
Concave Generalized Flows with Applications to Market Equilibria

László A. Végh

Department of Management
London School of Economics

London, UK
Email: L.Vegh@lse.ac.uk

Abstract—We consider a nonlinear extension of the general-
ized network flow model, with the flow leaving an arc being an
increasing concave function of the flow entering it, as proposed
by Truemper [1] and Shigeno [2]. We give a polynomial
time combinatorial algorithm for solving corresponding flow
maximization problems, finding an ε-approximate solution
in O(m(m + log n) log(MUm/ε)) arithmetic operations and
value oracle queries, where M and U are upper bounds on
simple parameters. This also gives a new algorithm for linear
generalized flows, an efficient, purely scaling variant of the
Fat-Path algorithm by Goldberg, Plotkin and Tardos [3], not
using any cycle cancellations.

We show that this general convex programming model
serves as a common framework for several market equilibrium
problems, including the linear Fisher market model and its
various extensions. Our result immediately provides combina-
torial algorithms for various extensions of these market models.
This includes nonsymmetric Arrow-Debreu Nash bargaining,
settling an open question by Vazirani [4].

Keywords-network flow algorithms; generalized flows; convex
programming; market equilibrium.

I. INTRODUCTION

A classical extension of network flows is the generalized
network flow model, with a gain factor γe > 0 associated

with each arc e so that if α units of flow enter arc e, then γeα
units leave it. Since first studied by Kantorovich [5], Dantzig

[6] and Jewell [7], the problem has found many applications

including financial analysis, transportation, management sci-

ence, see [8, Chapter 15].

In this paper, we consider a nonlinear extension, concave
generalized flows, studied by Truemper [1] in 1978, and by

Shigeno [2] in 2006. For each arc e we are given a concave,

monotone increasing function Γe such that if α units enter e
then Γe(α) units leave it. We give a combinatorial algorithm

for corresponding flow maximization problems, with running

time polynomial in the network data and some simple

parameters.

Generalized flows are linear programs and thus can be

solved efficiently by general linear programming techniques,

the currently most efficient such algorithm being the interior-

point method by Kapoor and Vaidya [9]. Combinatorial

approaches have been used since the sixties (e.g. [7], [10],

This work was done in the College of Computing, Georgia Institute of
Technology, supported by NSF Grant CCF-0914732.

[11]), yet the first polynomial-time combinatorial algorithms

were given only in 1991 by Goldberg, Plotkin and Tardos

[3]. This inspired a line of research to develop further

polynomial-time combinatorial algorithms, e.g. [12]–[21];

for a survey on combinatorial generalized flow algorithms,

see [22]. Despite the vast literature, no strongly polynomial

algorithm is known so far. Our algorithm for this special

case derives from the FAT-PATH algorithm in [3], with the

remarkable difference that no cycle cancellations are needed.

Nonlinear extensions of generalized flows have also been

studied, e.g. in [23], [24], minimizing a separable convex

cost function for generalized flows. However, these frame-

works do not contain our problem, which involves nonlinear

convex constraints.

Concave generalized flows being nonlinear convex pro-

grams, they can also be solved by the ellipsoid method,

yet no practically efficient methods are known for this

problem. Hence finding a combinatorial algorithm is also a

matter of running time efficiency. Shigeno [2] gave the first

combinatorial algorithm that runs in polynomial time for

some restricted classes of functions Γe, including piecewise

linear. It is also an extension of the FAT-PATH algorithm in

[3]. In spite of this development, it has remained an open

problem to find a combinatorial polynomial-time algorithm

for arbitrary concave increasing gain functions.

Our result settles this question by allowing arbitrary

increasing concave gain functions provided via value oracle

access. The running time bounds for this general problem are

reasonably close to the most efficient linear generalized flow

algorithms. Concave gain functions extend the applicability

range of the classical generalized flow model, as they can

describe e.g. deminishing marginal utilities. We show that

the model is a general framework containing multiple convex

programs for market equilibrium settings, for which combi-

natorial algorithms have been developed over the last decade.

As an application, we get a combinatorial algorithm for

nonsymmetric Arrow-Debreu Nash bargaining, resolving an

open question by Vazirani [4]. We can also extend existing

results to more general settings.

The concave optimization problem might have irrational

optimal solutions: in general, we give a fully polynomial-

time approximation scheme, with running time dependent on

log(1ε) for finding an ε-approximate solution. In the market

2012 IEEE 53rd Annual Symposium on Foundations of Computer Science

0272-5428/12 $26.00 © 2012 IEEE

DOI 10.1109/FOCS.2012.33

150

equilibrium applications we have rational convex programs

(as in [4]): the existence of a rational optimal solution is

guaranteed. We show a general technique to transform a

sufficiently good approximation delivered by our algorithm

to an exact optimal solution under certain circumstances.

The rest of the paper is organized as follows. In Sec-

tion II, we give the precise definitions of the problems

considered. Thereby we introduce a new, equivalent variant

of the problem, called the symmetric formulation, providing

a more flexible algorithmic framework. Section III shows the

applications for market equilibrium problems. Section IV

explores the background of minimum-cost circulation and

generalized flow algorithms. Section V gives the algorithm

for symmetric concave generalized flows. Section VI shows

how the algorithm can be applied for the more standard

sink formulation. Section VII describes a general method for

finding the optimal solutions for rational convex programs,

in particular, to the nonsymmetric Arrow-Debreu Nash bar-

gaining problem.

II. PROBLEM DEFINITIONS

We define two closely related variants of the concave

generalized flow problem. The first is essentially the problem

proposed by Truemper [1] and Shigeno [2]. Let G = (V,E)
be a directed graph. Let n = |V |, m = |E|, and for each

node i ∈ V , let di be the total number of incoming and

outgoing arcs incident to i.
We are given lower and upper arc capacities �, u :

E → R and a monotone increasing concave function

Γij : [�ij , uij]→ R∪{−∞} on each arc and node demands

b : V → R. By a pseudoflow we mean a function f : E → R

with � ≤ f ≤ u. Given the pseudoflow f , let

ei :=
∑

j:ji∈E
Γji(fji)−

∑
j:ij∈E

fij − bi.

In the first variant of the problem, called the sink for-
mulation, there is a distinguished sink node t ∈ V . The

pseudoflow f is feasible, if ei ≥ 0 for all i ∈ V − t and

et > −∞. The objective is to maximize et for feasible

pseudoflows.

Shigeno [2] defines this problem with ei = 0 if i ∈ V − t,
and b ≡ 0 and without explicit capacity constraints. She also

discusses the version with ei ≥ 0, and gives a reduction

from the original version to this one. Whereas capacity

constraints can be simulated by the functions Γe, we impose

them explicitly as they will be included in the running time

bounds. The formulation with ei ≥ 0 seems more natural

as it gives a convex optimization problem, which is not the

case for ei = 0.

In the sink formulation, the node t plays a distinguished

role. It turns out to be more convenient to handle all nodes

equally. For this reason, we introduce another, seemingly

more general version, called the symmetric formulation.

Ideally, we would like to find a pseudoflow satisfying ei ≥ 0

for every i ∈ V . The formulation will be a relaxation of

this feasibility problem, allowing violation of the constraints,

penalized by possibly different rates at different nodes.

For each node i ∈ V we are given a penalty factor

Mi > 0 and an auxiliary variable κi ≥ 0. The objective is

to minimize κf =
∑

i∈V Miκi for a pseudoflow f subject

to ei + κi ≥ 0 for each i ∈ V . The objective κf is called

the excess discrepancy. κf = 0 means ei ≥ 0 for each

i ∈ V . These conditions might be violated, but we have to

pay penalty Mi per unit violation at i.
The sink version fits into this framework with Mi = ∞

for i 	= t and Mt = 1. However, it can be shown that setting

finite, polynomially bounded Mi values, the symmetric

version returns an optimal (or sufficiently close approximate)

solution to the sink version. While the symmetric formula-

tion could seem more general than the sink version, it can

indeed be reduced to it. For an instance of the symmetric

version with graph G = (V,E), let us add a new node t
with an arc from t to every node i ∈ V with gain function

Γti(α) = α/Mi. The reason for introducing the symmetric

formulation is its pertinence to our algorithmic purposes.

A. Complexity model

From a complexity perspective, the description of the

functions might be infinite. To handle this difficulty, fol-

lowing the approach of Hochbaum and Shantikumar [25],

we assume oracle access to the Γij’s: our running time

estimation will give a bound on the number of necessary

oracle calls. Two kinds of oracles are needed: (i) value

oracle, returning Γij(α) for any α ∈ [�ij , uij]; and (ii)
inverse value oracle, returning a value β with α = Γij(β)
for any α ∈ [Γij(�ij),Γij(uij)].

We assume that both oracles return the exact (possibly

irrational) solution, and any oracle query is done in O(1)
time. Also, we assume any basic arithmetic operation is

performed in O(1) time, regardless to size and representation

of the possibly irrational numbers. We expect that our results

naturally extend to the setting with only approximate oracles

and computational capacities in a straightforward manner.

Notice that in an approximate sense, an inverse value oracle

can be simulated by a value oracle.

By an ε-approximate solution to the symmetric concave

generalized flow problem we mean a feasible solution with

the excess discrepancy larger than the optimum by at most

ε. An ε-approximate solution to the sink version means a

pseudoflow with the objective value et at most ε less than the

optimum, and the total violation of the inequalities ei ≥ 0
for i ∈ V − t is also at most ε. (Note that an ε-approximate

solution is thus not necessarily feasible.)

Let us assume that all Mi values are positive integers, and

let M denote their maximum.

In the complexity estimation, we will have U as an upper

bound on the absolute values on the bi’s, the capacities

�ij , uij and the Γij(�ij), Γij(uij) values. For each arc ij,

151

let us define rij = |Γij(�ij)| whenever Γij(�ij) > −∞ and

rij = 0 otherwise. Let

U = max{max{|bi| : i ∈ V },
max{|�ij |, |uij |, |Γij(uij)|, rij : ij ∈ E}}.

For the sink version, we need to introduce one fur-

ther complexity parameter U∗ due to difficulties arising if

Γij(�ij) = −∞ for certain arcs. Such arcs do appear in

the market applications where we have logarithmic gain

functions. Let U∗ satisfy U ≤ U∗, and that et ≤ U∗ for

any pseudoflow (it is easy to see that U∗ = dtU always

satisfies this property). We also require that whenever there

exists a feasible solution to the problem (that is, ei ≥ 0
for each i ∈ V − t and et > −∞), there exists one with

et ≥ −U∗. If Γjt(�jt) > −∞ for each arc jt ∈ E, then

U∗ = dtU satisfies this property as well.

The main result is as follows:

Theorem 1. For the symmetric formulation of the con-
cave generalized flow problem, there exists a combina-
torial algorithm that finds an ε-approximate solution in
O(m(m+n log n) log(MUm/ε)). For the sink formulation,
there exists a combinatorial algorithm that finds an ε-
approximate solution in O(m(m + n log n) log(U∗m/ε)).
In both cases, the running time bound is on the number of
arithmetic operations and oracle queries.

For linear generalized flows, we are interested in finding

exact solutions and therefore we use a different complexity

model. We assume all �, u and b are given as integers

and γ as rational numbers; let B be the largest inte-

ger used in their descriptions. We obtain a running time

bound O(m2(m logB + logM) log n) for the symmetric

and O(m2(m+n log n) logB) for the sink formulation (see

the full version). This is the same as the complexity bound

of the highest gain augmenting path algorithm [14]. The

best current running time bounds are O(m1.5n2 logB) using

an interior point approach [9], and Õ(m2n logB) [20], an

enhanced version of [14].

The starting point of our investigation is the FAT-PATH

algorithm [3]. The first important idea is using the symmetric

formulation. This is a more flexible framework, and thus

we will be able to entirely avoid cycle cancellation and

use excess transportation phases only. Our result gives the

first generalized flow algorithm that uses a pure scaling

technique, without any cycle cancellation. The key new

idea here is the way ‘Δ-positive’ and ‘Δ-negative’ nodes

are defined, maintaining a ‘security reserve’ in each node

that compensates for adjustments when moving from the

Δ-scaling phase to the Δ/2-phase.

We extend the linear algorithm to the concave setting

using a local linear approximation of the gain functions,

following Shigeno [2]. This approximation is motivated by

the technique of Minoux [26] and Hochbaum and Shantiku-

mar [25] for minimum cost flows with separable convex

objectives.

III. APPLICATIONS TO MARKET EQUILIBRIUM

PROBLEMS

Intensive research has been pursued over the last decade

to develop polynomial-time combinatorial algorithms for

certain market equilibrium problems. The starting point

is the algorithm for computing market clearing prices in

Fisher’s model with linear utilities by Devanur et al. [27],

followed by a study of several variations and extensions of

this model. For a survey, see [28, Chapter 5] or [4].

In the linear Fisher market model, we are given a set B of

buyers and a set G of goods. Buyer i has a budget mi, and

there is one divisible unit of each good to be sold. For each

buyer i ∈ B and good j ∈ G, Uij ≥ 0 is the utility accrued

by buyer i for one unit of good j. Let n = |B|+ |G| and m
be the number of pairs ij with Uij > 0. We assume there

is such an edge incident to every buyer and to every good.

Let Umax = max{Uij : i ∈ B, j ∈ G} and R = max{mi :
i ∈ B}. An equilibrium solution consist of prices pi on the

goods and an allocation xij , so that (i) all goods are sold,

(ii) all money of the buyers is spent, and (iii) each buyers

i buys a best bundle of goods, that is, goods j maximizing

Uij/pj .

The equilibrium solutions for linear Fisher markets were

described via a convex program by Eisenberg and Gale [29]

in 1959; the combinatorial algorithms for this problem and

other models rely on the KKT-conditions for the correspond-

ing convex programs. Exact optimal solutions can be found,

since these problems admit rational optimal solutions.

max
∑
i∈B

mi log zi

zi ≤
∑
j∈G

Uijxij ∀i ∈ B (EG)

∑
i∈B

xij ≤ 1 ∀j ∈ G

z, x ≥ 0

We show that the Eisenberg-Gale convex program, along

with all extensions studied so far, falls into the broader

class of concave generalized flows. Moreover, in all these

extension we may replace linear or piecewise linear concave

functions by arbitrary concave ones, still solvable approxi-

mately by our algorithm.

For the Eisenberg-Gale program, let us define the graph

(V,E) with V = B ∪G∪{t}. Let ji ∈ E whenever j ∈ G,

i ∈ B, Uij > 0, and set Γji(α) = Uijα as a linear gain

function. Also, let it ∈ E for every i ∈ B with Γit(α) =
mi logα. Finally, set bj = −1 for j ∈ G, and bi = 0 for

i ∈ B. The above program describes exactly the sink version

of this concave generalized flow instance with fji = xij for

152

i ∈ B, j ∈ G and fit = zi. (To formally fit into the model,

we may add upper capacities uji = 1 and uit =
∑

j∈G Uji

without changing the set of feasible solutions.) Our general

algorithm gives an ε-approximation for this problem. For

a sufficiently small ε, this can be transformed to an exact

optimal solution.

The flexibility of the concave generalized flow model

enables various extensions. For example, we can replace

each linear function Ujiα by an arbitrary concave increasing

function, obtaining the perfect price discrimination model of

Goel and Vazirani [30]. They studied piecewise linear utility

functions; our model enables arbitrary functions (although

the optimal solution may be irrational).

In the Arrow-Debreu Nash bargaining (ADNB) defined

by Vazirani [4], traders arrive to the market with initial

endowments of goods, giving utility ci for player i. They

want to redistribute the goods to obtain higher utilities

using Nash bargaining. The disagreement point is when

everyone keeps the initial endowment, guaranteeing her

ci ≥ 0 utility. In an optimal Nash bargaining solution

we maximize
∑

i∈B log(zi − ci) over the constraint set in

(EG). Unlike for the linear Fisher model, equilibrium prices

may not exist, corresponding to a disagreement solution. A

sophisticated two phase algorithm is given in [4], first for

deciding feasibility, then for finding the equilibrium solution.

The convex program for nonsymmetric ADNB can be

obtained from the Eisenberg-Gale program by modifying

the first set of inequalities to zi ≤
∑

j∈G Uijxij − ci. In the

formulation as a concave generalized flow, this corresponds

to modifying the bi = 0 values for i ∈ B to bi = ci. Hence

this problem also fits into our framework. From this general

perspective, it does not seem more difficult than the linear

Fisher model.

Nonsymmetric Nash-bargaining was defined by

Kalai [31]. For ADNB, it corresponds to maximizing∑
i∈B mi log(zi − ci) over the constraint set in (EG),

for some positive coefficients mi. The algorithm in [4]

heavily relies on the assumption mi = 1, and does not

extend to this more general setting, called nonsymmetric
ADNB. Finding a combinatorial algorithm for this latter

problem was left open in [4]. Another open question in [4]

is to devise a combinatorial algorithm for (nonsymmetric)

ADNB with piecewise linear, concave utility functions. Our

result generalizes even further, for arbitrary concave utility

functions, since the linear functions Uijα can be replaced

by arbitrary concave functions.

Let C = max ci. Our algorithm can be used to find

an exact solution to the nonsymmetric ADNB problem

in time O(m(m + n log n)(n log(nUmaxR) + logC)). The

running time bound in [4] for symmetric ADNB (R = 1) is

O(n8 logUmax + n4 logC).

Let us also remark that an alternative convex program for

the linear Fisher market, given by Shmyrev [32], shows that

it also fits into the framework of minimum-cost circulations

with a separable convex cost function, and thus can be

solved by the algorithms of Hochbaum and Shantikumar

[25] or Karzanov and McCormick [33]. Recently, [34] gave

a strongly polynomial algorithm for a class of these prob-

lems, which includes Fisher’s market with linear and with

spending constraint utilities. However, this does not seem

to capture perfect price discrimination or ADNB, where no

alternative formulations analogous to [32] are known.

As further applications of the concave generalized flow

model, we can take single-source multiple-sink markets by

Jain and Vazirani [35], or concave cost matchings studied

by Devanur and Jain [36].

A distinct characteristic of the Eisenberg-Gale program

and its extensions is that they are rational convex programs.

We may loose this property when changing to general

concave spending constraint utilities. However, for the case

when the existence of a rational solution is guaranteed, one

would prefer finding an exact optimal solution. Section VII

addresses the question of rationality. Theorem 12 shows

that under certain technical conditions, our approximation

algorithm can be turned into a polynomial time algorithm

for finding an exact optimal solution.

IV. PREVIOUS ALGORITHMS FOR FLOW PROBLEMS

We refer the reader to [8] for a background on flow

problems; the full version also gives a more detailed

overview. The fundamental problem for our investigations

is the minimum-cost circulation problem.1 Algorithms are

built on two main algorithmic paradigms: cycle cancelling
(see e.g. [8, Chapter 9.6]) and successive shortest paths (see

e.g. [8, Chapter 9.7]). Neither of these basic algorithms are

polynomial, but both can be modified to run in strongly

polynomial time (e.g. [37]–[39]). For the successive shortest

path framework, the first (weakly) polynomial running time

was obtained by the scaling method of Edmonds and Karp

[40]. This serves as a starting point for a significant part of

algorithms for various flow models, including our concave

generalized flow algorithm.

Generalized flow algorithms are based on methods for

minimum-cost circulations. The key notion is flow generat-
ing cycle, where the product of the gain factors γe is greater

than 1. This corresponds to a negative cycle with respect to

the cost ce = − log γe. A solution is optimal, if there exists

no flow generating cycle in the residual graph, connected

to the sink by a path. We may cancel all flow generating

cycles by directly adapting algorithms for minimum-cost

circulations. Onaga [41] showed that if after cancelling all

flow generating cycles, we only use highest gain augmenting

paths for excess transportation, no new flow generating

cycle is created. This is analogous to the successive shortest

1We shall use the term ‘circulation’ to distinguish form other flow
problems in the paper.

153

paths algorithm and is also not polynomial. The FAT-PATH

algorithm by Goldberg, Plotkin and Tardos [3] uses a method

analogous to the Edmonds-Karp capacity scaling. In the Δ-

phase, instead of using highest gain paths, Δ-fat paths are

used, that are able to transport Δ-units of excess. This may

create new flow generating cycles, which should be canceled

in the next phase.

The basic framework of [41] and of FAT-PATH, namely

using the different paradigms for eliminating flow-generating

cycles and for transporting excess to the sink has been

adopted by most subsequent algorithms, e.g. [13]–[16], [20].

Minimum-cost circulations with separable convex costs.

A natural and well-studied nonlinear extension of minimum-

cost circulations is replacing each arc cost ce by a convex

function Ce. This is a widely applicable framework, see [8,

Chapter 14]. Both the minimum mean cycle cancellation and

the capacity scaling algorithms can be naturally extended to

this problem with polynomial running time bounds: cycle

cancellation was adapted by Karzanov and McCormick [33],

while capacity scaling by Minoux [26] and by Hochbaum

and Shanthikumar [25]. The two frameworks are based on

fundamentally different relaxations of the KKT-conditions.

[33] directly uses the (right) derivative values of the Ce’s,

while [26] and [25] use a gradually refined linear approxi-

mation.

Concave generalized flows. Shigeno’s [2] approach was to

extend the FAT-PATH algorithm of [3] to the concave set-

ting. However, [2] obtains polynomial running time bounds

only for restricted classes of gain functions. The algorithm

consists of two procedures applied alternately, similarly to

FAT-PATH: a cycle cancellation phase to generate excess

on cycles with positive gains, and a path augmentation

phase to transport new excess to the sink in chunks of Δ.

For both phases, previous methods naturally extend: cycle

cancelling is performed analogously to [33], whereas path

augmentation to [25]. Unfortunately, this yields polynomial

running time only under certain restrictions. The main reason

for this is that the different relaxations cannot be fit smoothly

into a unified framework.

V. CONCAVE GENERALIZED FLOWS ALGORITHM

Our algorithm for the case of linear gains does excess

transportation similarly to FAT-PATH, however, the cycle-

cancelling steps are completely eliminated and we use a

purely scaling framework. The successive shortest paths

algorithms for minimum cost circulations start with an

infeasible pseudoflow, having both positive and negative

nodes. To use an analogous method for generalized flows,

we have to give up the standard framework of algorithms

where ei ≥ 0 is always maintained for all i ∈ V − t. This is

the reason why we use the more flexible symmetric model:

we start with possibly several nodes having ei < 0, and

our aim is to eliminate them. An important property of the

algorithm is that we always have to maintain μi = 1/Mi for

ei < 0; for this reason we shall avoid creating new negative

nodes.

Similarly to FAT-PATH, we use a scaling algorithm. In the

Δ-phase, we consider the residual graph restricted to Δ-fat

arcs, arcs that may participate in a highest gain Δ-fat-path,

and maintain a conservative labeling μ with γμ
ij ≤ 1 on

Δ-fat arcs. When moving to the Δ/2-phase, this condition

may get violated due to Δ/2-fat arcs that were not Δ-fat.

Analogously to the Edmonds-Karp algorithm, we modify the

flow by saturating each violated arc and thereby restitute

dual feasibility. However, these changes may create new

negative nodes and thus violate the condition μi = 1/Mi

for ei < 0.

We resolve this difficulty by maintaing a ‘security reserve’

of diΔμi in each node i (di is the number of incident arcs).

This gives an upper bound on the total change caused by

restoring feasibility of incident arcs in all subsequent phases.

We call a node Δ-positive if ei > diΔμi, Δ-negative if

ei < diΔμi and Δ-neutral if ei = diΔμi. Δ-negative nodes

may become negative (ei < 0) at a later phase, and therefore

we maintain μi = 1/Mi for them. We send flow from Δ-

positive nodes to Δ-negative and Δ-neutral ones. Thereby

we treat some nodes with ei > 0 as sinks and increase their

excess further; however, as Δ decreases, such nodes may

gradually become sources.

This linear generalized flow algorithm smoothly extends

to concave generalized flows. We use the local linearization

θμΔ(ij) of Γij used by Shigeno, analogously to [25]. In the

Δ-phase, we consider the graph of Δ-fat arcs, and maintain

θμΔ(ij) ≤ 1 on them.

When moving from a Δ-phase to a Δ/2-phase in the

linear algorithm, the only reason for infeasibility is due to

Δ/2-fat arcs that were not Δ-fat. In contrast, feasibility can

be violated on Δ-fat arcs as well, as θμΔ(ij) ≤ 1 < θμΔ/2(ij)
may happen due to the finer linear approximation of the gain

functions in the Δ/2-phase. Fortunately, feasibility can be

restored in this case as well, by changing the flow on each

arc by a small amount.

A. Optimality conditions

The characterization of optimality was given in [2]; we

have to modify them slightly as we use the symmetric

formulation. The problem can be easily transformed to an

equivalent instance with (i) � ≡ 0 and Γij(0) = 0 for every

arc with Γij(0) > −∞; and (ii) every gain function Γij

is strictly monotone increasing on [0, uij]. We shall assume

these properties in the sequel.

The concavity of Γij implies that for each 0 ≤ α, there

exists the right derivative, denoted by Γ+
ij(α), and for 0 < α,

there exists the left derivative Γ−ij(α). If 0 ≤ α < α′, then

Γ+
ij(α

′) ≤ Γ−ij(α
′) ≤ Γ+

ij(α) ≤ Γ−ij(α).
For a pseudoflow f : E → R, we define the residual

network by ij ∈ Ef if ij ∈ E or ji ∈ E and fji > 0.

154

For notational convenience, we define fji = −Γij(fij)
on backward arcs. We also define the function Γji(α) :
[−Γij(uij),Γij(0)] → [−uij , 0] by Γji(α) = −Γ−1

ij (−α).
Hence Γji(fji) = −fij .

In the concave setting, we call a cycle C in Ef a flow
generating cycle, if Γ+(C) = Πij∈CΓ+

ij(fij) > 1. For such

a C, it can be shown that positive flow can be generated in

any node of C by sending flow around the cycle. The pair

(C,P) is called a generalized augmenting path (GAP) in the

following cases: (a) C is a flow generating cycle, i ∈ V (C),
t ∈ V is a node with et < 0, and P is a path in Ef from

i to t (i = t, P = ∅ is possible); (b) C = ∅, and P is a

path in Ef between two nodes s and t with es > 0, et < 0;

(c) C = ∅, and P is a path in Ef between s and t with

es ≤ 0, et < 0 and Γ+
f (P) > Ms/Mt. It is easy to verify

the following.

Lemma 2. If f is an optimal solution, then no GAP exists.

Relabeling is a standard technique for generalized flows.

Given μ : V → R>0 ∪ {∞}, let us define fμ
ij = fij/μi

for each arc ij ∈ E. We get problems equivalent to the

original with relabeled functions Γμ
ij(α) = Γij(μiα)/μj .

Accordingly, the relabeled demands, excesses, and capacities

are bμi = bi/μi, eμi = ei/μi, and uμ
ij = uij/μi. A

relabeling is conservative, if for any residual arc ij ∈ Ef ,

Γμ+
ij (f

μ
ij) ≤ 1, that is, no edge may increase the relabeled

flow. Furthermore we require μi ≥ 1/Mi for every i ∈ V
and equality whenever ei < 0.

If μi = ∞, we define bμi = eμi = 0, uμ
ij = 0 for ij ∈ E,

and furthermore Γμ+
ji (f

μ
ji) = 0 for all arcs ji ∈ Ef . Finally,

if ij ∈ Ef with μi =∞, μj <∞, then Γμ+
ij (f

μ
ij) =∞. The

following theorem can be derived using the Karush-Kuhn-

Tucker conditions.

Theorem 3 ([2]). Let f ∈ R
E satisfy 0 ≤ f ≤ ũ. Then

the following are equivalent. (i) f is an optimal solution
to the symmetric version. (ii) Ef contains no generalized
augmenting paths. (iii) There exists a conservative labeling
μ with ei = 0 whenever 1/Mi < μi <∞. �

B. Δ-conservative and Δ-canonical labelings

Let us define the fatness of ij ∈ Ef by sf (ij) =
Γij(uij)−Γij(fij) (if ij is a backward arc, this is equivalent

to sf (ij) = fji.) The fatness expresses the maximum

possible flow increase in j if saturating ij. This notion

enables us to identify arcs that can participite in fat paths

during the algorithm. In accordance with the other variables,

the relabeled fatness is defined as sμf (ij) = sf (ij)/μj .

Consider a scaling parameter Δ > 0. The Δ-fat graph
Eμ

f (Δ) is the set of residual arcs of relabeled fatness at

least Δ:

Eμ
f (Δ) = {ij : ij ∈ Ef : s

μ
f (ij) ≥ Δ}.

Arcs in Eμ
f (Δ) will be called Δ-fat arcs. As in [2], we use

the following linearization on Δ-fat arcs in chunks of Δ.

θμΔ(ij) :=
Δμi

Γ−1
ij (Γij(fij) + Δμj)− fij

ij ∈ Eμ
f (Δ). (1)

This is well-defined since Γij(fij) + Δμj ≤ Γij(uij) for

Δ-fat arcs. Note that if Γij(.) is linear, i.e. Γij(α) = γijα,

then θμΔ(ij) = γij . Also, if the reverse arc ji Δ-fat, than

using Γji(fji) = −fij and Γ−1
ji = −Γij(−α), we get

θμΔ(ji) =
Δμj

Γij(fij)− Γij (fij −Δμi)
. (2)

Consider a label function μ : V → R>0 ∪ {∞}; recall that

di is the total number of arcs incident to i. A node i ∈ V is

called Δ-negative if eμi < diΔ, Δ-neutral if eμi = diΔ and

Δ-positive if eμi > diΔ. The labeling μ Δ-conservative, if

θμΔ(ij) ≤ 1 holds for every ij ∈ Eμ
f (Δ). Furthermore, we

require μi ≥ 1/Mi for all i ∈ V , with equality for every

Δ-negative node i.

Note that a Δ-conservative labeling cannot have any

nodes with μi = ∞. Using the convexity of Γ−1, it

can be shown that if μ is a Δ-conservative labeling then

it is Δ′-conservative for all Δ′ ≥ Δ. Let Exμ(f) =∑
i∈V max{eμi , 0} and Exμ

Δ(f) =
∑

i∈V max{eμi −diΔ, 0}
denote the total relabeled excess of positive and Δ-positive

nodes, respecitively.

The key importance of Δ-conservativity is that it is

maintained when sending Δ units of flow on arcs with

θμΔ(ij) = 1. This is formulated in the next simple lemma.

Lemma 4. Assume μ is Δ-conservative, and let ij ∈ Eμ
f (Δ)

be an arc with θμΔ(ij) = 1. If we increase fμ
ij by Δ,

then Γ(fμ
ij) also increases by Δ, and Δ-conservativity is

maintained.

Proof: θμΔ(ij) = 1 is equivalent to Γμ
ij(f

μ
ij + Δ) =

Γμ
j (f

μ
ij)+Δ, showing the first part. Let f̄ij = fij +Δμi be

the modified flow. For the second part, θμΔ(ij) ≤ 1 for f̄ij
easily follows from convexity. Further, observe (2) shows

that we get θμΔ(ji) = 1 for f̄ij . This gives Δ-conservativity

for the modified flow as all other arcs are left unchanged.

The next lemma shows how a Δ-conservative labeling

can be transformed to a Δ/2-conservative one. Analogous

claims are proved in [26] and [25].

Lemma 5. Let f be a pseudoflow with a Δ-conservative
labeling μ. Then there exists a flow f̄ such that μ is Δ/2-
conservative for f̄ and Exμ

Δ/2(f̄) ≤ Exμ
Δ(f) +

3
2mΔ.

Proof: Consider a Δ/2-fat arc ij with θμΔ/2(ij) > 1
for f , that is,

Γ−1
ij

(
Γij(fij) +

Δ

2
μj

)
− fij <

Δ

2
μi. (3)

155

There are two possible scenarios: (a) ij was not Δ-fat, that

is,
Δ

2
μj ≤ Γij(uij)− Γij(fij) < Δμj , (4)

or (b) ij was also a Δ-fat arc. Then by Δ-conservativity,

Γ−1
ij (Γij(fij) + Δμj)− fij ≥ Δμi. (5)

In both cases, let us define

f̄ij = Γ−1
ij

(
Γij(fij) +

Δ

2
μj

)
.

Δ/2-fatness of ij guarantees that this is well-defined. In

case (a), we claim that ij is not Δ/2-fat for f̄ . Indeed,

Γij(uij)−Γij(f̄ij) = Γij(uij)−
(
Γij(fij) +

Δ

2
μj

)
<
Δ

2
μj .

The last inequality follows by the second part of (4). In

case (b), we claim that if ij is a Δ/2-fat arc for f̄ then

θμΔ/2(ij) ≤ 1 must hold for f̄ . Indeed, if we subtract (3)

from (5), we get

Γ−1
ij (Γij(fij) + Δμj)− Γ−1

ij

(
Γij(fij) +

Δ

2
μj

)
>
Δ

2
μi,

and by substituting f̄ij , it follows that θμΔ/2(ij) < 1 for f̄ .

If if ji is also a Δ/2-fat arc for f̄ , then θμΔ/2(ji) ≤ 1

holds for f̄ . This can be derived using (2) and (3).

We define f̄ij the above way whenever ij is a Δ/2-fat

arc with θμ(ij) > 1. (As a simple consequence of concavity,

this cannot be the case for both ij and ji.) If this does not

hold for neither ij nor ji, then let f̄ij = fij . The next simple

claim compares fij and Γ(fij) to f̄ij and Γ(f̄ij).

Claim 6. |f̄μ
ij − fμ

ij | ≤ Δ
2 and |Γμ

ij(f̄
μ
ij)− Γμ

ij(f
μ
ij)| ≤ Δ

2 .

For Δ/2-conservativity, we also need to show that f̄ has

no Δ/2-negative nodes with μi > 1/Mi. By the above

claim, the total possible change of relabeled flow on arcs

incident to i is diΔ/2. A node is nonnegative for Δ if

eμi ≥ diΔ and for Δ/2 if eμi ≥ diΔ/2. Consequently, a

Δ-nonnegative node cannot become Δ/2-negative.

Finally, Exμ
Δ/2(f) ≤ Exμ

Δ(f) +
∑

i∈V diΔ/2, and each

arc is responsible for creating at most Δ/2 units of new

excess. This gives Exμ
Δ/2(f̄) ≤ Exμ

Δ(f)+
m
2 Δ, as required.

The subroutine ADJUST(Δ) performs the simple modifi-

cations described in the proof

Given a pseudoflow f and a Δ-conservative labeling μ,

the arc ij ∈ Eμ
f (Δ) is called tight if θμΔ(ij) = 1. A directed

path in Eμ
f (Δ) is called tight if it consists of tight arcs. μ

is a Δ-canonical labeling, if from each node i there exists

a tight path to a Δ-negative or to a Δ-neutral node. Such

a path is approximately a highest gain Δ-fat augmenting

path. The subroutine TIGHTEN-LABEL(f, μ,Δ) returns a

Δ-canonical label μ′ ≥ μ for a Δ-conservative label μ. This

is a multiplicative variant of Dijsktra’s algorithm (see the

full version for details). In every iteration, let S be the set

of nodes from which there exists a tight path to a Δ-negative

or Δ-neutral node. We increase μi for every node in V \ S
at the same rate, until either a new arc becomes tight or

a Δ-positive node becomes Δ-neutral. In both cases, S is

extended.

C. The main algorithm

Algorithm SYMMETRIC CONCAVE FAT-PATH

for i ∈ V do μi ← 1
Mi

;

for ij ∈ E do fij ← uij ;

Δ←MU + 1;

while (2n+ 3m)Δ ≥ ε do
do

TIGHTEN-LABEL(f, μ,Δ);
D ← {i ∈ V : ei > (di + 1)Δ};
N0 ← {i ∈ V : ei ≤ diΔ};
pick s ∈ D, t ∈ N connected by a tight path P ;

send Δ units of flow along P ;

while D 	= ∅;
ADJUST(Δ);
Δ← Δ

2 ;

return ε-approximate optimal solution f .

Figure 1. The algorithm for symmetric concave generalized flows

Let us initialize μi = 1/Mi for every i ∈ V , and fij = uij

for every ij ∈ E and pick Δ =MU + 1.

The algorithm consists of Δ-phases, and terminates with

an ε-approximate solution if (2n + 3m)Δ < ε. During the

Δ-phase, we maintain a pseudoflow f and a Δ-conservative

labeling μ. The μi values may only increase. Let D denote

the set of nodes i with eμi > (di+1)Δ. The Δ-phase consists

of iterations, and terminates whenever D becomes empty. In

each iteration, we update μ to a canonical labeling by calling

TIGHTEN-LABEL(f, μ,Δ). If D 	= ∅ still holds, send Δ
units of relabeled flow on a tight path from some s ∈ D to

a Δ-neutral or Δ-negative node t.

D. Analysis

Claim 7. The initial μ is Δ-conservative, and Δ-con-
servativity is maintained during the entire Δ-phase.

Proof: Initially, f ≡ u and hence Ef is the set of back-

ward arcs. For an arc ij ∈ E, sμΔ(ji) = uij/μi ≤MU < Δ,

and hence Eμ
f (Δ) = ∅. Also, μi = 1/Mi holds for

every node i. TIGHTEN-LABEL(f, μ,Δ) clearly maintains

Δ-conservativity. We use only tight arcs to send flow, and

Lemma 4 guarantees that this preserves Δ-conservativity.

At the end of the Δ-phase, ADJUST(Δ) transforms f to a

Δ/2-conservative pseudoflow.

156

Claim 8. The Δ-phase starts with Exμ
Δ(f) ≤ (2n+3m)Δ.

Proof: For the initial solution, Exμ
Δ(f) ≤

M(
∑

i∈V |bi| + mU) ≤ (m + n)MU . The claim follows,

since Δ = MU + 1. Once we finish all iterations in the

Δ-phase, D = ∅ implies Exμ
Δ(f) ≤ nΔ. By Lemma 5,

ADJUST(Δ) transfroms f to a Δ/2-conservative solution

by increasing the excess by at most 3
2mΔ. Hence the Δ/2

phase starts with Exμ
Δ(f) ≤ (2n + 3m)Δ/2, proving the

claim.

Lemma 9. A Δ-phase consists of at most 2n+3m iterations.

Proof: Let Ψ(i) =
eμi /Δ� − di if eμi > (di + 1)Δ
and Ψ(i) = 0 otherwise. Consider the potential function

Ψ =
∑

i∈V Ψ(i). By Claim 8, Ψ ≤ 2n + 3m holds at the

beginning. In the relabeling steps, Ψ may only decrease, and

in every path augmentation, it decreases by exactly 1.

Recall that κf =
∑

i∈V Miκi =
∑

i∈V Mimin{−ei, 0}
denotes the excess discrepancy. For a Δ-conservative μ,

Miκi = eμi = holds for every node i with ei < 0, because

of μi = 1/Mi. Consequently, κf is the total relabeled

deficiency of the negative nodes. The next theorem shows

that if Δ < ε/(2n+3m), then we have an ε-optimal solution

at the end of the Δ-phase.

Theorem 10. At the end of phase Δ, the actual f is (2n+
3m)Δ-optimal.

Proof: Let us keep running the algorithm forever un-

less it finds a 0-discrepancy solution at some phase. First,

consider the case when for some Δ′ = Δ/2k, we terminate

with a 0-discrepancy solution. In all phases between Δ and

Δ′ , the total decrease of excess discrepancy is bounded

by (2n+ 3m)(Δ/2 + Δ/4 + . . .+Δ/2k) < (2n+ 3m)Δ.

Since in the Δ′-phase we have a 0-discrepancy solution,

the total discrepancy at the end of the Δ-phase is at most

(2n+ 3m)Δ, proving the theorem.

Assume now the procedure runs forever. For each i ∈ V ,

κi is decreasing and thus converges to some limit κ∗i . Let

κ∗ =
∑

i∈V Miκ
∗
i . As above, the total decrease of the excess

discrepancy after phase Δ is bounded by (2n+3m)Δ, hence

κf ≤ κ∗+(2n+3m)Δ. The proof finishes by constructing

an optimal pseudoflow f∗ with discrepancy κ∗.
Let f (t) denote the flow at time t, for Δ(t) = Δ0/2

t, with

labels μ
(t)
i . For each node i, μ

(t)
i is increasing; let μ∗i =

limt→∞ μ
(t)
i . For every ij ∈ E, f

(t)
ij is a bounded sequence

(0 ≤ f
(t)
ij ≤ uij). Consequently, we can choose an infinite

set T ′ ⊆ N so that restricted to t ∈ T ′, all sequences f
(t)
ij

converge; let f∗ij denote the limits. We shall prove that f∗ is

an optimal pseudoflow with optimal labeling μ∗i , completing

the proof.

Let V∞ = {i : μ∗i =∞}. It can be shown that V −V∞ 	=
∅ as otherwise we would terminate with a 0-discrepancy

solution in a finite number of steps.

Let e∗i denote the excesses of f∗. If e∗i < 0, then clearly

i ∈ N∗ and μ∗i = 1/Mi. If e∗i > 0, we shall prove μ∗i =∞.

For a contradiction, assume μ∗i < ∞. Then for sufficiently

large t ∈ T ′, (di + 2n + 3m)Δ(t)μ
(t)
i < e

(t)
i and thus

Exμ
Δ(t)(f) > (2n+ 3m)Δ(t), a contradiction.

We have to prove Γμ∗+
ij (f∗μ

∗
ij) ≤ 1 whenever ij ∈ Ef∗ .

If μ∗j = ∞, then Γμ∗+
ij (f∗μ

∗
ij) = 0. If μ∗j < ∞, then the

definition (1) gives

1 ≥ θμ
(t)

Δ(t)(ij) =
Δ(t)μ

(t)
j

Γ−1
ij (Γij(f

(t)
ij) + Δ(t)μ

(t)
j)− f

(t)
ij

· μ
(t)
i

μ
(t)
j

.

Then Δ(t)μ
(t)
j → 0 and hence the first fraction converges to

Γ+
ij(f

∗
ij) = 1/{Γ−1

ij }+(Γ+
ij(f

∗
ij)), while the second to μ∗i /μ

∗
j .

Theorem 11. The algorithm finds an ε-approximate solu-
tion to the symmetric concave generalized flow problem in
O(m(m+ n log n) log(MUm/ε)) oracle calls.

Proof: The initial value of Δ is MU + 1, and we

terminate if Δ < ε/(2n + 3m). Hence the total number

of scaling phases is O(log(MUm/ε)). The number of

iterations in a phase is O(m) by Lemma 9, and the running

time of an iteration is dominated by TIGHTEN-LABEL, a

slightly modified version of Dijkstra’s algorithm that can be

implemented in O(m+n log n) time using Fibonacci heaps

as in [42].

VI. SINK VERSION OF THE PROBLEM

Let us now show how the algorithm for the symmetric

version can be used to solve the sink version. An ε-

approximate solution to the sink version means a pseudoflow

f with
∑

i∈V−tmax{0,−ei} ≤ ε and et being at least the

optimum value minus ε.

Let us set bt = U∗ + 1, a strict upper bound on∑
j:jt∈E Γjt(fjt) −

∑
j:tj∈E ftj (we defined U∗ in Sec-

tion II-A). For every pseudoflow, et < 0 is guaranteed. Let

us set Mi = �(2U∗ + 1)/ε� + 1 if i ∈ V − t and Mt = 1.

Let us run the algorithm for the symmetric formulation to

obtain an ε-optimal solution f .

If κf > 2U∗+1+ ε, then no feasible solution may exist.

Indeed, by the definition of U∗, if there is a feasible solution

f ′, then there exists one with et ≥ −U∗. If f ′ is such a

feasible solution for the sink formulation, then its excess

discrepancy for the symmetric formulation is at most κf ′ ≤
bi + U∗ ≤ 2U∗ + 1, a contradiction as f was ε-optimal for

the symmetric formulation.

If κf ≤ 2U∗ + 1 + ε, then

∑
i∈V−t

max{0,−ei} = 1

�(2U∗ + 1)/ε�+ 1

∑
i∈V−t

Miκi

≤ κf

�(2U∗ + 1)/ε�+ 1
≤ ε.

Also κt cannot be further than ε from the optimum value

of et for the sink formulation. Indeed, let f ′ be the optimal

157

solution to the sink formulation with objective value e′t. Then

κf ′ = bt − e′t. The claim follows by

bt − e′t + ε = κf ′ + ε ≥ κf ≥ κt = bt − et,

and thus et ≥ e′t − ε. In the first inequality, we use that f
is ε-optimal for the sink formulation. This gives a running

time bound O(m(m+ n log n) log(U∗m/ε)).

VII. FINDING THE OPTIMAL SOLUTION FOR RATIONAL

CONVEX PROGRAMS

In this section, we give a general theorem which shows

how an approximate solution to the sink version can be

converted to an exact optimal solution, given that one exists.

These properties are not difficult to verify for the linear

Fisher market, or the more general nonsymmetric Arrow-

Debreu Nash bargaining (ADNB) problem. Unlike the linear

Fisher model, ADNB might be infeasible. However, it can be

shown that if the problem is infeasible, then for appropriate

(polynomially small) ε, the ε-approximate version is also

infeasible.

Theorem 12. Let problem P be given by the sink formula-
tion with n nodes and m arcs, and complexity parameters
U , U∗. Assume P is guaranteed to have a rational optimal
solution, and the following conditions hold for some values
ε, T and a function τ(n,m,U∗).

(P1) Consider the algorithm for the sink version for an
ε-approximation. Then either there exists no feasible
solution, or μi ≤ T holds for any i ∈ V , even if running
the algorithm for an arbitrary number of phases.

(P2) A subroutine is provided for finding an optimal solution
f̃ in τ(n,m,U∗) time, if the following assumptions
hold. Assume that for each ij ∈ E, we are given an
interval Iij ⊆ [�ij , uij] with |Iij | ≤ 2Tε, with the
guarantee that there exists an optimal solution f∗ with
f∗ij ∈ Iij for all ij ∈ E.

Then there exist an algorithm for finding the exact opti-
mal solution or proving that the problem is infeasible in
O(m(m+ n log n) log(U∗m/ε)) + τ(n,m,U∗).

We remark that in (P2), f̃ = f∗ is not required. To ensure

property (P2), a useful method is to enforce the existence

of a unique optimal solution by perturbing the input data,

as done by Orlin [43] for linear Fisher markets. If there is a

unique rational optimal solution f∗ with all entries having

denominator at most Q, then setting 2Tε < 1/Q enables us

to identify the set of arcs with f∗ij > 0. This can be already

enough to compute f∗ efficiently.

Using the notation of Section III, the following can be

verified for the nonsymmetric ADNB problem.

Theorem 13. Let K = nRUmax. Setting T = U∗ =
max{C, nK logK}, ε = 1/(2KnU∗) satisfies the require-
ments on U∗ in Section II-A and (P1) and (P2) in The-
orem 12. Our algorithm delivers an optimal solution in

running time O(m(m+ n log n)(n log(nRUmax) + logC))
for nonsymmetric ADNB.

If we apply this algorithm to linear Fisher markets (c ≡ 0),

the algorithm runs in a fundamentally different way as [27]

or [43]. While both these algorithms increase the prices,

ours works the other way around: it starts with the highest

possible prices, and decreases them.

VIII. DISCUSSION

We have given the first polynomial time combinatorial

algorithms for both the symmetric and the sink formulation

of the concave generalized flow problem. Our algorithm

is not strongly polynomial. In fact, no such algorithm is

known already for the linear case: it is a fundamental open

question to find a strongly polynomial algorithm for linear

generalized flows. If resolved, a natural question could be

to devise a strongly polynomial algorithm for some class

of convex generalized flow problems, analogously to the

recent result [34], desirably including the market and Nash

bargaining applications.

Linear Fisher market is also captured by [34]. A natural

question is if there is any direct connection between our

model and the convex minimum cost flow model studied

in [34]. Despite certain similarities, no reduction is known

in any direction. Indeed, no such reduction is known even

between the linear special cases, that is, generalized flows

and minimum-cost circulations. In fact, the only known

market setting captured by both is linear Fisher. Perfect price

discrimination and ADNB are not known to be reducible to

flows with convex objective. In contrast, spending constraint

utilities [44] are not known to be captured by our model,

although they are captured by the other.

ACKNOWLEDGMENTS

The author is grateful to Vijay Vazirani for several fruitful

discussions on market equilibrium problems.

REFERENCES

[1] K. Truemper, “Optimal flows in nonlinear gain networks,”
Networks, vol. 8, no. 1, pp. 17–36, 1978.

[2] M. Shigeno, “Maximum network flows with concave gains,”
Mathematical Programming, vol. 107, no. 3, pp. 439–459,
2006. [Online]. Available: http://dx.doi.org/10.1007/s10107-
005-0608-1

[3] A. V. Goldberg, S. A. Plotkin, and É. Tardos, “Combinatorial
algorithms for the generalized circulation problem,” Mathe-
matics of Operations Research, vol. 16, no. 2, p. 351, 1991.

[4] V. V. Vazirani, “The notion of a rational convex program, and
an algorithm for the Arrow-Debreu Nash bargaining game,”
Journal of ACM (JACM), vol. 59, no. 2, 2012.

[5] L. V. Kantorovich, “Mathematical methods of organizing and
planning production,” Publication House of the Leningrad
State University, p. 68, 1939, English translation in Manage-
ment Science 6(4):366-422, 1960.

[6] G. B. Dantzig, Linear Programming and Extensions. Prince-
ton University Press, Princeton, 1963.

158

[7] W. S. Jewell, “Optimal flow through networks,” Operations
Research, vol. 10, pp. 476–499, 1962.

[8] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows:
Theory, Algorithms, and Applications. Prentice-Hall, Inc.,
feb 1993.

[9] S. Kapoor and P. M. Vaidya, “Speeding up Karmarkar’s
algorithm for multicommodity flows,” Mathematical Pro-
gramming, vol. 73, no. 1, pp. 111–127, 1996.

[10] K. Onaga, “Dynamic programming of optimum flows in lossy
communication nets,” IEEE Transactions on Circuit Theory,
vol. 13, pp. 308–327, 1966.

[11] K. Truemper, “On max flows with gains and pure min-cost
flows,” SIAM Journal on Applied Mathematics, vol. 32, no. 2,
pp. 450–456, 1977.

[12] E. Cohen and N. Megiddo, “New algorithms for generalized
network flows,” Mathematical Programming, vol. 64, no. 1,
pp. 325–336, 1994.

[13] D. Goldfarb and Z. Jin, “A faster combinatorial algorithm
for the generalized circulation problem,” Mathematics of
Operations Research, vol. 21, no. 3, pp. 529–539, 1996.

[14] D. Goldfarb, Z. Jin, and J. B. Orlin, “Polynomial-time
highest-gain augmenting path algorithms for the generalized
circulation problem,” Mathematics of Operations Research,
vol. 22, no. 4, pp. 793–802, 1997.

[15] É. Tardos and K. D. Wayne, “Simple maximum flow algo-
rithms in lossy networks,” in Proceedings of IPCO, Lecture
Notes in Computer Science, vol. 1412, 1998, pp. 310–324.

[16] L. K. Fleischer and K. D. Wayne, “Fast and simple ap-
proximation schemes for generalized flow,” Mathematical
Programming, vol. 91, no. 2, pp. 215–238, 2002.

[17] D. Goldfarb, Z. Jin, and Y. Lin, “A polynomial dual simplex
algorithm for the generalized circulation problem,” Mathe-
matical Programming, vol. 91, no. 2, pp. 271–288, 2002.

[18] D. Goldfarb and Y. Lin, “Combinatorial interior point meth-
ods for generalized network flow problems,” Mathematical
Programming, vol. 93, no. 2, pp. 227–246, 2002.

[19] K. D. Wayne, “A polynomial combinatorial algorithm for
generalized minimum cost flow,” Mathematics of Operations
Research, pp. 445–459, 2002.

[20] T. Radzik, “Improving time bounds on maximum generalised
flow computations by contracting the network,” Theoretical
Computer Science, vol. 312, no. 1, pp. 75–97, 2004.

[21] M. Restrepo and D. P. Williamson, “A simple GAP-canceling
algorithm for the generalized maximum flow problem,” Math-
ematical Programming, vol. 118, no. 1, pp. 47–74, 2009.

[22] M. Shigeno, “A survey of combinatorial maximum flow al-
gorithms on a network with gains,” Journal of the Operations
Research Society of Japan, vol. 47, pp. 244–264, 2004.

[23] D. P. Ahlfeld, J. M. Mulvey, R. S. Dembo, and S. A. Zenios,
“Nonlinear programming on generalized networks,” ACM
Transactions on Mathematical Software (TOMS), vol. 13,
no. 4, pp. 350–367, 1987.

[24] D. P. Bertsekas, L. C. Polymenakos, and P. Tseng, “An ε-
relaxation method for separable convex cost network flow
problems,” SIAM Journal on Optimization, vol. 7, no. 3, pp.
853–870, 1997.

[25] D. S. Hochbaum and J. G. Shanthikumar, “Convex separable
optimization is not much harder than linear optimization,”
Journal of the ACM (JACM), vol. 37, no. 4, pp. 843–862,
1990.

[26] M. Minoux, “Solving integer minimum cost flows with
separable convex cost objective polynomially,” Mathematical
Programming Study, vol. 25, p. 237, 1985.

[27] N. R. Devanur, C. H. Papadimitriou, A. Saberi, and V. V.
Vazirani, “Market equilibrium via a primal–dual algorithm
for a convex program,” Journal of the ACM (JACM), vol. 55,
no. 5, p. 22, 2008.

[28] N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani, Al-
gorithmic Game Theory. Cambridge University Press New
York, NY, USA, 2007.

[29] E. Eisenberg and D. Gale, “Consensus of subjective probabil-
ities: The pari-mutuel method,” The Annals of Mathematical
Statistics, vol. 30, no. 1, pp. 165–168, 1959.

[30] G. Goel and V. V. Vazirani, “A perfect price discrimination
market model with production, and a (rational) convex pro-
gram for it,” Mathematics of Operations Research, vol. 36,
pp. 762–782, 2011.

[31] E. Kalai, “Nonsymmetric Nash solutions and replications of
2-person bargaining,” International Journal of Game Theory,
vol. 6, no. 3, pp. 129–133, 1977.

[32] V. I. Shmyrev, “An algorithm for finding equilibrium in the
linear exchange model with fixed budgets,” Journal of Applied
and Industrial Mathematics, vol. 3, no. 4, pp. 505–518, 2009.

[33] A. V. Karzanov and S. T. McCormick, “Polynomial methods
for separable convex optimization in unimodular linear spaces
with applications,” SIAM J. Comput., vol. 26, no. 4, pp. 1245–
1275, 1997.

[34] L. A. Végh, “Strongly polynomial algorithm for a class of
minimum-cost flow problems with separable convex objec-
tives,” in Proceedings of STOC. ACM, 2012, pp. 27–40.

[35] K. Jain and V. V. Vazirani, “Eisenberg-gale markets: Algo-
rithms and game-theoretic properties,” Games and Economic
Behavior, vol. 70, no. 1, pp. 84–106, 2010.

[36] N. Devanur and K. Jain, “Online matching with concave
returns,” in Proceedings of the 44th Symposium on Theory
of Computing (STOC). ACM, 2012, pp. 137–144.

[37] É. Tardos, “A strongly polynomial minimum cost circulation
algorithm,” Combinatorica, vol. 5, no. 3, pp. 247–255, 1985.

[38] A. V. Goldberg and R. E. Tarjan, “Finding minimum-cost
circulations by canceling negative cycles,” Journal of the
ACM (JACM), vol. 36, no. 4, pp. 873–886, 1989.

[39] J. B. Orlin, “A faster strongly polynomial minimum cost flow
algorithm,” Operations Research, vol. 41, no. 2, pp. 338–350,
1993.

[40] J. Edmonds and R. M. Karp, “Theoretical improvements in
algorithmic efficiency for network flow problems,” Journal of
the ACM (JACM), vol. 19, no. 2, pp. 248–264, 1972.

[41] K. Onaga, “Optimum flows in general communication net-
works,” Journal of the Franklin Institute, vol. 283, no. 4, pp.
308–327, 1967.

[42] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their
uses in improved network optimization algorithms,” Journal
of the ACM (JACM), vol. 34, no. 3, pp. 596–615, 1987.

[43] J. B. Orlin, “Improved algorithms for computing fisher’s
market clearing prices,” in Proceedings of the 42nd ACM
Symposium on Theory of Computing (STOC). ACM, 2010,
pp. 291–300.

[44] V. V. Vazirani, “Spending constraint utilities with applica-
tions to the Adwords market,” Mathematics of Operations
Research, vol. 35, no. 2, pp. 458–478, 2010.

159

