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Abstract—For a {0, 1}-valued matrix M let CC(M)
denote the deterministic communication complexity of the
boolean function associated with M . It is well-known since
the work of Mehlhorn and Schmidt [STOC 1982] that
CC(M) is bounded from above by rank(M) and from
below by log rank(M) where rank(M) denotes the rank
of M over the field of real numbers. Determining where
in this range lies the true worst-case value of CC(M) is a
fundamental open problem in communication complexity.
The state of the art is

log1.631 rank(M) ≤ CC(M) ≤ 0.415 rank(M),

the lower bound is by Kushilevitz [unpublished, 1995]
and the upper bound is due to Kotlov [Journal of Graph
Theory, 1996]. Lovász and Saks [FOCS 1988] conjecture
that CC(M) is closer to the lower bound, i.e., CC(M) ≤
logc(rank(M)) for some absolute constant c — this is
the famous “log-rank conjecture” — but so far there has
been no evidence to support it, even giving a slightly non-
trivial (o(rank(M))) upper bound on the communication
complexity.

Our main result is that, assuming the Polynomial
Freiman-Ruzsa (PFR) conjecture in additive combinatorics,
there exists a universal constant c such that

CC(M) ≤ c · rank(M)/ log rank(M).

Although our bound is stated using the rank of M over
the reals, our proof goes by studying the problem over the
finite field of size 2, and there we bring to bear a number
of new tools from additive combinatorics which we hope
will facilitate further progress on this perplexing question.

In more detail, our proof is based on the study of
the “approximate duality conjecture” which was suggested
by Ben-Sasson and Zewi [STOC 2011] and studied there
in connection to the PFR conjecture. First we improve
the bounds on approximate duality assuming the PFR
conjecture. Then we use the approximate duality conjecture
(with improved bounds) to get our upper bound on the
communication complexity of low-rank martices.

Index Terms—Communication Complexity; Log-rank
Conjecture; Additive Combinatorics;
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I. INTRODUCTION

This paper presents a new connection between

communication complexity and additive combinatorics,

showing that a well-known conjecture from additive

combinatorics known as the Polynomial Freiman-Ruzsa
Conjecture (PFR, in short), implies better upper bounds

than currently known on the deterministic communi-

cation complexity of a boolean function in terms of

the rank of its associated matrix. More precisely, our

results show that the PFR Conjecture implies that ev-

ery boolean function has communication complexity

O(rank(M)/ log rank(M)) where rank(M) is the rank,

over the reals, of the associated matrix. We view this

result as interesting not only due to its being the first

sublinear bound (and the first advance on this problem

since 1997) but also because of its suggestion of a new

connection between the two vibrant, yet seemingly unre-

lated, fields of communication complexity and additive

combinatorics.

Our analysis relies on the study of approximate du-
ality, a concept closely related to the PFR Conjecture,

which was introduced in [1]. Our main technical con-

tribution improves the bounds on approximate duality,

assuming the PFR Conjecture, and it does so with sim-

pler proof than in [1]. We view this contribution as being

of independent interest because of the growing number

of applications of the “approximate duality method” to

theoretical computer science. These include so-far the

construction of bipartite Ramsey graphs and two-source

extractors [1], communication complexity (this work),

and the subsequent lower bounds for matching vector

locally decodable codes [2].

A. On communication complexity and matrix rank

In the two-party communication complexity model

two parties — Alice and Bob — wish to compute a

function f : X×Y → {0, 1} on inputs x and y where x
is known only to Alice and y is known only to Bob. In

order to compute the function f they must exchange bits

of information between each other according to some
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(deterministic) protocol. The (deterministic) communi-

cation complexity of a protocol is the maximum total

number of bits sent between the two parties, where

the maximum is taken over all pairs of inputs x, y.

We henceforth omit the adjective “deterministic” from

our discourse because our results deal only with the

deterministic model. The communication complexity of

the function f , denoted by CC(f), is the minimum

communication complexity of a protocol for f .
For many applications it is convenient to associate

the function f : X × Y → {0, 1} with the matrix

M ∈ {0, 1}X×Y whose (x, y) entry equals f(x, y).
For a {0, 1}-valued matrix M , let CC(M) denote the

communication complexity of the boolean function as-

sociated with M . Let rank(M) denote the rank of M
over the reals. We will occasionally consider the rank of

M over the two-element field F2 and will denote this by

rankF2
(M).

It is well-known since the work of Mehlhorn and

Schmidt [3] that

log rank(M) ≤ CC(M) ≤ rank(M) (1)

and it is a fundamental question to find out what is the

true worst-case dependency of CC(M) on the rank. The

famous log-rank conjecture due to Lovász and Saks [4]

postulates that the true answer is closer to the lower

bound of (1).

Conjecture I.1 (Log-rank). For every {0, 1}-valued
matrix M CC(M) = logO(1) rank(M).

Lovász and Saks also point out that the above conjec-

ture has several other interesting equivalent formulations.

One of them, due to Nuffelen [5] and Fajtlowicz [6], is

the following:

Conjecture I.2. For every graph G, χ(G) ≤
logO(1) rank(G), where χ(G) is the chromatic number
of the complement of G, and rank(G) is the rank of the
adjacency matrix of G over the reals.

Though considerable effort has been made since 1982

in an attempt to narrow the gap between lower and upper

bounds in (1), the state of the art is not far from where

it was 30 years ago and currently stands at

Ω(loglog3 6 rank(M)) ≤ CC(M) ≤ log(4/3)rank(M)
(2)

where log3 6 ≈ 1.63 . . . and log(4/3) ≈ 0.41 . . ..
The upper bound is due to Kotlov [7] and im-

proves on the previous best bound of CC(M) ≤
rank(M)/2 by Kotlov and Lovász [8]. The lower bound

is due to Kushilevitz (unpublished, cf. [9]) and im-

proves on a previous bound of Ω(loglog2 3 rank(M)) =
Ω(log1.58... rank(M)) due to Nisan and Wigderson [9].

Our main result is stated next. It assumes a well-

known conjecture from additive combinatorics — the

Polynomial Freiman-Ruzsa (PFR) conjecture — dis-

cussed in the next section.

Theorem I.3 (Main). Assuming the PFR Conjecture I.5,
for every {0, 1}-valued matrix M

CC(M) = O(rank(M)/ log rank(M)).

B. Additive combinatorics and the Polynomial Freiman-
Ruzsa conjecture

Quoting the (current) Wikipedia definition, additive

combinatorics studies “combinatorial estimates associ-

ated with the arithmetic operations of addition and

subtraction”. As such, it deals with a variety of problems

that aim to ’quantify’ the amount of additive structure in

subsets of additive groups. One such a problem is that

which is addressed by the Polynomial Freiman-Ruzsa

conjecture (we shall encounter a different problem in

additive combinatorics when we get to “approximate

duality” later on).

For A ⊆ F
n
2 , let A+A denote the sum-set of A

A+A := {a+ a′ | a, a′ ∈ A}
where addition is over F2. It is easy to see that |A+A| =
|A| if and only if A is an affine subspace of F

n
2 . The

question addressed by the Freiman-Ruzsa Theorem is

whether the ratio of |A+A| to |A| also ’approximates’

the closeness of A to being a subspace, or in other words,

whether the fact that A+A is small with respect to the

size of A also implies that span (A) is small with respect

to the size of A. The Freiman-Ruzsa Theorem [10] says

that this is indeed the case.

Theorem I.4 (Freiman-Ruzsa Theorem [10]). If A ⊆ F
n
2

has |A+A| ≤ K|A|, then |span (A) | ≤ K22K
4 |A|.

The above theorem was improved in a series of

works [11]–[13], culminating in the recent work [14]

which proved an upper bound on the ratio
|span(A)|
|A|

of the form 22k/(2k). This bound can be seen to be

tight (up to a multiplicative factor of 2) by letting

A = {u1, u2, . . . , ut}, where u1, u2, . . . , ut ∈ F
n
2 are

linearly independent vectors. Then in this case we have

|A+A| ≈ t
2 |A|, while |span (A) | = 2t.

This example also shows that the ratio
|span(A)|
|A| must

depend exponentially on K. However, it does not rule

out the existence of a large subset A′ ⊆ A for which

the ratio
|span(A′)|
|A′| is just polynomial in K, and this is

exactly what is suggested by the PFR Conjecture:

Conjecture I.5 (Polynomial Freiman-Ruzsa (PFR)).
There exists an absolute constant r, such that if A ⊂ F

n
2

has |A+A| ≤ K|A|, then there exists a subset A′ ⊆ A
of size at least K−r|A| such that |span (A′) | ≤ |A|.

Note that the above conjecture implies that

|span (A′) | ≤ |A| ≤ Kr|A′|. The PFR conjecture

178



has many other interesting equivalent formulations,

see the survey of Green [15] for some of them. It is

conjectured to hold for subsets of general groups as

well and not only for subsets of the group F
n
2 but we

will be interested only in the latter case. Significant

progress on this conjecture has been achieved recently

by Sanders [16], using new techniques developed by

Croot and Sisask [17]. Sanders proved an upper bound

on the ratio
|span(A′)|
|A′| which is quasi-polynomial in K:

Theorem I.6 (Quasi-polynomial Freiman-Ruzsa Theo-

rem (QFR) [16]). Let A ⊂ F
n
2 be a set such that

|A + A| ≤ K|A|. Then there exists a subset A′ ⊆ A
of size at least K−O(log3 K)|A| such that |span (A′) | ≤
|A|.

We end this section by mentioning several other

recent applications of the PFR Conjecture to theoretical

computer science. The first application, due to Samorod-

nitsky [18], is to the area of low-degree testing, with

further results by Lovett [19] and Green and Tao [20].

The second application is to the construction of two-

source extractors due to Ben-Sasson and Zewi [1]. The

latter paper also introduced the notion of approximate

duality which plays a central role in our proof method as

well. The approximate duality method has recently found

another application to proving lower bounds on locally

decodable matching vector codes in the subsequent work

by Bhowmick, Dvir and Lovett [2]. In the next section

we describe the approximate duality conjecture and our

new contributions to its study.

C. Approximate duality

Our main technical contribution (Lemma I.10) is im-

proving the bounds on approximate duality, assuming

the PFR conjecture. The new bound lies at the heart

of our proof of the Main Theorem I.3. We believe that

Lemma I.10 and its proof are of independent interest

since they improve and simplify the proof of [1], and

have already found new interesting applications to the

study of locally decodable codes [2].

For A,B ⊆ F
n
2 , we define the duality measure of A,B

in (3) as an estimate of how ‘close’ this pair is to being

dual

D(A,B) :=

∣∣∣∣Ea∈A,b∈B
[
(−1)〈a,b〉2

] ∣∣∣∣, (3)

where 〈a, b〉2 denotes the binary inner-product of a, b
over F2, defined by 〈a, b〉2 =

∑n
i=1 ai · bi where all

arithmetic operations are in F2.

Remark I.7. The duality measure can be alternatively

defined as the discrepancy of the inner product function

on the rectangle A×B (up to a normalization factor of
2n

|A||B| ). Nevertheless we chose to use the term ’duality

measure’ instead of ’discrepancy’ because of the alge-

braic context in which we use it, as explained below.

It can be verified that if D(A,B) = 1 then A is

contained in an affine shift of B⊥ which is the space

dual to the linear F2-span of B. The question is what

can be said about the structure of A,B when D(A,B)
is sufficiently large, but strictly smaller than 1. The

following theorem from [1] says that if the duality

measure is a constant very close to 1 (though strictly

smaller than 1) then there exist relatively large subsets

A′ ⊆ A, B′ ⊆ B, such that D(A′, B′) = 1.

Theorem I.8 (Approximate duality for nearly-dual sets,

[1]). For every δ > 0 there exists a constant ε > 0
that depends only on δ, such that if A,B ⊆ F

n
2

satisfy D(A,B) ≥ 1 − ε, then there exist subsets
A′ ⊆ A, |A′| ≥ 1

4 |A| and B′ ⊆ B, |B′| ≥ 2−δn|B|,
such that D(A′, B′) = 1.

It is conjectured that a similar result holds also when

the duality measure is relatively small, and in particular

when it tends to zero as n goes to infinity. Furthermore,

the following theorem from [1] gives support to this

conjecture, by showing that such bounds indeed follow

from the PFR conjecture.

Theorem I.9 (Approximate duality assuming PFR, ex-

ponential loss [1]). Assuming the PFR Conjecture I.5,
for every pair of constants α > δ > 0 there exists a
constant ζ > 0, depending only on α and δ, such that
the following holds. If A,B ⊆ F

n
2 satisfy |A|, |B| > 2αn

and D(A,B) ≥ 2−ζn, then there exist subsets A′ ⊆ A,
|A′| ≥ 2−δn|A| and B′ ⊆ B, |B′| ≥ 2−δn|B| such that
D(A′, B′) = 1.

Our main technical contribution is the following gen-

eralization of the above theorem.

Lemma I.10 (Main technical lemma). Assuming the
PFR Conjecture I.5 there exists a universal integer r
such that the following holds. Suppose that A,B ⊆
{0, 1}n satisfy D(A,B) ≥ ε. Then for every K ≥ 1
and t = n/ logK, there exist subsets A′, B′ of A,B
respectively such that D(A′, B′) = 1, and

|A′|
|A| ≥

((
(ε/2)2

t

nK

)
(4n)−t

)r

,
|B′|
|B| ≥

((
(ε/2)2

t

nK

)
2−t

)r

(4)

The proof of the above lemma appears in Section II.

To see that it is indeed a generalization of Theorem

I.9 set K = 2δn/(3r), t = 3r/δ, ζ = δ/(3r · 2t) =
δ/(3r · 23r/δ), ε = 2−ζn, and note that in this case the

above lemma assures the existence of |A′| ≥ 2−δn|A|,
|B′| ≥ 2−δn|B| such that D(A′, B′) = 1. Note that

Lemma I.10 actually improves on the previous Theorem

I.9 even in this exponential range of parameters in that
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its parameters do not depend on the sizes of the sets A
and B as was the case in Theorem I.9.

However, the main significance of Lemma I.10 is that

it allows one to tradeoff the loss in the sizes of A′ and

B′ with the value of ε for a wider range of parameters.

More specifically it allows one to achieve a loss in the

sizes of A′ and B′ which is only sub-exponential in n
by requiring ε be a bit larger. In particular, the following

corollary of Lemma I.10 will enable us to prove the

new upper bound of O(rank(M)/ log rank(M)) on the

communication complexity of {0, 1}-valued matrices

assuming the PFR conjecture.

Corollary I.11 (Approximate duality assuming PFR,

sub-exponential loss). Suppose that A,B ⊆ F
n
2 satisfy

D(A,B) ≥ 2−
√
n. Then assuming the PFR conjecture

I.5, there exist subsets A′, B′ of A,B respectively such
that D(A′, B′) = 1, and |A′| ≥ 2−cn/ logn|A|, |B′| ≥
2−cn/ logn|B| for some absolute constant c.

Proof of Corollary I.11: Follows from Lemma I.10

by setting K = 24n/ logn, t = logn
4 , ε = 2−

√
n.

Note that in Corollary I.11 the ratios |A′|/|A|,
|B′|/|B| are bounded from below by 2−cn/ logn,

whereas in Theorem I.9 we only get a smaller bound of

the form 2−δn for some constant δ > 0. However, this

improvement comes with a requirement that the duality

measure D(A,B) is larger — in the above corollary we

require that it is at least 2−
√
n while in Theorem I.9 we

only require it to be at least 2−ζn � 2−
√
n. We note

that the bound D(A,B) ≥ 2−
√
n can be replaced by

D(A,B) ≥ exp(−n1−ε) for any ε > 0 at the price of a

larger constant c = c(ε).

Remark I.12 (Exponential loss necessary). Generally

speaking, the bound on min
{
|A′|
|A| ,

|B′|
|B|

}
— which in

Corollary I.11 above is 2−cn/ logn — cannot be im-

proved beyond 2−O(
√
n) even if we assume D(A,B) >

0.99. To see this take A = B =
(

n
c′
√
n

)
to be the set

of all {0, 1}-vectors with exactly c′
√
n ones, where c′

is a sufficiently small positive constant that guarantees

D(A,B) ≥ 0.99. It was shown in [21] that if A′ ⊂
A,B′ ⊂ B satisfy D(A′, B′) = 1 then the smaller set

of A′, B′ is of size 2−Ω(
√
n) · |A|.

We stress that a benefit of the proof of Lemma I.10

is that it simplifies the original proof of Theorem I.9 in

[1]. Indeed, we believe that the presentation of the proof

that appears in this paper is clearer and less involved than

that in [1]. Also, the fact that the parameters in Lemma

I.10 do not depend on the sizes of A and B allows us

to deduce new equivalence between approximate duality

and the PFR conjecture in the exponential range that was

not previously known. We elaborate on this equivalence

in the full version of this paper [22].

D. Proof overview
First we show how our Main Theorem I.3 is deduced

from the improved bounds on approximate duality in

Corollary I.11. Then we give an overview of the proof

of Lemma I.10 itself.
a) From approximate duality to communication

complexity upper bounds.: We follow the approach of

Nisan and Wigderson from [9]. Let the size of a matrix

M be the number of entries in it and if M is {0, 1}-
valued let δ(M) denote its (normalized) discrepancy,

defined as the absolute value of the difference between

the fraction of zero-entries and one-entries in M . Infor-

mally, discrepancy measures how “unbalanced” is M ,

with δ(M) = 1 when M is monochromatic — all entries

have the same value — and δ(M) = 0 when M is

completely balanced.
Returning to the work of [9], they observed that to

prove the log-rank conjecture it suffices to show that

a {0, 1}-valued matrix M of rank r always contains a

monochromatic sub-matrix of size |M |/qpoly(r) where

qpoly(r) = rlog
O(1) r means quasi-polynomial in r.

Additionally, they used spectral techniques (i.e., arguing

about the eigenvectors and eigenvalues of M ) to show

that any {0, 1}-valued matrix M of rank r contains

a relatively large submatrix M ′ — of size at least

|M |/r3/2 — that is somewhat biased — its discrepancy

is at least 1/r3/2. We show, using tools from additive

combinatorics, that M ′ in fact contains a pretty large

monochromatic submatrix (though not large enough to

deduce the log-rank conjecture).
To this end we start by working over the two-element

field F2. This seems a bit counter-intuitive because

the log-rank conjecture is false over F2. The canonical

counterexample is the inner product function IP (x, y) =
〈x, y〉2 — It is well-known (see e.g. [23][Chapters 1.3.,

2.5.]) that rankF2(MIP ) = n while CC(IP ) = n.

However, rather than studying M over F2 we focus on

the biased submatrix M ′ and things change dramatically.

(As a sanity-check notice that MIP does not contain

large biased submatrices and this does not contradict the

work of [9] because the rank of MIP over the reals is

2n − 1.)
Thus, our starting point is a large submatrix M ′

that has large discrepancy. It is well-known that

rankF2(M
′) ≤ rank(M ′) ≤ r and that this implies M ′

can be written as M ′ = A� ·B where A,B are matrices

whose columns are vectors in F
r
2. Viewing each of A,B

as the set of its columns, we have in hand two sets that

have a large duality measure as defined in (3), namely,

D(A,B) = δ(M ′) ≥ 1/r3/2. This is the setting in which

we apply Corollary I.11 and deduce that A,B contain

relatively large subsets A′, B′ with D(A′, B′) = 1. One

can now verify that the submatrix of M ′ whose rows and

columns are indexed by A′, B′ respectively is indeed
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monochromatic, as needed. We point out that to get

our bounds we need to be able to find monochromatic

submatrices of M ′ even when M ′ is both small and

skewed (i.e., has many more columns than rows or vice

versa). Fortunately, Corollary I.11 is robust enough to

use in such settings.
b) Improved bounds on approximate duality assum-

ing PFR.: We briefly sketch the proof of our Main

Technical Lemma I.10. We use the spectrum of a set

as defined in [24, Chapter 4]:

Definition I.13 (Spectrum). For a set B ⊆ F
n
2 and α ∈

[0, 1] let the α-spectrum of B be the set

Specα(B) := {x ∈ F
n
2 | | Eb∈B

[
(−1)〈x,b〉2] |≥ α}.

(5)

Notice that A ⊆ Specε(B) implies D(A,B) ≥ ε (cf.

(3)). In the other direction, Markov’s inequality can be

used to deduce that D(A,B) ≥ ε implies the existence

of A′ ⊆ A of relatively large size — |A′| ≥ ε
2 |A| —

such that A′ ⊆ Specε/2(B). To prove our lemma we

start with A1 = A′ and establish a sequence of sets

A2 ⊆ A1 +A1, A3 ⊆ A2 +A2, . . .

such that Ai ⊆ Specεi(B) for all i. This holds by

construction for A1 with ε1 = ε/2, and we show that it

is maintained throughout the sequence for increasingly

smaller values of εi (we shall use εi = ε2i−1).
Moving our problem from the field of real numbers to

the two-element field F2 now pays off. Each Ai is of size

at most 2n so there must be an index i ≤ n/ logK for

which |Ai+1| ≤ K|Ai|, let t be the minimal such index.

We use the PFR conjecture together with the Balog–

Szemerédi–Gowers Theorem II.1 from additive combina-

torics to show that our assumption that |At+1| ≤ K|At|
implies that a large subset A′′t of At has small span (over

F2).
We now have in hand a set A′′t which is a rela-

tively large fraction of its span and additionally sat-

isfies D(A′′t , B) ≥ εt because by construction A′′t ⊆
Specεt(B). We use an approximate duality claim from

[1] (Lemma II.2) which applies when one of the sets is

a large fraction of its span (in our case the set which is

a large fraction of its span is A′′t ). This claim says that

A′′t and B each contain relatively large subsets A′t, B
′
t

satisfying D(A′t, B
′
t) = 1. Finally, recalling A′t is a

(carefully chosen) subset of At−1 + At−1, we argue

that At−1 contains a relatively large subset A′t−1 that

is “dual” to a large subset B′t−1 of B′t, where by “dual”

we mean D(A′t−1, B
′
t−1) = 1 (in other words A′t−1

is contained in an affine shift of the space dual to

span
(
B′t−1

)
). We continue in this manner to find pairs

of “dual” subsets for t − 2, t − 3, . . . , 1 at which point

we have found a pair of “dual” subsets of A,B that have

relatively large size, thereby completing the proof.

E. Discussion and directions for future research

The new connection between additive combinatorics

and communication complexity seems to us worthy of

further study. In particular, the exciting recent advances

in additive combinatorics [14], [16], [17] use a rich

palette of tools that may yield further insights into

problems in communication complexity. We end this

section by briefly pointing out a few directions we find

interesting.

c) Improved unconditional bounds on communica-
tion complexity: Given the recent QFR result of [16]

(Theorem I.6) which comes very close to proving the

PFR conjecture, it is interesting to see if it implies

any unconditional improvement on communication com-

plexity of low-rank matrices. Looking at our proof of

Lemma I.10, we apply the PFR conjecture to a subset

A′t of At which satisfies |A′t + A′t| ≤ K ′|A′t| for

K ′ ≈ K/ε2
t

. For ε < 1
2 this gives a non-trivial bound

only if t = O(log n). Since t could be as large as

n/ logK we are forced to choose K = 2Ω(n/ logn)

which implies in turn K ′ = 2Ω(n/ logn). Thus, Sander’s

QFR Theorem I.6 does not yield any non-trivial bounds

in our case. However, for purposes of improving the

unconditional upper bound of Kotlov (cf. 2) say, to

CC(M) ≤ rank(M)/4, it suffices to improve the loss

in the size of A in Theorem I.6 from K−O(log3 K) to

K−c logK for a sufficiently small constant c.

d) Improved conditional bounds: The bounds on

approximate duality in Corllary I.11 can possibly be

significantly improved. For all we know, the exponential

loss of 2−O(
√
n) shown in Remark I.12 may be tight, and

this would lead to an improved version of Corollary I.11

in which the sizes of |A′|, |B′| are a 2−O(
√
n) fraction

of A and B respectively, instead of the 2−O(n/ logn)

loss we currently have. Such a result would translate

directly to an upper bound on communication complexity

of the form CC(M) ≤ O(
√
rank(M)). In order to

make further progress one might want to also consider

working over finite fields that are larger than 2, or over

the reals. As a first step in this direction, one may wish

to investigate whether there are interesting approximate

duality statements over such fields.

e) Does the log-rank conjecture imply the PFR
conjecture?: Alternatively, does it have any other non-

trivial consequences in additive combinatorics? We be-

lieve the answer to this question is positive and make

a step in this direction by showing an equivalence

between approximate duality and PFR statements in the

exponential range, namely, when the losses in the sizes of

sets in both approximate duality and PFR is exponential

in n (See Section 4 in the full version of this paper [22]

for an exact statement and details of the proof.)
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F. Paper organization.

The next section contains the proof of the Main

Technical Lemma I.10. The proof of Main Theorem I.3

given Corollary I.11 appears in Section III.

II. IMPROVED BOUNDS ON APPROXIMATE DUALITY

ASSUMING PFR

In this section we prove our Main Technical Lemma

I.10. We start with some additive combinatorics prelim-

inaries.
f) Additive combinatorics preliminaries: In what

follows all arithmetic operations are taken over F2. For

the proof of Lemma I.10 we need two other theorems

from additive combinatorics. The first is the well-known

Balog–Szemerédi–Gowers Theorem of [25], [26].

Theorem II.1 (Balog–Szemerédi–Gowers). There exist
fixed polynomials f(x, y), g(x, y) such that the following
holds for every subset A of an abelian additive group. If
A satisfies Pra,a′∈A[a+a′ ∈ S] ≥ 1/K for |S| ≤ C|A|,
then one can find a subset A′ ⊆ A such that |A′| ≥
|A|/f(K,C), and |A′ +A′| ≤ g(K,C)|A|.

The second is a lemma from [1] which can be seen

as an approximate duality statement which applies when

one of the sets has small span:

Lemma II.2 (Approximate-duality for sets with small

span, [1]). If D(A,B) ≥ ε, then there exist subsets A′ ⊆
A,B′ ⊆ B, |A′| ≥ ε

4 |A|, |B′| ≥ ε2

4
|A|

|span(A)| |B|, such
that D(A′, B′) = 1. If A ⊆ Specε(B) then we have
|A′| ≥ |A|/2 and |B′| ≥ ε2 |A|

|span(A)| |B| in the statement
above.

Recall the definition of the spectrum given in (5):

Specα(B) := {x ∈ F
n
2 | | Eb∈B

[
(−1)〈x,b〉2] |≥ α}.

Finally, for S ⊂ F
n
2 and x ∈ F

n
2 let repS(x) be the

number of different representations of x as an element

of the form s + s′ where s, s′ ∈ S. repS(x) can also

be written, up to a normalization factor, as 1S ∗ 1S(x)
where 1S is the indicating function of the set S and ∗
denotes convolution.

g) Proof overview: We construct a decreasing se-

quence of constants

ε1 = ε/2, ε2 = ε21/2, ε3 = ε22/2, . . .

and a sequence of sets A1 := A ∩ Specε1(B), A2 ⊆
(A1 + A1) ∩ Specε2(B), A3 ⊆ (A2 + A2) ∩
Specε3(B), . . .

Since each of the sets in the sequence is of size at

most 2n there must be an index i ≤ n/ logK for which

|Ai+1| ≤ K|Ai| (6)

and let t be the minimal such index. The PFR Con-

jecture I.5 together with the Balog–Szemerédi–Gowers

Theorem II.1 will be used to deduce from (6) that a

large subset A′′t of At has small span. Applying Lemma

II.2 to the sets A′′t and B implies the existence of large

subsets A′t ⊆ At and B′t ⊆ B such that D(A′t, B
′
t) = 1.

Finally we argue inductively for i = t − 1, t − 2, . . . , 1
that there exist large subsets A′i ⊆ Ai and B′i ⊆ B such

that D(A′i, B
′
i) = 1. The desired conclusion will follow

from the i = 1 case. To be able to “pull back” and

construct a pair of large sets A′i−1, B
′
i−1 from the pair

A′i, B
′
i we make sure every element in Ai is the sum of

roughly the same number of pairs in Ai−1 ×Ai−1.

h) The sequence of sets: Let ε1 := ε/2, A1 :=
A∩Specε1(B). Assuming Ai−1, εi−1 have been defined

set εi = ε2i−1/2 and let ji ∈ {0, . . . , n− 1} be an integer

index which maximizes the size of{
(a, a′) ∈ Ai−1

∣∣∣∣∣ a+ a′ ∈ Specεi(B) and

2ji ≤ repAi−1
(a+ a′) ≤ 2ji+1

}
(7)

and set

Ai :=

{
a+ a′

∣∣∣∣∣ a, a′ ∈ Ai−1, a+ a′ ∈ Specεi(B) and

2ji ≤ repAi−1
(a+ a′) ≤ 2ji+1

}
(8)

Claim II.3. For i = 1 we have |A1| ≥ (ε/2)|A|. For
i > 1 we have

Pr
a,a′∈Ai−1

[a+ a′ ∈ Ai] ≥ εi/n (9)

and additionally

|Ai| ≥ εi
2ji+1n

|Ai−1|2. (10)

Proof: The case of i = 1 follows directly from

Markov’s inequality. For larger i we argue that

Pr
a,a′∈Ai−1

[a+ a′ ∈ Specεi(B)] ≥ εi.

To see this use Cauchy-Schwarz to get

Ea,a′∈Ai−1 |Eb∈B(−1)〈a+a′,b〉|
= Eb∈B(Ea∈Ai−1

[(−1)〈a,b〉])2
≥ (Ea∈Ai−1,b∈B [(−1)〈a,b〉])2 = ε2i−1

and apply Markov’s inequality to deduce that an εi-
fraction of (a, a′) ∈ Ai−1 ×Ai−1 sum to an element of

Specεi(B). Selecting ji to maximize (7) yields inequal-

ity (9). Since every element x ∈ Ai can be represented

as x = a+a′ with a, a′ ∈ Ai−1 in at most 2ji+1 different

ways we deduce (10) from (9) and complete the proof.
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i) The inductive claim: Let t be the minimal index

such that |At+1| ≤ K|At| and note that t ≤ n/ logK
because all sets Ai are contained in F

n
2 . We shall prove

the following claim by backward induction.

Claim II.4 (Inductive claim). For i = t, t − 1, . . . , 1
there exist subsets

A′i ⊆ Ai, B′i ⊆ B

such that D(A′i, B
′
i) = 1 and A′i, B

′
i are not too small:

|A′i| ≥ poly

(
εt+1

nK

)
(4n)−(t−i)

( t∏
�=i

ε�+1

)
|Ai|,

|B′i| ≥ poly

(
εt+1

nK

)
2−(t−i)|B|

We split the proof of the claim to two parts. The base

case (Proposition II.5) is proved using the tools from

additive combinatorics listed in the beginning of this

section. The inductive step is proved in Proposition II.6

using a graph construction. Before proving Claim II.4

we show how it implies Lemma I.10.

Proof of Main Technical Lemma I.10: Set i = 1 in

Claim II.4 above. Recall that εi+1 = ε2i /2 for all i, so

ε�+1 = ε2
�

/22
�−1 ≥ (ε/2)2

�

.

Thus we have εt+1 ≥ (ε/2)2
t

and
∏t

�=1 ε�+1 ≥
(ε/2)2

t+1

. This gives the bounds on A′, B′ stated in (4).

Proposition II.5 (Base case of Claim II.4 (i = t)). There
exist subsets A′t ⊆ At, B′t ⊆ Bt such that D(A′t, B

′
t) =

1 and A′t, B
′
t are not too small:

|A′t| ≥ poly

(
εt+1

nK

)
|At|,

|B′t| ≥ poly

(
εt+1

nK

)
|B|.

Proof:
By assumption |At+1| ≤ K|At| and Pra,a′∈At

[a +
a′ ∈ At+1] ≥ εt+1/n by (10). Hence we can apply

the Balog–Szemerédi–Gowers Theorem (Theorem II.1)

to the set At to obtain a subset Ãt ⊆ At such that

|Ãt| ≥ poly

(
εt+1

nK

)
|At|,

and

|Ãt + Ãt| ≤ poly

(
nK

εt+1

)
|At| = poly

(
nK

εt+1

)
|Ãt|.

Now we can apply the PFR Conjecture I.5 to the set

Ãt which gives a subset A′′t ⊆ Ãt such that

|A′′t | ≥ poly

(
εt+1

nK

)
|Ãt| = poly

(
εt+1

nK

)
|At|,

and

|span (A′′t ) | ≤ |Ãt| = poly

(
nK

εt+1

)
|A′′t |.

Recall that A′′t ⊆ Specεt(B), and in particular

D(A′′t , B) ≥ εt. Applying Lemma II.2 to the sets A′′t
and B we conclude that there exist subsets A′t ⊆ A′′t ,

B′ ⊆ B such that D(A′t, B
′) = 1, and which satisfy

|A′t| ≥ 1
2 |A′′t | and

|B′t| ≥ ε2t
|A′′t |

|span (A′′t ) |
|B| = poly

(
εt+1

nK

)
|B|.

This completes the proof of the base case.

Proposition II.6 (Inductive step of Claim II.4). For
every i = t − 1, . . . , 1 there exist subsets A′i ⊆ Ai,
B′i ⊆ B such that D(A′i, B

′
i) = 1 and A′i, B

′
i are not

too small:

|A′i| ≥ poly

(
εt+1

nK

)
(4n)−(t−i)

( t∏
�=i

ε�+1

)
|Ai|,

|B′i| ≥ poly

(
εt+1

nK

)
2−(t−i)|B|.

Proof: Suppose that the claim is true for i and argue

it holds for index i−1. Let G = (Ai−1, E) be the graph

whose vertices are the elements in Ai−1, and (a, a′) is

an edge if a+a′ ∈ A′i. We bound the number of edges in

this graph from below. Recall from (8) that every a ∈ A′i
(where A′i ⊆ Ai) satisfies 2ji ≤ repAi−1

(a) ≤ 2ji+1.

Using this we get
|E| ≥ 2ji · |A′i|

≥ 2ji
(

εt+1

nK

)O(1)
|Ai|

(4n)(t−i)

∏t
�=i ε�+1

≥ 2ji
(

εt+1

nK

)O(1)
|Ai−1|2
(4n)(t−i)

εi
2ji+1n

∏t
�=i ε�+1

= 2 ·
(

εt+1

nK

)O(1)
|Ai−1|2

(4n)(t−(i−1))

∏t
�=i−1 ε�+1

The first inequality follows because repAi−1
(x) ≥ 2ji

for all x ∈ A′i, the second uses the induction hypothesis

and the third follows by (10).

Let M := poly

(
εt+1

nK

)
(4n)−(t−(i−1))

(∏t
�=i−1 ε�+1

)
.

Since our graph has at least 2M |Ai−1|2 edges and

|Ai−1| vertices, it has a connected component with at

least 2M |Ai−1| vertices and denote by A′′i−1 the set of

vertices in it.

Choose an arbitrary element a in A′′i−1. Partition B′i
into two sets B′i,0 and B′i,1 such that all elements in

B′i,0 have inner product 0 with a, and all elements in

B′i,1 have inner product 1 with a. Let B′i−1 be the larger

of B′i,0,B′i,1, and note that |B′i−1| ≥ |B′i|/2. Recall

that our assumption was that D(A′i, B
′
i) = 1. Abusing

notation, let 〈A′i, B′i〉2 denote the value of 〈a′, b′〉2 for
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some a′ ∈ A′i, B
′
i (the choice of a′, b′ does not matter

because D(A′i, B
′
i) = 1). Next we consider two cases

— the case where 〈A′i, B′i〉2 = 0, and the case where

〈A′i, B′i〉2 = 1.

In the first case we have that for every a, a′ ∈ A′′i−1

which are neighbors in the graph, a + a′ ∈ A′i, and

therefore 〈a+ a′, b〉2 = 0 for every b ∈ B′i−1. This

implies in turn that 〈a, b〉2 = 〈a′, b〉2 for all elements

a, a′ ∈ A′′i−1 which are neighbors in the graph, b ∈ B′i−1.

Since A′′i−1 induces a connected component, and due to

our choice of B′i−1, this implies that D(A′′i−1, B
′
i−1) = 1

so we set A′i−1 = A′′i−1.

In the second case we have that 〈a+ a′, b〉2 = 1 for

every a, a′ ∈ A′′i−1 which are neighbors in the graph, b ∈
B′i−1. In particular this implies that 〈a, b〉2 = 〈a′, b〉2+1
for every elements a, a′ ∈ A′′i−1 which are neighbors

in the graph, b ∈ B′i−1. This means that A′′i−1 can

be partitioned into two sets A′i−1,0, A
′
i−1,1, where the

first one contains all elements in A′′i−1 that have inner

product 0 with all elements in B′i−1, while the second

set contains all elements in A′i−1 that have inner product

1 with all elements in B′i−1. We set A′i−1 to be the

larger of these two sets and get D(A′i−1, B
′
i−1) = 1 and

|A′i−1| ≥M |Ai−1|.
Concluding, in both cases we obtained sub-

sets A′i−1, B
′
i−1 of Ai−1, B respectively, such that

D(A′i−1, B
′
i−1) = 1 and A′i−1, B

′
i−1 are not too small:

|A′i−1|
|Ai−1| ≥

(
εt+1

nK

)O(1)

(4n)−(t−(i−1))

( t∏
�=i−1

ε�+1

)
,

and

|B′i−1|
|B| ≥ 1

2

|B′i|
|B| ≥

1

2
poly

(
εt+1

nK

)
2−(t−i)

= poly

(
εt+1

nK

)
2−(t−(i−1))

This concludes the proof of the inductive claim.

III. FROM APPROXIMATE DUALITY TO

COMMUNICATION COMPLEXITY UPPER BOUNDS

In this section we prove our main theorem, Theorem

I.3 given Corollary I.11. The proof of the main technical

lemma is deferred to Section II.

We start by repeating the necessary definitions. For a

{0, 1}-valued matrix M , let CC(M) denote the commu-

nication complexity of the boolean function associated

with M . Let rank(M) and rankF2
(M) denote the rank

of M over the reals and over F2, respectively. We denote

by |M | the total number of entries in M , and by |M0|
and |M1| the number of zero and non-zero entries of

M , respectively. We say that M is monochromatic if

either |M | = |M0| or |M | = |M1|. Finally, we define

the discrepancy δ(M) of M to be the ratio
||M0|−|M1||

|M | .

Recall the statements of Theorem I.3 and Corollary

I.11.

Main Theorem I.3 (restated). Assuming the PFR con-

jecture (Conjecture I.5), for every {0, 1}-valued matrix

M,

CC(M) = O(rank(M)/ log rank(M)).

Corollary I.11 (restated). Suppose that A,B ⊆ F
n
2

satisfy D(A,B) ≥ 2−
√
n. Then assuming the PFR

conjecture, there exist subsets A′, B′ of A,B respectively

such that D(A′, B′) = 1, and |A′| ≥ 2−cn/ logn|A|,
|B′| ≥ 2−cn/ logn|B| for some absolute constant c.

We first prove that the above corollary is equivalent

to the following one:

Lemma III.1 (Main technical lemma, equivalent matrix

form). Let M be a {0, 1}-valued matrix with no identical
rows or columns, of rank at most r over F2, and of
discrepancy at least 2−

√
r. Then assuming the PFR con-

jecture (Conjecture I.5), there exists a monochromatic
submatrix M ′ of M of size at least 2−cr/ log r|M | for
some absolute constant c.

Proof: We prove only the Corollary I.11 ⇒ Lemma

III.1 implication. The proof of the converse implication

is similar. Denote the number of rows and columns of

M by k, � respectively. It is well known that the rank

of M over a field F equals r if and only if M can

be written as the sum of r rank one matrices over the

field F. Since rankF2(M) ≤ r this implies in turn that

there exist subsets A,B ⊆ F
r
2, A = {a1, a2, . . . , ak},

B = {b1, b2, . . . , b�} such that Mi,j = 〈ai, bj〉2 for all

1 ≤ i ≤ k, 1 ≤ j ≤ �. Since M has no identical rows

or columns we know that |A| = k, |B| = �. Note that

D(A,B) = δ(M) ≥ 2−
√
r.

Corollary I.11 now implies the existence of subsets

A′ ⊆ A, B′ ⊆ B, |A′| ≥ 2−cr/ log r|A|, |B′| ≥
2−cr/ log r|B|, such that D(A′, B′) = 1. Let M ′ be the

submatrix of M whose rows and columns correspond

to the indices in A′ and B′ respectively. The fact that

D(A′, B′) = 1 implies that Mi,j = 〈ai, bj〉2 ≡ const for

all ai ∈ A′, bj ∈ B′. Therefore M ′ is a monochromatic

submatrix of M of which satisfies

|M ′| = |A′||B′| ≥ 2−2cr/ log r|A||B|
= 2−2cr/ log r|M |,

as required.

In order to prove Theorem I.3 we follow the high-

level approach of Nisan and Wigderson [9] which was

explained in the previous section. They showed that in

order to prove the log-rank conjecture it suffices to prove

that every {0, 1}-valued matrix of low rank has a large

184



monochromatic submatrix. We start with the following

lemma.

Lemma III.2 (Existence of large monochromatic sub-

matrix assuming PFR). Assuming the PFR conjecture,
every {0, 1}-valued matrix M with no identical rows or
columns has a monochromatic submatrix of size at least
2−O(rank(M)/ log rank(M))|M |.

In order to prove the above lemma we use Lemma

III.1, together with the following theorem from [9],

which says that every {0, 1}-valued matrix M contains

a submatrix of high discrepancy:

Theorem III.3 (Existence of submatrix with high dis-

crepancy [9]). Every {0, 1}-valued matrix M has a
submatrix M ′ of size at least (rank(M))−3/2|M | and
with δ(M ′) ≥ (rank(M))−3/2.

Proof of Lemma III.2: Let r = rank(M). Theorem

III.3 implies the existence of a submatrix M ′ of M with

|M ′| ≥ (rank(M))−3/2|M |, and δ(M ′) ≥ r−3/2 �
2−
√
r. Note also that

rankF2(M
′) ≤ rank(M ′) ≤ rank(M) = r.

Lemma III.1 then implies the existence of a

monochromatic submatrix M ′′ of M ′ of size at least

2−cr/ log r|M ′| for some absolute constant c. So we have

that M ′′ is a monochromatic submatrix of M which

satisfies

|M ′′| ≥ 2−cr/ log r|M ′| ≥ 2−cr/ log rr−3/2|M |
= 2−O(r/ log r)|M |

Proof of Theorem I.3:
Let M be a {0, 1}-valued matrix. We will construct a

deterministic protocol for M with communication com-

plexity O(rank(M)/ log rank(M)). We may assume

w.l.o.g that M has no repeated rows or columns, other-

wise we can eliminate the repeated row or column and

the protocol we construct for the “compressed” matrix

(with no repeated rows/columns) will also be a protocol

for M .
We follow the high level approach of the proof of

Theorem 2 from [9]. We will show a protocol with

2O(r/ log r) leaves. This will suffice since it is well-

known that a protocol with t leaves has communication

complexity at most O(log t) (cf. [23, Chapter 2, Lemma

2.8]).
Now we describe the protocol. Let Q be the largest

monochromatic submatrix of M . Then Q induces a

natural partition of M into 4 submatrices Q,R, S, T with

R sharing the rows of Q and S sharing the columns of

Q.

M =

(
Q R

S T

)

Let U1 be a subset of the rows of (Q|R) whose restric-

tion to the columns of R span the rows of R. Similarly,

let U2 be a subset of the rows of (S|T ) whose restriction

to the columns of S span the rows of S. Note that if Q is

the all zeros matrix then the rows of U1 are independent

of the rows of U2. Otherwise, if Q is the all ones matrix

then the rows of U1 are independent of all the rows of

U2 except possibly for the vector in U2 whose restriction

to the columns of S is the all ones vector (if such vector

exists). Thus since Q is monochromatic we have that

rank(R) + rank(S) = |U1|+ |U2| ≤ rank(M) + 1.

If rank(R) ≤ rank(S) then the row player sends a

bit saying if his input belongs to the rows of Q or not.

The players continue recursively with a protocol for the

submatrix (Q|R) or the submatrix (S|T ) according to

the bit sent. If rank(R) ≥ rank(S) the roles of the row

and column players are switched.

Suppose without loss of generality that rank(R) ≤
rank(S). Then after sending one bit we continue with

either the matrix (Q|R) which is of rank at most

rank(M)/2 or with the matrix (S|T ) which — thanks

to Lemma III.2 — is of size at most (1 − δ)|M | for

δ ≥ 2−cr/ log r.

Let L(m, r) denote the number of leaves in the

protocol starting with a matrix of area at most m and

rank at most r. Then we get the following recurrence

relation:

L(m, r) ≤
{

L(m, r/2) + L(m(1− δ), r) r > 1

1 r = 1

It remains to show that in the above recursion

L(m, r) = 2O(r/ log r). Applying the recurrence itera-

tively 1/δ times to the right-most summand we get

L(m, r) ≤ δ−1L(m, r/2) + L(m(1− δ)1/δ, r)

≤ 2cr/ log(r)L(m, r/2) + L(m/2, r).

Set A(m, r) := 2−2cr/ log rL(m, r). Then we have

A(m, r) ≤ A(m, r/2)+A(m/2, r) which together with

A(1, r), A(m, 1) ≤ 1 imply A(m, r) ≤ (
logm+log r

log r

)
since we may apply the recursion iteratively at most

log r times to the left term and logm times to the right

term before we reach A(1, r) or A(m, 1). This in turn

implies A(m, r) ≤ (
logm+log r

log r

) ≤ rO(log r) due to the

fact that r ≤ m ≤ 22r, since we may assume there are

no identical rows or columns in the matrix M .

Concluding, we have L(m, r) ≤ 22cr/ log r+O(log2 r),

which implies in turn CC(M) = O(r/ log r) as claimed.
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