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Abstract—Convex relaxations based on different hier-
archies of linear/semi-definite programs have been used
recently to devise approximation algorithms for various
optimization problems. The approximation guarantee of
these algorithms improves with the number of rounds r
in the hierarchy, though the complexity of solving (or even
writing down the solution for) the r’th level program grows
as nΩ(r) where n is the input size.

In this work, we observe that many of these algorithms
are based on local rounding procedures that only use a
small part of the SDP solution (of size nO(1)2O(r) instead
of nΩ(r)). We give an algorithm to find the requisite portion
in time polynomial in its size. The challenge in achieving
this is that the required portion of the solution is not fixed a
priori but depends on other parts of the solution, sometimes
in a complicated iterative manner.

Our solver leads to nO(1)2O(r) time algorithms to obtain
the same guarantees in many cases as the earlier nO(r) time
algorithms based on r rounds of the Lasserre hierarchy.
In particular, guarantees based on O(log n) rounds can be
realized in polynomial time. For instance, one can (i) get
O(1/λr) approximations for graph partitioning problems
such as minimum bisection and small set expansion in
nO(1)2O(r) time, where λr is the r’th smallest eigenvalue of
the graph’s normalized Laplacian; (ii) a similar guarantee
in nO(1)kO(r) for Unique Games where k is the number of
labels (the polynomial dependence on k is new); and (iii)
find an independent set of size Ω(n) in 3-colorable graphs
in (n2r)O(1) time provided λn−r < 17/16.

We develop and describe our algorithm in a fairly
general abstract framework. The main technical tool in
our work, which might be of independent interest in
convex optimization, is an efficient ellipsoid algorithm
based separation oracle for convex programs that can
output a certificate of infeasibility with restricted support.
This is used in a recursive manner to find a sequence of
consistent points in nested convex bodies that “fools” local
rounding algorithms.
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I. INTRODUCTION

A rich body of recent research has shown that for

many optimization problems, the Unique Games conjec-

ture (UGC) serves as a barrier to further improvements

to the approximation factor achieved by efficient algo-

rithms. In many cases, including all constraint satisfac-

tion problems and various graph partitioning problems,

the best algorithms are based on fairly simple semi-

definite programming (SDP) relaxations. The UGC fore-

tells that for these problems, no tighter relaxation than

these simple SDPs will yield a better approximation ratio

in the worst-case.

Hierarchies of convex relaxations. A natural ques-

tion thus is to understand the power and limitations

of potentially stronger SDP relaxations, for example

those from various hierarchies of relaxations. These

hierarchies are parameterized by an integer r (called

rounds/levels) which capture higher order correlations

between (roughly r-tuples of) variables (the basic SDP

captures only pairwise correlations, and certain ex-

tensions like triangle inequalities pose constraints on

triples). Larger the r, tighter the relaxation. The optimum

of n’th level of the hierarchy, where n is the number

of variables in the underlying integer program, usually

equals the integral optimum.

There are several hierarchies of relaxations that have

been studied in the literature, such as Sherali-Adams

hierarchy of linear programs [1], the Lovász-Schrijver

hierarchy [2], a “mixed” hierarchy combining Sherali-

Adams linear programs with the base level SDP, and

the Lasserre hierarchy [3] (see [4] for a recent survey

focusing on their use in approximate combinatorial op-

timization). Of these hierarchies, the most powerful one

is the Lasserre hierarchy (see [5] for a comparison), and

therefore holds the most potential for new breakthroughs

in approximation algorithms. Arguably, Lasserre SDPs

pose the currently strongest known threat to the Unique

Games conjecture, as even the possibility of the 4’th

level of Lasserre SDP relaxation improving upon the

Goemans-Williamson 0.878 approximation factor for

Max Cut has not been ruled out. Recently, it has also
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been shown that O(1) rounds of the Lasserre hierarchy

are able to solve all candidate gap instances of Unique

Games [6]. (On the other hand, for some of the weaker

hierarchies, integrality gaps for super-constant rounds

are known for various Unique-Games hard problems [7],

[8].)

In light of the above, the power and limitations of the

Lasserre hierarchy merit further investigation. There has

been a fair bit of recent interest in Lasserre hierarchy

based approximation algorithms [9], [10], [11], [12],

[13], [14], [15]. For instance, our work [11] shows that

various graph partitioning problems (including minimum

bisection, sparsest cut, and Unique Games) can be well-

approximated by ≈ r rounds of the Lasserre SDP

on graphs whose r’th smallest eigenvalue λr (of the

Laplacian) is reasonably large.

A (near)-optimal solution to the r’th level Lasserre

relaxation can be found in nO(r) time. So understanding

the power of these relaxations for small values of r
is of particular interest. The main contribution of this

work is to improve the running time of various Lasserre-

based approximation algorithms to 2O(r)nO(1) (from the

default nO(r)). In particular, the guarantees achieved by

O(log n) rounds of Lasserre SDPs can be realized in

polynomial time. Plugging our methods into some of the

algorithms in [11] gives us the following application:

Theorem 1. For the graph partitioning problems such as
uniform sparsest cut, small set expansion, and minimum
bisection, one can compute a cut with cost at most

1.5
min{1,λr} times the optimum in nO(1)2O(r) time, where
n is the number of vertices and λr the r’th smallest
eigenvalue of the normalized Laplacian of the input
graph.1

For Unique Games with k labels and n variables, an
approximation factor of 3/min{1, λr} can be achieved
for the minimization version in time nO(1)kO(r), where
λr the r’th smallest eigenvalue of the normalized Lapla-
cian of the constraint graph. (Note the polynomial de-
pendence of the runtime on the number of labels, which
is new to this work.)

Another use of the Lasserre hierarchy to find inde-

pendent sets in 3-colorable graphs [14], which we can

also similarly speed up. A table of several algorithms

whose algorithms we are able to improve is given in

Section VII.

Theorem 2. Given a 3-colorable regular graph G, we
can find an independent set of size at least n/12 in
2O(r)nO(1) time provided the r’th largest eigenvalue of

1For the case of minimum bisection, the cut may have a o(n)
imbalance. In fact, an approximation factor of 1+ε

min{1,λr} can be

achieved in nO(1/ε2)2O(r/ε) time.

the normalized Laplacian of G is at most 17/16.

Our techniques might also be useful in the context

of fixed-parameter tractability, which we leave as a

potentially interesting avenue for future research.

Local rounding algorithms. Note that even writing

down the full r-round Lasserre solution takes nΩ(r)

time. The hope to speed-up the algorithms to a runtime

dependence of 2O(r) is based on the observation that

many of the rounding algorithms have a ”local” character

that uses only a small portion of the SDP solution. In

the simplest setting, the rounding algorithm proceeds in

two steps: (i) find a “seed set” S∗ of ≈ r nodes based

only the solution to the base (1-round) SDP, and (ii) use

the value of r-round Lasserre solution on the set S∗ to

sample a partial assignment to S∗ and then propagate it

to the other nodes. Thus the rounding algorithm only

uses the portion of the Lasserre SDP corresponding

to the subsets S∗ ∪ {u} for various u. Further, the

analysis of the rounding algorithm also relies only on

Lasserre consistency constraints for subsets of S∗. More

generally, the algorithms might pick a sequence of seed

subsets S1, S2, . . . , S� iteratively and the SDP solution

restricted to subsets of S1 ∪ S2 ∪ · · ·S� is used for

rounding.

Note that the needed portion of the solution (corre-

sponding to S∗, or more generally S1 ∪ S2 ∪ · · ·S�)

itself depends on certain other parts of the solution. So

one cannot simply project the space down to the relevant

dimensions to find the required part of the Lasserre

solution. Our main technical contribution is an ellipsoid

algorithm that can find the needed partial solution (which

satisfies all the local constraints induced on those vari-

ables) in time polynomial in the number of variables in

the partial solution. We stress that the partial solution

we find may not extend to a full Lasserre solution.

This, however, does not matter for the approximation

guarantee as it will “fool” the rounding algorithm which

can’t distinguish the solution we find from a global

Lasserre solution.

There are two examples of hierarchy based approxi-

mation algorithms which have been speeded up to 2O(r)

dependence on the number of rounds, both of which rely

on weaker hierarchies than Lasserre: (i) the algorithm

for sparsest cut on bounded treewidth graphs using the

Sherali-Adams hierarchy [16] and (ii) the Unique Games

algorithm based on the “mixed” hierarchy [12]. The

faster algorithm is for the former case is immediate

as the required portion of the solution only depends

on the input graph, so one can simply find that part

using any LP solver. For the Unique Games algorithm,

the seed set S∗ depends on the vector solution to the

basic SDP relation. The goal is to extend the solution
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to local distributions of labels on subsets S∗ ∪ {u} for

various nodes u, whose 2-way marginals agree with the

vector inner products. As briefly sketched in [12], these

constraints form a linear program, and if infeasible, by

Farkas’ lemma, one can get a new constraint for the

vector inner products, which can be fed into an ellipsoid

algorithm for solving the basic SDP. Our situation is

more complicated as we handle several iterations of seed

set selection, and the “extension” problems we solve are

no longer simple linear programs. Also, the runtime of

the Unique Games algorithm in [12] had an exponential

dependence on the number of labels, as opposed to our

polynomial dependence.

Main technique: Separation oracle with restricted
support. We describe the high level ideas behind our

method for finding adequate partial solutions to Lasserre

SDPs in Section II. Our approach applies in a fairly

general set-up, and therefore we describe our methods

in an abstract framework for clarity, both in Section II

and later in Section IV where the formal details appear.

In addition to the runtime improvements, our results

contribute a useful, and to our knowledge new, basic tool

in convex optimization, which is an efficient ellipsoid
algorithm based separation oracle that can output a
certificate of infeasibility with restricted support (or

more generally belonging to a restricted subspace). For

instance, suppose we are given a convex body K ⊆ Rn

via a separation oracle for it. Given a point y ∈ RU (a

potential partial solution) for some U ⊂ {1, 2, . . . , n},
we give an algorithm to either find x ∈ K such that

projU (x) = y (if one exists2), or find a separating

constraint that is supported on U .

II. AN ABSTRACT FRAMEWORK OF LOCAL

ROUNDING AND OVERVIEW OF OUR TECHNIQUES

Consider a rounding algorithm with following prop-

erty: Given an optimal solution x ∈ RN as input, it only

reads a much smaller part of this solution, say T ⊆ N
with |T | = o(|N |). We call these “local” rounding

algorithms: Even though this setting might sound too

restrictive and/or unrealistic, observe that several of the

known rounding algorithms which use “hierarchies” fit

into this framework, [9], [10], [11], [14], [13], [15]. See

Section VII for details.

a) Local Rounding.: We first start by outlining a

generic iterative rounding algorithm. This framework

depends on two application specific deterministic3 pro-

cedures, SEED and FEASIBLE. Without going into

2Actually, we need the volume of K ∩ proj−1
U (y) to be at least

some small ε
3We can allow randomization also, but we stick to the deterministic

case for simplicity, since all the seed selection procedures used by the
known algorithms can be derandomized.

the formal details, at a high level, SEEDS procedure

chooses next “seed set” designating which fragment of

the solution we will read based on current seeds S
and FEASIBLES(y) is a strong separation oracle for

a convex body KS representing the induced solutions

on seeds S.

At the end, final seeds and induced solution are fed

into another application specific rounding procedure.

b) Formal Framework.: Given two problem spe-

cific procedures, SEED and FEASIBLE, we formalize

the generic algorithm described above as follows.

1) Let x ∈ RN be a vector representing an optimal

solution for some convex optimization problem, x ∈
KN .

2) Let S(0) be the initial solution fragment and

y(0)← xS(0) be the induced solution.

3) For i← 0 to �:

a) Fail if FEASIBLES(i)(y(i)) asserts infeasible

(i.e. y(i) /∈ KS(i)).

b) If i < �, read next part of solution: S(i+ 1)←
SEEDS(i)(y(i)) and y(i+ 1)← xS(i+1).

4) Perform rounding using S(�) and y(�).

c) Our Goal.: Suppose |S(�)| � |N | – the algo-

rithm reads only a negligible portion of the full solution.

Then can we find an equivalent rounding algorithm

which runs in time poly(|S(�)|) as opposed to poly(N)?
Claim 3 shows this can be expected:

Claim 3. Above rounding algorithm can not distinguish
between the following two cases, i.e. any properties
satisfied by the output assuming 1 still holds under a
weaker condition, 2:

1) There exists a feasible solution x ∈ RN , i.e.
FEASIBLEN (x) asserts feasible.

2) For all i ∈ {0, . . . , �}:
• y(i) ∈ KS(i): FEASIBLES(i)(y(i)) asserts fea-

sible,
• S(i+ 1) = SEEDS(i)(y(i)) if i < �,
• y(i+ 1)S(i) = y(i) if i < �.

Using this insight, we first consider a simple case and

give an algorithm whose running time depends on |S(�)|
instead of |N |.

A. An Algorithm for a Simple Case

Suppose that SEED procedure does not depend on y.

Then the above conditions can easily be expressed as a

convex problem of size |S(�)|, which is much smaller

than the original problem. Then we can solve this convex

problem using standard ellipsoid procedure and execute

the above procedure on this solution instead.
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B. Our Algorithm

Unfortunately for all algorithms we consider in this

paper, the procedure SEED heavily depends on y. In

particular, at the ith level, 0 ≤ i < �, we are trying to

solve the following induced problem on S(i+1). Given

y(i) ∈ KS(i):

Find y(i+ 1)
st y(i+ 1)S(i) = y(i), y(i+ 1) ∈ KS(i+1);

∃y(i+ 2) ∈ KS(i+1) : y(i+ 2)S(i+1) = y(i+ 1)
where S(i+ 2) = SEEDS(i+1)(y(i+ 1));

.. .

∃y(�) ∈ KS(�) : y(�)S(�−1) = y(�− 1)
where S(�) = SEEDS(�−1)(y(�− 1)).

(1)

Observe that if we can construct a weak separation oracle

for eq. (1) at (i + 1)th level, then we can combine it

with ellipsoid algorithm to solve the problem at ith level

also. Thus if we can convert this ellipsoid algorithm to a

weak separation oracle, then we can call these separation

oracles recursively starting from 0th level all the way

down to �th level:

Recursive Separation Oracle. (Template for ith level)

1. Given S(i) and y(i), if FEASIBLES(i)(y(i)) as-

serts infeasible and returns c, then assert infeasible

and return c (to the (i− 1)th level).

2. If i = �, then return the solution y(�).
3. Let S(i+ 1)← SEEDS(i)(y(i)).
4. Use ellipsoid method to find y(i + 1) such that

y(i + 1)j = y(i)j for all j ∈ S(i) with separation

oracle being a recursive call for the (i+ 1)th level

(which takes inputs S(i+ 1) and y(i+ 1)).
5. If ellipsoid method fails to find such solution y(i+
1), return a separating hyperplane.

The key question now is how one might implement (the

currently vague) step 5. Let us inspect a simple option,

and see what goes wrong with it.

Return an arbitrary hyperplane seen so far. Any

inequality returned by the recursive separation oracle call

is a valid separating hyperplane, so consider returning

an arbitrary one. What goes wrong in this case? The

problem is that the running time now might be as

large as polynomial in |N |. To see this, suppose that

FEASIBLES(�)(y(�)) returned an inequality on support

S(�). Then the parent ellipsoid procedure needs to keep

track of the additional variables from this particular

S(�), call it S̃. At some later stage, the algorithm may

backtrack and change an earlier seed set, say S(�− 5),
which will need to a new S(�). But the algorithm would

still need to keep the values of variables from the S̃,

the old value of S(�). Continuing in this fashion, the

set of variables the algorithm has to track might end up

being N , which is equivalent to constructing the whole

solution on RN !

This attempt has not been futile though, as it shows

what kind of hyperplanes we need:

Any hyperplane returned by step 5 at (i+ 1)st level

should have support S(i). (2)

We outline our proposed solution in the next section.

C. Our Contribution: A Separation Oracle with Re-
stricted Support

Our solution to 2 is based on a new ellipsoid algorithm

for finding separating constraints with restricted support.

Specifically, the main technical contribution of this paper

is Algorithm 1 with the following guarantee: Given a

feasibility problem of the form

Find y ∈ Rn subject to Πy = y0, y ∈ int(K),

where Π is a projection matrix, y0 ∈ span(Π) ⊆ Rn;

along with separation oracle for convex body K; it either

finds feasible y or asserts that the problem is infeasible

and outputs a separating hyperplane c ∈ span(Π). This

algorithm coupled with the recursive separation oracle

meets both our correctness and running time require-

ments. In particular, the running time instead of being

the trivial bound of |N |O(1) will be roughly |S(�)|O(�).

Assuming the exponential-time hypothesis, the exponen-

tial dependence on the number of seed selection stages �
cannot be avoided (a sub-exponential dependence would

lead to a f(k)no(k) time algorithm to decide if an n-

vertex graph has a k-clique).

Remark 1. Our algorithm can be thought as a weak

separation oracle for eq. (1) at level i given a weak

separation oracle for level i+1. When each convex body

KS(2), . . . ,KS(�) is guaranteed to be a polytope, such as

LPs from the Sherali-Adams Hierarchy, it is known that

one can obtain a strong separation oracle at level i by

using only using a strong separation oracle at level i+1
(see Corollary 6.5.13 in [17]). However in the case of

semi-definite programming, it is an open question [18]

whether one can obtain a strong separation oracle from

another strong separation oracle in polynomial time.

III. PRELIMINARIES

For any positive integer n, let [n] � {1, 2, . . . , n}. We

will use ∅ to denote empty set. Given set A, let 2A be its

power set, i.e. set of all subsets. For any real k, we will

use Ak, A≤k and A≥k to denote the set of all subsets

of A having size exactly k, at most k and at least k
respectively. Observe that 2A = A≥0, ∅ = A0. Finally

note that A≥1 is the set of non-empty subsets of A.

Given sets A,B and a field F (R for reals, Q for

rationals) , we will use FA and FA×B to denote vectors
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and matrices over F whose rows and columns are iden-

tified with elements of A and B respectively. For any

function f : A → F (resp. g : A × B → F), we will

use [f(u)]u∈A (resp. [g(u, v)](u,v)∈A×B) to denote the

vector (resp. matrix) whose value at row u (resp. row

u and column v) is equal to f(u) (resp. g(u, v)). Given

vector x ∈ FA and matrix Y ∈ FA×B , for any subset

C and D let xC ∈ FC and YC,D ∈ FC×D denote the

minors of x, Y on rows A∩C and columns B∩D with

0’s everywhere else.

Finally we will use SA ⊃ SA
+ ⊃ SA

++ to denote the set

of symmetric, positive semi-definite and positive definite

matrices on rows and columns A.

A. Convex Geometry and Ellipsoid Method

The main crux of our algorithm relies on an ellipsoid

solver method which can also return a certificate of

infeasibility. Throughout this section, we assume the

underlying space is n-dimensional whose coordinates

are identified with [n]. So all our vectors and matrices

(unless noted otherwise) will have [n] as their rows.

Notation 4 (Projection). We will use Π ∈ S
[n]
+ to denote

a projection matrix representing some linear subspace
span(Π) ⊆ R[n] and Π⊥ to denote the projection matrix
onto null space of Π, i.e. Π⊥ = identity −Π.

Given vector y0 ∈ R[n], we will use y0 ∈ Π if y0 is in
the span of Π, i.e. Πy0 = y0 and we will use Π−1(y0)
to denote the following set of vectors:

Π−1(y0) �
{
y ∈ R[n]

∣∣∣∣Π⊥(y − y0) = 0

}
.

Notation 5 (Balls). Given a set K ⊆ R[n] and non-
negative real ε ≥ 0, we define B(K,±ε) in the following
way.

B(K, ε) �
{
x ∈ R[n]|∃y ∈ K s.t. ‖y − x‖2 ≤ ε

}
.

B(K,−ε) � K \ B(R[n] \K, ε).

Observe that for y ∈ R[n], B(y, ε) is the n-dimensional
sphere with origin y, with B(K, ε) being Minkowski
addition of sphere of radius ε to K and B(K,−ε) being
Minkowski subtraction of sphere of radius ε from K.

Notation 6 (Volumes). Given K ⊆ R[n], we will use
vold(K) to denote d-dimensional volume of K, provided
it exists. Furthermore for any non-negative real ε ≥ 0,
let vold(ε) be the volume of d-dimensional ball of radius
ε. We will use vol−1

d (K) to denote the radius of a d-
dimensional sphere whose volume is equal to vold(K)
so that

vold(K) = vold(vol
−1
d (K)).

Notation 7 (Polytope). Given matrix A ∈ Rm×n and
vector b ∈ Rm, let poly(A, b) �

{
x ∈ R[n]|Ax ≤ b

}
.

Definition 8 (Separation Oracle). Given a convex body
K ⊆ R[n], SEPδ(y) is a separation oracle for K if the
following holds. On inputs a rational vector y ∈ Q[n]

and rational number δ > 0, SEPδ(y) asserts feasible
if y ∈ K. Otherwise, if y /∈ K, it returns c such that
‖c‖∞ = 1 and

∀x ∈ K : 〈c, x〉 ≤ 〈c, y〉+ δ.

We will use T (SEPδ) to denote the worst case running
time of SEPδ .

Theorem 9 (Central-Cut Ellipsoid Method [17]). There
exists an algorithm, called the central-cut ellipsoid
method,

CCUT-E(SEPδ,Π, y0, ε0)

that solves the following problem. Given a projection
matrix Π ∈ S

[n]
+ of rank m, vector y0 ∈ Π, a convex

body K ⊆ [−Δ,Δ][n] for some positive Δ with SEPδ

(see Definition 8) and rational number ε0 > 0, it runs
in time | logΔ|N [poly(n) + T (SEP2−N )], where N ≤
6(n−m)(| log ε0|+ (n−m)), after which it outputs:

1) Either a vector a ∈ Q[n] such that a ∈ K ∩
Π−1(y0);

2) Or a polytope of the form P = poly(C, d), where
C ∈ Q[N ]×[n], d ∈ Q[N ] with K ⊆ P and
voln−m

(
P ∩Π−1(y0)

)
< ε0.

Proof: Such algorithm can be obtained by trivial

modifications to the central-cut ellipsoid algorithm [17],

which we outline here. Handling the constraint Πa =
y0 can be done by projecting the covariance matrix of

ellipsoid onto Π−1(y0). At kth iteration, for all k, we

add hyperplanes returned by SEPδ to P .

Algorithm terminates with a feasible a ∈ Q[n] with

Πa = y0 only if SEPδ(a) asserts feasible for some δ ≤
ε0, in which case a ∈ K. Otherwise, when the maximum

number of iterations is reached we simply return.

IV. FINDING SEPARATING HYPERPLANES ON A

SUBSPACE

We now describe our main technical contribution:

An ellipsoid algorithm which can output a certificate

of infeasibility on a restricted subspace using only

the separation oracle SEPδ as in Definition 8. The

procedure uses the central-cut ellipsoid method [17]

as a sub-routine. The main technical ingredient of our

algorithm is Theorem 12, which is stated and proven

in Section IV-A: It allows us to express this as another

convex programming problem in terms of the “history”

of constraints returned by separation oracle. Finally in

Section IV-B we present our ellipsoid algorithm, bound

its running time and prove its correctness.
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A. An Equivalent Convex Problem

We first state some useful propositions. Recall our

goal: Given convex body K, a subspace Π and y0 ∈ Π,

we have a polytope P separating various points {y} ⊂
Π−1(y0) from K. We want to compute a separating hy-

perplane on Π. Our approach is formulated in Lemma 11,

see also Figure 1. We first show that points interior in

K have far off projections from Πy0. The proof appears

in the full version.

Lemma 10. Given convex body K ⊆ R[n], a projection
matrix Π ∈ S

[n]
+ with rank(Π) = m, vector y0 ∈ R[n]

and positive real δ > vol−1
n−m

(
Π−1(y0) ∩K

)
, for all

y ∈ B(K,−2δ), we have ‖Π(y − y0)‖ ≥ δ.

Π⊥

Π

Π−1(y0)

K

P
S(P,−ε)

y∗

Fig. 1. We want to find a hyperplane parallel to Π⊥ separating
Π−1(y0) and K, using only the inequalities returned by separation
oracle, polytope P . The optimal solution of Lemma 11 is given by y∗
with corresponding hyperplane Π−1(y∗).

Having shown that there is a δ-neighborhood of Πy0
disjoint from interior of K whenever their intersection

has small volume, we can immediately use Minkowski’s

Separating Hyperplane Theorem to infer the existence of

such hyperplane. In fact, any hyperplane perpendicular

to the line from y0 to the closest point in K has this

property. We formalize this in the following lemma,

whose proof is deferred to the full version.

Lemma 11. Given convex body K ⊆ R[n], a projection
matrix Π ∈ S

[n]
+ with rank(Π) = m, vector y0 ∈ R[n]

and positive real δ > vol−1
n−m

(
Π−1(y0) ∩K

)
, the

hyperplane perpendicular to the projection of direction
from y to closest point in the interior of ΠK separates
y0 and interior of ΠK:
Formally any optimal solution y∗ to eq. (3) satis-
fies eq. (4) for all x ∈ B(K,−2δ):

min ‖Π(y − y0)‖2st y ∈ B(K,−2δ), (3)

〈Π(y∗ − y0), x− y0〉 ≥ ‖Π(y∗ − y0)‖2. (4)

Given Lemma 11, we can choose our separating

hyperplane c as c = − Π(y∗−y0)
‖Π(y∗−y0)‖∞ . But this does not

quite work for two reasons:
1) Hyperplane c only separates “strict interior” of K

as it is, whereas we need to separate K itself.

2) Depending on K, it might not be possible to repre-

sent optimal c using polynomially many bits, thus

we need to account for near optimal solutions.

We now show how to overcome these problems.

Theorem 12. Given convex body K ⊆ [−Δ,Δ]n for
some Δ > 0, a projection matrix Π ∈ S

[n]
+ with

rank(Π) = m, a vector y0 ∈ [−Δ,Δ]n, for any positive
real δ > 0 with δ > vol−1

n−m

(
Π−1(y0) ∩K

)
, the

following holds: If y′ is an δ2

2Δ
√
m

- approximate solution
to eq. (5):

min ‖Π(y− y0)‖2 st y ∈ B

(
K,−

(
2 +

δ

2
√
mΔ

)
· δ
)

(5)

then Π(y′ − y0) �= 0 and for c being

c � − Π(y′ − y0)

‖Π(y′ − y0)‖∞ =⇒ ∀x ∈ K : 〈c, x〉 ≤ 〈c, y0〉+2δ
√
m.

(6)

Proof: Before we begin, we set ε � δ
2
√
mΔ

. Let y∗

be an optimal solution of eq. (5) with ‖y∗ − y′‖ ≤ εδ.

Since y∗ ∈ B(K,−(2 + ε)δ), we have B(K,−2δ) ⊇
B(y∗, εδ) � y′. By Lemma 10, this implies ‖Π(y′ −
y0)‖ ≥ δ, proving Π(y′ − y0) �= 0. For any x ∈ K,

we can decompose x as x = x′ + z for some x′ ∈
B(K,−2δ) and ‖z‖2 ≤ 2δ. Then, 〈Π(y′ − y0), x − y0〉
can be expressed as:

〈Π(y′ − y0), x
′ − y0〉+ 〈Π(y′ − y0), z〉

≥〈Π(y′ − y∗), x′ − y0〉+ 〈Π(y∗ − y0), x
′ − y0〉

− ‖z‖ · ‖Π(y′ − y0)‖
≥ − ‖Π(y′ − y∗)‖︸ ︷︷ ︸

≤εδ

‖Π(x′ − y0)‖︸ ︷︷ ︸
≤2Δ

√
m

+ δ2︸︷︷︸
by Lemma 11

−2δ‖Π(y′ − y0)‖

≥ − 2δ‖Π(y′ − y0)‖ (by the choice of ε =
δ

2Δ
√
m

)

≥− 2δ
√
m‖Π(y′ − y0)‖∞.

Since c = − Π(y′−y0)
‖Π(y′−y0)‖∞ , we have 〈c, x〉 ≤ 〈c, y0〉 +

2δ
√
m for any x ∈ K.

B. Ellipsoid Algorithm with Certificate of Infeasibility

Our solver is given in Algorithm 1.

The proof of the following theorem follows by com-

bining various ingredients we have so far, especially

Theorems 9 and 12. The proof is deferred to full version.

Theorem 13 (Main technical tool). Algorithm 1 runs
in time N · T (SEP2−N ) + poly(n) log2 1

ε0
where
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Algorithm 1 CERTIFY-E(SEPδ,Π, y0, ε0): Ellipsoid method with certificate of infeasibility.

Input. • Convex body K ⊆ [0, 1]n and separation oracle SEPδ as in Definition 8,

• Projection matrix Π ∈ S
[n]
+ with rank(Π) = m, y0 ∈ R[n] and positive real 0 < ε0 < 1.

Output. • Either a vector y ∈ Qn st y ∈ K ∩Π−1(y0).
• Or c ∈ Π with ‖c‖∞ = 1 and ∀x ∈ K : 〈c, x〉 ≤ ε0 + 〈c, y0〉.
Procedure. 1. Run CCUT-E(SEPδ,Π, y0, ε) where ε← voln−m

(
ε0

2
√
m

)
.

2. If it returns y ∈ K ∩Π−1(y0), then return y.

3. Else let P = poly(C, d) be the polytope it returns. Set δ ← ε0
2
√
m

. ε′ ← δ
2Δ
√
m

and

4. Solve eq. (7) using regular ellipsoid method to find an ε′δ-approximate solution, y∗ ∈ Qn:

Minimize ‖Π(y − y0)‖2 subject to Cy ≤ d− (2 + ε′)δ
√

diag(CTC). (7)

5. Return c← − Π(y∗−y0)
‖Π(y∗−y0)‖∞ .

N = O
(
(# of free variables)2 log # of fixed variables

ε0

)
=

O
(
(n−m)2 log m

ε0

)
, and provides the following guar-

antee: If vol−1
n−m(K ∩Π−1(y0)) >

ε0
2
√
m

then it outputs
y ∈ K ∩Π−1(y0).

V. FASTER SOLVER FOR LOCAL ROUNDING

ALGORITHMS

We return back to our motivating example. Assume

we have n variables, and we want to find a discrete

labeling x̃ ∈ L[n] of those from a set of labels L, under

various constraints and objective. Suppose we “lifted”

this problem into a higher dimension RN where |N | �
n, and obtained a family of increasingly tight convex

relaxations defined over various subspaces of RN .

Formally, we have a set of subspaces {ΠS}S⊆[N ],

represented by their projection matrices and associated

with subsets of [N ], and with each subspace ΠS , we

have an associated convex body, KS ⊆ ΠS [0, 1]
N with

such that

ΠS ⊆ ΠT =⇒ ΠSKT ⊆ KS .

We are given functions FEASIBLE, ROUND and

SEED, along with positive integers n, s such that:

• FEASIBLES : ΠSQ
N → {feasible,ΠSQ

N}. On

input S ⊆ N ,y ∈ ΠSQ
N , it asserts feasible if y ∈

KS or returns c ∈ ΠSQ
N : ‖c‖∞ = 1 such that4

∀x ∈ KS : 〈c, x〉 < 〈c, y〉 in time poly(rank(ΠS)).
• SEEDS : KS → 2N . Given S ⊆ [N ] and

y ∈ ΠSQ
N , it returns subset S′ ⊇ S such that

rank(ΠS′ )
rank(ΠS) ≤ s when S �= ∅, and rank(ΠS′) ≤ n

when S = ∅. Its worst case running time is bounded

4We can handle FEASIBLES that only returns a weak separation
oracle, but since in our application to SDPs we have access to a strong
separation oracle, we assume this for simplicity.

by poly(rank(ΠS)) (or poly(n) in the case of

S = ∅).
• ROUNDS : KS → L[n]. On inputs S ⊆ N and

y ∈ KS , returns an approximation to the original

problem in time poly(rank(ΠS)).

We now describe our main solver. Note that once the

algorithm outputs y∗ ∈ KS(�), the final output labeling

will simply be ROUNDS(�)(y
∗).

Algorithm 3 SEPS(i),ε0(y):Separation Oracle.

Input. • Positive real ε0 > 0, current iteration i, current

seeds S(i), vector y ∈ QS(i).

Output. • Either asserts feasible, and sets values of

global variables S(i + 1), . . . , S(�) along with y∗ so

that:

1) ΠS(j)y
∗ ∈ KS(j) for all j : i ≤ j ≤ �,

2) S(j +1) = SEEDS(j)(y
∗) for all j : i ≤ j ≤ �− 1.

• Or returns c ∈ ΠS(i) with ‖c‖∞ = 1 such that ∀x ∈
KS(i) : 〈c, x− y〉 < ε0.

Procedure. 1. If FEASIBLES(i)(y) returns c ∈ ΠS(i),

return c.
2. Else if i ≥ �, set y∗ ← y. Assert feasible and return.

3. S(i+ 1)← SEED∅(y).
4. Run CERTIFY-E(SEPΠS(i+1),δ,ΠS(i), y, ε0) (see Al-

gorithm 1).

5. If it returns c, return c.
6. Else assert feasible.

The proof of the following theorem is easy given the

ingredients so far, and is given in the full version.

Theorem 14. Algorithm 2 runs in time[
s�n log(1/ε0)

]O(�)
(compare this with the

straightforward algorithm which runs in time
NO(1) log(1/ε0)) and achieves the following guarantee:
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Algorithm 2 Fast Solver (to fool local rounding algorithm)

Input. • Maximum number of iterations � and positive real ε0 > 0,

• n, r, (KS)S⊆[N ] with separation oracle FEASIBLE, SEED, Π∅ and y(0) ∈ K∅QN all as described in Section V.

Output. • Either asserts volK ≤ ε0,

• Or outputs y∗ ∈ KS(�) and S(0), . . . , S(�) st for all i: 1) ΠS(i)y
∗ ∈ KS(i); 2) S(i+ 1) = SEEDS(i)(y

∗).

Procedure. 1. Initialize global variables S(1), . . . , S(�) representing seed sets and global sparse vector y∗ ∈ Q[N ]

representing the final solution (it will be in span of ΠS(�)).

2. Set S(0)← {∅}.
3. Run CCUT-E(SEPS(0),δ, 0, 0, ε0) (see Theorem 9) where SEP is given in Algorithm 3.

4. If it asserts feasible, output S(0), . . . , S(�) and y∗.
5. Else assert volK ≤ ε0.

Provided that volK > ε0, it outputs y∗ ∈ KS(�) and
S(0), . . . , S(�) st for all i:

ΠS(i)y
∗ ∈KS(i), (8)

S(i+ 1) =SEEDS(i)(y
∗). (9)

Otherwise it asserts volK ≤ ε0.
Furthermore there is no algorithm which runs in time

no(�) assuming Exponential Time Hypothesis.

We will review Lasserre Hierarchy in Section VI

and finally in Section VII, we will show a sample

of how some approximation algorithms using Lasserre

Hierarchy relaxation fit into our framework.

VI. LASSERRE HIERARCHY

In this section, we present a general derivation of

Lasserre Hierarchy relaxation. Although our relaxation is

only given for 0/1 programming problems, it can easily

be adapted to work on any set of finite labels.

A. Preliminaries

For some positive integer d, let Q ∈ R[n]≤d (resp.

P = {P1, . . . , PM} ⊂ R[n]≤d ) be a degree ≤ d
multilinear polynomial (resp. subset of degree ≤ d
multilinear polynomials) over n variables representing

objective function (resp. constraints). We want to find

a binary labeling of n variables, x̃ ∈ {0, 1}n, which

satisfies eq. (10):

min
x̃∈{0,1}n

∑
S∈[n]≤d

QS

∏
u∈S x̃u

st
∑

S∈[n]≤d
PS

∏
u∈S x̃u ≥ 0 for all P ∈ P.

(10)

Observe that we can convert any constraint satisfaction

problem on {0, 1}[n] to this form easily. In this section,

we will first express eq. (10) as an equivalent SDP

problem, from which Lasserre relaxation can be obtained

by enforcing positivity only on certain principal minors

of this matrix. This exposition of Lasserre relaxation

through constraints on certain minors will be convenient

when we are presenting our partial SDP solver.

Notation 15. Given positive integers n, d, for any vector
P ∈ R[n]≤d and y ∈ R2[n]

, we define P ∗ y ∈ R2[n]

as
(P ∗ y)S �

∑
T∈[n]≤d

PT yT∪S .

Definition 16 (Multivariate Moment Matrix on P and

Q). Given positive integer n let Mn : R2[n] → R2[n]×2[n]

be the following linear matrix function:

Mn(y) = [yA∪B ]A,B⊆[n].

For any P = {P1, . . . , PM} ⊆ R[n]≤d representing
constraints, Q ∈ R[n]≤d and q ∈ R representing
objective polynomial and a guess for its value, let
M

n,P
Q,q : R2[n] → R([m+2]×2[n])×([m+2]×2[n]) be the

following linear function on block diagonal matrices:

M
n,P
Q,q (y) �

⎡⎢⎢⎢⎣
M

n(y) 0 0
0 qy∅ − 〈Q, y〉 0 · · ·
0 0 M

n(P1 ∗ y)
...

. . .

⎤⎥⎥⎥⎦ .

Having defined the moment matrix, we can state the

following:

Theorem 17 (See [3]). eq. (10) has optimal value ≤
q if and only if there exists y with y �= 0 such that
M

n,P
Q,q (y) � 0.

Definition 18 (Principal Minors of Multivariate Moment

Matrices). Given P ⊆ R[n]≤d , Q ∈ R[n]≤d and q ∈ R as
described, for any T : T ⊆ 2[n], T ⊇ support(Q) being
a family of sets over [n] containing the support of Q, we
will refer to the following principal minor of Mn,P

Q,q (y)

as M

∣∣∣n
T
(y):⎡⎢⎢⎢⎣

(Mn(y))T,T 0 0
0 qy∅ − 〈Q, y〉 0 · · ·
0 0 (Mn(P1 ∗ y))T,T

...
. . .

⎤⎥⎥⎥⎦ .
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Observation 19. Given a family of sets over [n], T ⊆
2[n], for any P ∈ R[n]≤d , the minor (Mn(P ∗ y))T,T is
only a function of yex(T,d) where

ex(T, d) � {A ∪B ∪ C : A ∈ T,B ∈ T,C ∈ [n]≤d} .
Proof: Consider (Mn(P ∗ y))A,B with A,B ∈ U .

By Definition 16, this is equal to

(Mn(P ∗ y))A,B = (P ∗ y)A∪B =
∑

C∈[n]≤d

PCyA∪B∪C ,

where A ∪ B ∪ C ∈ ex(U, d) by definition. The second

part follows immediately from the definition of M
∣∣∣n
T
(y).

Using Theorem 17 and observation 19, we can easily

state and prove the following:

Theorem 20 (Lasserre Relaxation [3]). Given positive
integers n, r and d, polynomials P ⊂ R[n]≤d and Q ∈
R[n]≤d with q ∈ R, the following is rth round Lasserre
Hierarchy relaxation of eq. (10):

Find y ∈ R[n]≤2r+d st M

∣∣∣n
[n]≤r

(y) � 0 and y∅ = 1.

(11)

Note that the straightforward SDP relaxation of

eq. (10) corresponds to d rounds of Lasserre hierarchy

relaxation (and the “basic” SDP relaxation for the case

of quadratic polynomials).

B. Separation Oracle for Lasserre Hierarchy

Given a binary labeling problem, we first cast r̃ rounds

of Lasserre Hierarchy relaxation in our framework:

• The set of labels is L = {0, 1}.
• Lifted space N is

(
[n]
≤r′
)
, the subsets of [n] of size

at most r′,
• For any subset S ⊆ [n], we define ΠS as the

projection matrix onto Rex(S,2) so that

[ΠSx]T =

{
1 if T ∈ ex(S, 2),

0 else.

The associated convex body, KS , is defined as

KS =
{
y ∈ Rex(S,2) : y∅ = 1, M

∣∣n
ex(S,2)

(y) � 0
}
.

Before stating the FEASIBLE procedure, we need the

following well known result:

Proposition 21. Given a symmetric matrix A ∈ SB ,
there exists an algorithm which asserts if A � 0 or
returns x ∈ QB such that xTAx < 0 in time at most
polynomial in size of A.

Then our FEASIBLES(y) procedure is trivial: It

asserts feasible if M
∣∣n
ex(S,2)

(y) � 0. Else it returns

x ∈ Qex(S,2) for which xT M
∣∣n
ex(S,2)

(y)x < 0.

VII. APPROXIMATION ALGORITHMS FOR

COMBINATORIAL OPTIMIZATION PROBLEMS

In this section, we finally apply our main algorithm

as given in Algorithm 2 to various rounding algorithms

for Lasserre Hierarchy relaxations as stated in the intro-

duction. For all these problems, our separation oracle

is the same procedure as described in Section VI-B.

The running times we obtained as well as approximation

factors and other guarantees are summarized in Figure 2.

The last two columns list the value of s (the factor by

which rank(ΠS) increases in each step of seed selection)

and � (the number of iterations of seed selection) used

by the rounding algorithm in each case. The parameter

r refers to the index of the eigenvalue governing the

approximation guarantee, and ε is a positive parameter.

The claimed running times follow from the ≈
sO(�2)nO(�) runtime guaranteed by Theorem 14 for our

solver (Algorithm 2). The rounding algorithm in each

case runs within the same time. For problems marked

with ∗, check the caption for required conditions.

Below, in Algorithms 4 and 5, we present seed selec-

tion procedures for binary graph partitioning algorithms

from [11] and semi-coloring algorithm from [14], re-

spectively.

Algorithm 4 SEED-QIPS(y): Seed selection procedure

for approximation algorithms given in [11] for two-way

partitioning problems.

Input. Subset S ⊆ [n], and y ∈ Qex(S,2) provided

M |[n]ex(S,2)(y) � 0 and y∅ = 1, positive integer r′.

Output. T with |T | ≤ r′ · |S|.
Procedure. 1. Let (xT )T be vectors corresponding to

Cholesky factorization of M |[n]ex(S,2)(y). For each S ∈
ex(S, 2) and f ∈ {0, 1}S , set

xS(f)←
∑

T⊆f−1(0)

(−1)|T |xf−1(1)∪T .

2. Let Π⊥S ← I −∑f∈{0,1}S
1

‖xS(f)‖2xS(f)xS(f)
T

.

3. Use volume sampling [19], [20] to choose S′: an r′-
subset of vectors from

(
Π⊥S xu(1)

)
u∈[n].

4. Return S ∪ S′.

The works [12] and [14] use greedy seed selection,

but these can be replaced by the above column selection

procedure as well (we describe the procedure for the

semi-coloring algorithm in [14] below). We conclude

the paper by listing some Lasserre based approximation

algorithms for which we are not able to get a runtime

improvement: the algorithm for independent sets in 3-

uniform hypergraphs [9], and the algorithm for directed
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Problem Name Running Time OPT Rounding s �

Maximum Cut [11] 2O(r/ε3)nO(1/ε) 1− η 1− 1+ε
λn−r

η 2O(r/ε) O(1/ε)

k-Unique Games [11] kO(r/ε)nO(1) 1− η 1− 2+ε
λr

η kO(r/ε) 1

Minimum Bisection [11] 2O(r/ε3)nO(1/ε) η 1+ε
λr

η − o(1) 2O(r/ε) O(1/ε)

Maximum Bisection [11] 2O(r/ε3)nO(1/ε) 1− η 1− 1+ε
λn−r

η − o(1) 2O(r/ε) O(1/ε)

Sparsest Cut∗ [15] 2O(r/ε)nO(1) η η
ε 2O(r/ε) 1

Independent Set∗ [11] 2O(r)nO(1) η Ω(η) 2O(r) O(1)
[14] 2O(r)nO(1) η η

16 2O(r) 1

Maximum 2-CSPs∗ [12] kO(rk2/ε3)nO(k/ε2) η η − ε kO(r/ε) O
(
k/ε2

)
Fig. 2. Running times and approximation guarantees for various Lasserre Hierarchy relaxation rounding algorithms using our faster solver. For
sparsest cut, the spectral assumption is λr ≥ η/(1 − ε). For independent set [11], the spectral assumption is λn−r ≤ 1 + O(1/Δ) where
Δ is the maximum degree. For independent set [14], the assumptions are that G is 3-colorable and λn−r ≤ 17/16. Finally for maximum
2-CSPs [12], the assumption is that λr ≥ 1− Ω(k2/ε2).

Algorithm 5 SEED-COLORS(y): Seed selection pro-

cedure for semi-coloring algorithm as given in [14] on

graph G.

Input. Graph G on nodes [n], positive integer r′.

Output. S ∈ [n]≤r′ .

Procedure. 1. Let Xu ←
∑3

i=1 ei ⊗ x⊥∅ xu(i).
2. Use volume sampling [19], [20] to choose S, an r′-
subset of vectors from (Xu)u∈[n].

3. Return S.

Steiner tree [21]. This is because these algorithms are

adaptive with a large number of stages � in the rounding

procedure.
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