other problems?

The complexity of the algorithm in the paper has rather bad

dependence on k. Is it possible to improve the dependence

using a more advanced fault-tolerance technique? Finally,

we know that the Ambainis’ algorithm can be implemented

time-efficiently. Is this true for the algorithm in this paper?

ACKNOWLEDGMENTS

I am grateful to Robin Kothari for sharing his construction

of learning graphs with different arc weights for different

values of the variable being loaded and to Andris Ambainis

for sharing his algorithm for the graph collision problem

that has mostly triggered this research. Also, I would like to

thank Andris Ambainis and the anonymous referees for the

significant help in improving the presentation of the paper.

This work has been supported by the European Social

Fund within the project “Support for Doctoral Studies at

University of Latvia” and by FET-Open project QCS.

REFERENCES

[1] A. Ambainis, “Quantum walk algorithm for element distinct-
ness,” SIAM Journal on Computing, vol. 37, pp. 210–239,
2007.

[2] S. Aaronson and Y. Shi, “Quantum lower bounds for the
collision and the element distinctness problems,” Journal of
the ACM, vol. 51, no. 4, pp. 595–605, 2004.

[3] S. Kutin, “Quantum lower bound for the collision problem
with small range,” Theory of Computing, vol. 1, no. 1, pp.
29–36, 2005.

[4] A. Ambainis, “Polynomial degree and lower bounds in quan-
tum complexity: Collision and element distinctness with small
range,” Theory of Computing, vol. 1, pp. 37–46, 2005.

[5] F. Magniez, M. Santha, and M. Szegedy, “Quantum algo-
rithms for the triangle problem,” SIAM Journal on Computing,
vol. 37, no. 2, pp. 413–424, 2007.

[6] H. Buhrman and R. Špalek, “Quantum verification of matrix
products,” in Proc. of 17th ACM-SIAM SODA, 2006, pp. 880–
889.

[7] S. Dörn and T. Thierauf, “The quantum query complexity
of algebraic properties,” in Proc. of 16th FCT, vol. 4639.
Springer-Verlag, 2007, pp. 250–260.

[8] M. Szegedy, “Quantum speed-up of markov chain based
algorithms,” in Proc. of 45th IEEE FOCS, 2004, pp. 32–41.

[9] F. Magniez, A. Nayak, J. Roland, and M. Santha, “Search
via quantum walk,” in Proc. of 39th ACM STOC, 2007, pp.
575–584.

[10] A. Childs and J. Eisenberg, “Quantum algorithms for subset
finding,” Quantum Information & Computation, vol. 5, no. 7,
pp. 593–604, 2005.

[11] A. Belovs and R. Špalek, “Adversary lower bound for the
k-sum problem,” 2012, arXiv:1206.6528.

[12] A. Belovs, “Span programs for functions with constant-sized
1-certificates,” in Proc. of 44th ACM STOC, 2012, pp. 77–84.

[13] Y. Zhu, “Quantum query complexity of subgraph containment
with constant-sized certificates,” 2011, arXiv:1109.4165.

[14] T. Lee, F. Magniez, and M. Santha, “A learning graph
based quantum query algorithm for finding constant-size
subgraphs,” 2011, arXiv:1109.5135.

[15] A. Belovs and T. Lee, “Quantum algorithm for k-distinctness
with prior knowledge on the input,” 2011, arXiv:1108.3022.

[16] A. Belovs and B. Reichardt, “Span programs and quantum
algorithms for st-connectivity and claw detection,” 2012,
arXiv:1203.2603.

[17] H. Buhrman and R. de Wolf, “Complexity measures and
decision tree complexity: a survey,” Theoretical Computer
Science, vol. 288, pp. 21–43, 2002.

[18] A. Ambainis, “Quantum lower bounds by quantum argu-
ments,” Journal of Computer and System Sciences, vol. 64,
no. 4, pp. 750–767, 2002.

[19] P. Høyer, T. Lee, and R. Špalek, “Negative weights make
adversaries stronger,” in Proc. of 39th ACM STOC, 2007, pp.
526–535.

[20] B. Reichardt, “Reflections for quantum query algorithms,” in
Proc. of 22nd ACM-SIAM SODA, 2011, pp. 560–569.

[21] T. Lee, R. Mittal, B. Reichardt, R. Špalek, and M. Szegedy,
“Quantum query complexity of the state conversion problem,”
in Proc. of 52nd IEEE FOCS, 2011, pp. 344–353.

[22] M. Boyer, G. Brassard, P. Høyer, and A. Tapp, “Tight bounds
on quantum searching,” Fortschritte der Physik, vol. 46, no.
4-5, pp. 493–505, 1998.

216

