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Abstract—In this paper we show that for any mechanism
design problem with the objective of maximizing social welfare,
the exponential mechanism can be implemented as a truthful
mechanism while still preserving differential privacy. Our
instantiation of the exponential mechanism can be interpreted
as a generalization of the VCG mechanism in the sense that
the VCG mechanism is the extreme case when the privacy
parameter goes to infinity. To our knowledge, this is the first
general tool for designing mechanisms that are both truthful
and differentially private.
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I. INTRODUCTION

In mechanism design a central entity seeks to allocate

resources among a set of selfish agents in order to optimize a

specific objective function such as revenue or social welfare.

Each agent has a private valuation for the resources being

allocated, which is commonly referred to as her type. A

major challenge in designing mechanisms for problems of

resource allocation among selfish agents is getting them to

reveal their true types. While in principle mechanisms can

be designed to optimize some objective function even when

agents are not truthful, the analysis of such mechanisms

is complicated and the vast majority of mechanisms are

designed to incentivize agents to be truthful.

One reason that an agent might not want to be truthful is

that lying gives her a better payoff. Research in algorithmic

mechanism design has mostly focused on this possibil-

ity and has successfully designed computationally-efficient

incentive-compatible mechanisms for many problems , i.e.,

mechanisms where each agent achieves optimal payoff by

bidding truthfully (see [23] for a survey of results). However,

a second reason that an agent might not bid truthfully is

that the privacy of her type might itself be of value to

her. Bidding truthfully could well result in an outcome that

reveals the private type of an agent.
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Consider for example, a matching market in which n oil

companies are bidding for n oil fields. A company may have

done extensive research in figuring out its valuations for each

field. It may regard this information as giving it competitive

advantage and seek to protect its privacy. If it participates in

a traditional incentive-compatible mechanism, say, the VCG

mechanism, it has two choices – 1) bid truthfully, get the

optimum payoff but potentially reveal private information or

2) introduce random noise into its bid to (almost) preserve

privacy, but settle for a suboptimal payoff. In this and more

generally in multi-agent settings where each agent’s type is

multidimensional, we aim to answer the following question:

Can we design mechanisms that simultaneously
achieve near optimal social welfare, are incentive
compatible, and protect the privacy of each agent?

The notion of privacy we will consider is differential
privacy, which is a paradigm for private data analysis

developed in the past decade, aiming to reveal information

about the population as a whole, while protecting the privacy

of each individual (see surveys [13], [14] and the reference

therein).

A. Our Results and Techniques

Our main contribution is a novel instantiation of the

exponential mechanism for any mechanism design problem

with payments, that aims to maximize social welfare. We

show that our version of the exponential mechanism is incen-

tive compatible and individually rational1, while preserving

differential privacy. In fact, we show that the exponential

mechanism can be interpreted as a natural generalization

of the VCG mechanism in the sense that the VCG mecha-

nism is the special case when the privacy parameter goes

to infinity. Alternatively, our mechanism can be viewed

as an affine maximum-in-distributed-range mechanism with

Shannon entropy providing the offsets. We will define affine

1Here, we consider individual rationality in expectation. Achieving
individual rationality in the ex-post sense is impossible for any non-trivial
private mechanism since the probability of a non-zero price would have to
jump by an infinitely large factor as an agent changes from zero valuation
to non-zero valuation.
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maximum-in-distributed-range mechanisms in Section II and

more details on this observation are deferred to Section

III-A. Readers are referred to [8], [9], [11], [12] for recent

applications of maximum-in-distributed-range mechanisms

in algorithmic mechanism design.

Our proof is by connecting the exponential mechanism to

the Gibbs measure and free energy in statistical mechanics.

We exploit this connection to provide a simple proof of the

incentive compatibility of the mechanism. We believe this

intriguing connection is of independent interest and may lead

to new ways of understanding the exponential mechanism

and differential privacy.

While we do not have an efficient way of computing

the allocation and prices of the exponential mechanism in

general (this is also not known for VCG), we do show that in

special cases such as multi-item auctions and procurement

auctions for spanning tree, we can efficiently implement the

exponential mechanism either exactly or approximately. Fur-

ther, we show that the trade-off between privacy and social

welfare in the exponential mechanism is asymptotically op-

timal in these two cases, even if we compare to mechanisms

that need not be truthful. We also include another application

of the exponential mechanism for the combinatorial public

project problem where the social welfare is close to optimal

for an arbitrarily small constant ε.
Interestingly, our implementation of the exponential

mechanism for multi-item auctions has further implications

in the recent work on blackbox reductions in Bayesian

mechanism design [3], [17]. Combining our exponential

mechanism for the matching market with the blackbox

reduction procedure in [3], [17], we can get a blackbox

reduction that converts any algorithm into BIC, differentially

private mechanisms. We will leave further discussions to the

relevant section.

B. Related Work

McSherry and Talwar [22] first proposed using differen-

tially private mechanisms to design auctions by pointing

out that differential privacy implies approximate incentive

compatibility as well as resilience to collusion. In particular,

they study the problem of revenue maximization in digital

auctions and attribute auctions. They propose the exponential

mechanism as a solution for these problems. McSherry and

Talwar also suggest using the exponential mechanism to

solve mechanism design problems with different objectives,

such as social welfare.2 Their instantiation of the exponential

mechanism is differentially private, but only approximately

truthful. Nissim et al. [24] show how to convert differentially

private mechanisms into exactly truthful mechanism in some

settings. However, the mechanism loses its privacy property

after such conversion. Xiao [28] seeks to design mechanisms

2The main difference between our instantiation of the exponential mech-
anism and that by McSherry and Talwar is that we use properly chosen
payments to incentivize agents to report truthfully.

that are both differentially private and perfectly truthful and

proposes a method to convert any truthful mechanism into

a differentially private and truthful one when the type space

is small. Unfortunately, it does not seem possible to extend

the results in [24], [28] to more general mechanism design

problems, while our result applies to any mechanism design

problem (with payments).

Xiao [28] also proposed to explicitly model the agents’

concern for privacy in the utilities by assuming agent i
has a disutility that depends on the amount of information

εi leaked by the mechanism. Chen et al. [7] and Nissim

et al. [25] explored this direction and introduced truthful

mechanisms for some specific problems. Exact evaluation of

an agent’s dis-utility usually requires knowledge of the types

of all agents and hence this kind of mechanism can only be

private if agents do not need to exactly compute their own

dis-utility. The above works circumvent this issue by design-

ing strictly truthful and sufficiently private mechanisms such

that any agent’s gain in privacy by lying is outweighed by

the loss in the usual notion of utility, regardless of the exact

value of dis-utility for privacy.

Finally, Ghosh and Roth [16] study the problem of selling

privacy in auctions, which can be viewed as an orthogonal

approach to combining mechanism design and differential

privacy.

II. PRELIMINARIES

A mechanism design problem is defined by a set of n
agents and a range R of feasible outcomes. Throughout

this paper we will assume the range R to be discrete, but

all our results can be easily extended to continuous ranges

with appropriate integrability. Each agent i has a private

valuation vi : R �→ [0, 1]. A central entity chooses one of

the outcomes based on the agents’ (reported) valuations. We

will let 0 denote the all-zero valuation and let v−i denote

the valuations of every agent except i.
For the sake of presentation, we will assume that the

agents’ valuations can be any functions mapping the range

of feasible outcomes to the interval [0, 1]. It is worth noting

that since our mechanisms are incentive compatible in this

setting, they are also automatically incentive compatible for

more restricted valuations (e.g., submodular valuations for a

combinatorial public project problem).

A mechanism M consists of an allocation rule x(·) and

a payment rule p(·). The mechanism first lets the agents

submit their valuations. However, an agent may strategically

submit a false valuation if that is beneficial to her. We will

let b1, . . . , bn : R �→ [0, 1] denote the reported valuations
(bids) from the agents and let b denote the vector of these

valuations. After the agents submit their bids, the allocation

rule x(·) chooses a feasible outcome r = x(b) ∈ R and the

payment rule p(·) chooses a vector of payments p(b) ∈ R
n.

We will let pi(b) denote the payment for agent i. Note that

both x(·) and p(·) may be randomized. We will consider the
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standard setting of quasi-linear utility: given the allocation

rule, the payment rule, and the reported valuations b, for

each i ∈ [n], the utility of agent i is

ui(vi, x(b), pi(b)) = vi(x(b))− pi(b) .

We will assume the agents are risk-neutral and aim to

maximize their expected utilities.

The goal is to design polynomial time mechanisms M
that satisfy various objectives. In this paper, we will focus

on the problem of maximizing the expected social welfare,

which is defined to be the sum of the agents’ valuations:

E[
∑n

i=1 vi(x(b))].
Besides the expected social welfare, we take into con-

sideration the strategic play of utility-maximizing agents

and their concern about the mechanism leaking non-trivial

information about their private data. Thus, we will restrict

our attention to mechanisms that satisfy several game-

theoretic requirements and have a privacy guarantee that we

will define in the rest of this section.

A. Game-Theoretical Solution Concepts

A mechanism is incentive compatible (IC) if truth-telling

is a dominant strategy, i.e., by reporting the true values an

agent always maximizes her expected utility regardless of

what other agents do - vi ∈ argmaxbi E[vi(x(bi, b−i)) −
pi(bi, b−i)]. We will also consider an approximate notion of

truthfulness. A mechanism is γ-incentive compatible (γ-IC)

if no agent can get more than γ extra utility by lying. Further,

a mechanism is individually rational (IR) if the expected
utility of each agent is always non-negative, assuming this

agent reports truthfully: E[vi(x(vi, b−i))− pi(vi, b−i)] ≥ 0.

We seek to design mechanisms that are incentive compatible

and individually rational.

Affine Maximum-In-Distributed-Range: An allocation

rule x(·) is an affine maximum-in-distributed-range allo-
cation if there is a set S of distributions over feasible

outcomes, parameters a1, . . . , an ∈ R
+, and an offset

function c : S �→ R, such that the x(v1, . . . , vn) always

chooses the distribution ν ∈ S that maximizes

Er∼ν [
∑n

i=1 aivi(r)] + c(ν) .

In this paper, we are particularly interested in the case when

ai = 1, ∀i ∈ [n], and c is the Shannon entropy of the

distribution scaled by an appropriate parameter.

The affine maximum-in-distributed-range mechanisms can

be interpreted as slight generalizations of the well-studied

maximum-in-distributed-range mechanisms. If ai = 1 for

every i ∈ [n] and c(·) = 0, then such allocation rules

are referred to as maximum-in-distributed-range (MIDR)

allocations. There are well-known techniques for charging

proper prices to make MIDR allocations and their affine

generalizations incentive compatible. The resulting mech-

anisms are called MIDR mechanisms. MIDR mechanisms

are important tools for designing computationally efficient

mechanisms that are incentive compatible and approximate

social welfare well (e.g., see [8], [9], [11], [12]).

B. Differential Privacy

Differential privacy is a notion of privacy that has been

studied the most in the theoretical computer science com-

munity over the past decade. It requires the distribution of

outcomes to be nearly identical when the agent profiles are

nearly identical. Formally,

Definition 1. A mechanism is ε-differentially private if
for any two valuation profiles v = (v1, . . . , vn) and
v′ = (v′1, . . . , v

′
n) such that only one agent has different

valuations in the two profiles, and for any set of outcomes
S ⊆ R, we have

Pr[x(v) ∈ S] ≤ exp(ε) ·Pr[x(v′) ∈ S] .

This definition of privacy has many appealing theoretical

properties. Readers are referred to [13], [14] for excellent

surveys on the subject.

We will also consider a standard variant that defines a

more relaxed notion of privacy.

Definition 2. A mechanism is (ε, δ)-differentially private

if for any two valuation profile v = (v1, . . . , vn) and
v′ = (v′1, . . . , v

′
n) such that only one agent has different

valuations in the two profiles, and for any set of outcomes
S ⊆ R,

Pr[x(v) ∈ S] ≤ exp(ε) ·Pr[x(v′) ∈ S] + δ .

Typically, we will consider very small values of δ, say,

δ = exp(−n).
Differentially Private Payment: In the above defini-

tions, we only consider the privacy of the allocation rule. We

note that in practice, the payments need to be differentially

private as well. We can handle privacy issues in the payments

by the standard technique of adding Laplace noise. In par-

ticular, if the payments are implemented via secure channels

(e.g. the same channels that the agents use to submit their

bids) such that the each agent’s payment is accessible only

by the agent herself and the central entity, then adding

independent Laplace noise with standard deviation O(ε−1)
is sufficient to guarantee ε-differentially private payments.

Since the techniques used to handle payments are quite

standard, we will defer the extended discussion of this

subject to the appendix.

C. The Exponential Mechanism

One powerful tool in the differential privacy literature

is the exponential mechanism of McSherry and Talwar

[22]. The exponential mechanism is a general technique

for constructing differentially private algorithms over an

arbitrary range R of outcomes and any objective function

Q(D, r) (often referred to as the quality function in the

differential privacy literature) that maps a pair consisting
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of a data set D and a feasible outcome r ∈ R to a real-

valued score. In our setting, D is a (reported) valuation

profile and the quality function Q(v, r) =
∑n

i=1 vi(r) is

the social welfare.

Given a range R, a data set D, a quality function

Q, and a privacy parameter ε, the exponential mechanism
EXP(R,D,Q, ε) chooses an outcome r from the range R
with probability

Pr [EXP(R,D,Q, ε) = r] ∝ exp
( ε

2Δ
Q(D, r)

)
,

where Δ is the Lipschitz constant of the quality function

Q, that is, for any two adjacent data set D1 and D2, and

for any outcome r, the score Q(D1, r) and Q(D2, r) differs

by at most Δ. In out setting, the Lipschitz constant of the

social welfare function is 1. We sometimes use EXP(D, ε)
for short when the range R and the quality function Q is

clear from the context. We will use the following theorem

about the exponential mechanism.

Theorem 1 (e.g., [22], [27]). The exponential mechanism is
ε-differentially private and ensures that

Pr

[
Q(D, EXP(D, ε)) < max

r∈R
Q(D, r)− ln |R|

ε
− t

ε

]
≤ exp(−t) .

III. THE EXPONENTIAL MECHANISM IS INCENTIVE

COMPATIBLE

In this section, we will show that if we choose the social

welfare to be the quality function, then the exponential

mechanism can be implemented in an incentive compatible

and individually rational manner. Formally, for any range R
and any privacy parameter ε > 0, the exponential mechanism

EXP
R
ε with its pricing scheme is presented in Figure 1. Our

main theorem is the following:

Theorem 2. The exponential mechanism with our pricing
scheme is IC and IR.

Our proof of Theorem 2 relies on the connection between

the exponential mechanism and a well known probability

measure in probability and statistical mechanics called the

Gibbs measure. Once we have established this connection,

the proof of Theorem 2 becomes very simple.

A. The Exponential Mechanism and the Gibbs Measure

The Gibbs measure, also known as the Boltzmann dis-

tribution in chemistry and physics, is formally defined as

follows:

Definition 3 (Gibbs measure). Suppose we have a system
consisting of particles of a gas. If the particles have k states
1, . . . , k, possessing energy E1, . . . , Ek respectively, then the
probability that a random particle in the system has state i
follows the Gibbs measure:

Pr[state = i] ∝ exp
(
− 1

kBT Ei

)
,

where T is the temperature, and kB is the Boltzmann
constant.

Note that the Gibbs measure asserts that nature prefers

states with lower energy level. Indeed, if T → 0, then almost

surely we will see a particle with lowest-energy state. On the

other hand, if T → +∞, then all states are equally likely to

appear. Thus the temperature T is a measure of uncertainty

in the system: the lower the temperature, the less uncertainty

in the system, and vice versa.

Gibbs Measure vs. Exponential Mechanism: It is not

difficult to see the analogy between the Gibbs measure and

the exponential mechanism. Firstly, the quality Q(r) of an

outcome r ∈ R (in our instantiation, Q(r) is the social

welfare
∑

i vi(r)) is an analog of the energy (more precisely,

the negative of the energy) of a state i. In the exponential

mechanism the goal is to maximize the expected quality

of the outcome, while in physics nature tries to minimize

the expected energy. Second, the privacy parameter ε is an

analogue of the inverse temperature T−1, both measuring the

level of uncertainty in the system. The more privacy we want

in the mechanism, the more uncertainty we need to impose in

the distribution of outcomes3. Finally, the Lipschitz constant

Δ and Boltzmann constant kB are both scaling factors

that come from the environment. Table I summarize this

connection between the Gibbs measure and the exponential

mechanism.

Gibbs Measure Minimizes Free Energy: It is well-

known that the Gibbs measure maximizes entropy given the

expected energy. In fact, a slightly stronger claim (e.g. see

[21]) states that the Gibbs measure minimizes free energy. To

be precise, suppose T is the temperature, ν is a distribution

over the states, and S(ν) is the Shannon entropy of ν. Then

the free energy of the system is

F (ν, T ) = Ei∼ν [Ei]− kBT · S(ν) .

The following result is well known in the statistical physics

literature.

Theorem 3 (e.g. see [21]). F (ν, T ) is minimized when ν is
the Gibbs measure.

For self-containedness, we include the proof of Theorem

3 as follows.

Proof: Note that the free energy can be written as

F (ν, T )

= E
i∼ν

[Ei]− kBT · S(ν)
=

∑
i

Pr
ν
[i]Ei + kBT

∑
i

Pr
ν
[i] lnPr

ν
[i] . (1)

3We note that the privacy guarantee ε is not necessarily a monotone
function of the entropy of the outcome distribution. So the statement above
is only for the purpose of establishing a high-level connection between the
Gibbs measure and the exponential mechanism.
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1) Choose outcome r ∈ R with probability Pr[r] ∝ exp
(
ε
2

∑
i vi(r)

)
.

2) For 1 ≤ i ≤ n, charge agent i price

pi = − E
r∼EXPRε (bi,b−i)

⎡⎣∑
k �=i

bk(r)

⎤⎦− 2

ε
· S (

EXP
R
ε (bi, b−i)

)
+

2

ε
ln

⎛⎝∑
r∈R

exp

⎛⎝ ε

2

∑
k �=i

vk(r)

⎞⎠⎞⎠ ,

where S(·) is the Shannon entropy.

Figure 1. EXPRε : the incentive-compatible exponential mechanism.

Table I
A HIGH-LEVEL COMPARISON BETWEEN THE GIBBS MEASURE AND THE EXPONENTIAL MECHANISM

Gibbs measure Exponential mechanism

Probability mass function Pr[state = i] ∝ exp
(
− 1

kBT
Ei

)
Pr[outcome = r] ∝ exp

(
ε

2Δ
Q(r)

)
Objective function −Ei Q(r)

Measure of uncertainty temperature T privacy parameter ε

Environment parameter Boltzmann constant kB Lipschitz constant Δ

Further, the first term of the right hand side can be

rewritten as∑
i

Pr
ν
[i]Ei

= kBT
∑
i

Pr
ν
[i]

1

kBT
Ei

= −kBT
∑
i

Pr
ν
[i] ln

(
exp

(
− 1

kBT
Ei

))

= −kBT
∑
i

Pr
ν
[i] ln

⎛⎝ exp
(
− 1

kBT Ei

)
∑

j exp
(
− 1

kBT Ej

)
⎞⎠

−kBT ln

⎛⎝∑
j

exp

(
− 1

kBT
Ej

)⎞⎠
= −kBT

∑
i

Pr
ν
[i] ln

(
Pr

Gibbs
[i]

)

−kBT ln

⎛⎝∑
j

exp

(
− 1

kBT
Ej

)⎞⎠ . (2)

By (1) and (2), the free energy equals

F (ν, T ) = kBT ·DKL(ν ||Gibbs)

− kBT ln

⎛⎝∑
j

exp

(
− 1

kBT
Ej

)⎞⎠ .

Note that the second term is independent of ν. By basic

properties of the KL-divergence, the above is minimized

when ν is the Gibbs measure.

B. Proof of Theorem 2

By the connection between Gibbs measure and expo-

nential mechanism and Theorem 3, we have the following

analogous lemma for our instantiation of the exponential

mechanism.

Lemma 1. The free social welfare,

Er∼ν [
∑

i vi(r)] +
2
ε · S(ν) ,

is maximized when ν = EXP
R
ε (v1, . . . , vn).

Incentive Compatibility: Let us consider a particular

agent i, and fix the bids b−i of the other agents. Suppose

agent i has value vi and bids bi. For notational convenience,

we let b(r) =
∑n

k=1 bk(r) and let

hi(b−i) =
2

ε
ln

⎛⎝∑
r∈R

exp

⎛⎝ ε

2

∑
k �=i

vk(r)

⎞⎠⎞⎠ .

Using the price pi charged to agent i as in Figure 1, her

utility when she bids bi is

E
r∼EXPRε (bi,b−i)

[vi(r) +
∑
k �=i

bk(r)]

+
2

ε
· S(EXP

R
ε (bi, b−i))− hi(b−i) ,

which equals the free social welfare plus a term that does not

depend on agent i’s bid. By Lemma 1, the free social welfare

is maximized when we use the outcome distribution by the

exponential mechanism with respect to agent i’s true value.

Therefore, truthful bidding is a utility-maximizing strategy

for agent i.

Individual Rationality: We first note that for any agent

i, it is not difficult to verify that pi = 0 when vi = 0
regardless of bidding valuations of other agents. Therefore,

by bidding 0 agent i could always guarantee non-negative

expected utility. Since we have shown that the exponential

mechanism is truthful-in-expectation, we get that the utility
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of agent i when she truthfully reports her valuation is always

non-negative.

Remark 1. We notice that Lemma 1 implies that the alloca-

tion rule of the exponential mechanism is affine maximum-

in-distributed-range. As a result, there are standard tech-

niques to charge prices so that the mechanisms is IC and

IR as presented above.

Remark 2. Alternatively, one can prove Theorem 2 via the

procedure developed by Rochet [26]: first prove the cyclic

monotonicity of the exponential allocation rule, which is

known to be the necessary and sufficient condition for being

the allocation rule of a truthful mechanism; then derive the

pricing scheme that rationalizes the exponential allocation

rule via Rochet’s characterization. We will omit further

details of this proof in this extended abstract.

IV. GENERALIZATION

In the original definition by McSherry and Talwar [22], the

exponential mechanism is defined with respect to a prior dis-

tribution μ(·) over the feasible range R. More precisely, the

exponential mechanism given μ, EXPμ(R,D,Q, ε), chooses

an outcome r from the range R with probability

Pr [EXPμ(R,D,Q, ε) = r] ∝ μ(r) exp
( ε

2Δ
Q(D, r)

)
.

When μ is chosen to be the uniform distribution over

the feasible range, we recover the definition in Section II.

Using a different μ can improve computational efficiency as

well as the trade-off between privacy and the objective for

some problems (e.g., [5]). In every use of the (generalized)

exponential mechanism, to our knowledge, μ is taken to

be the uniform distribution over a sub-range that forms a

geometric covering of the feasible range. But in general,

this need not be the optimal choice.

We observe that our result can be extended to the above

generalized exponential mechanism as well. More precisely,

we can show that the generalized exponential mechanism is

affine maximum-in-distributed-range as well.

Theorem 4. For any range R, any quality function Q,
any privacy parameter ε, any prior distribution μ, and any
database D, the generalized exponential mechanism satisfies

EXPμ(R,D,Q, ε) = argmax
ν

E
r∼ν

[Q(D, r)]−2

ε
DKL(ν||μ) .

Corollary 5. For any mechanism design problem for social
welfare and any prior distribution μ over the feasible range,
the generalized exponential mechanism (w.r.t. μ) is IC and
IR with appropriate payment rule.

The proof of Theorem 4 and deriving the pricing scheme

in Corollary 5 is very similar to the corresponding parts in

Section III and hence omitted.

V. APPLICATIONS

Our result in Theorem 2 applies to a large family of

problems. In fact, it can be used to derive truthful and

differentially private mechanisms for any problem in mech-

anism design (with payments) that aims for social welfare

maximization.

In this section, we will consider three examples – the

combinatorial public project problem (CPPP), the multi-

item auction, and the procurement auction for a spanning

tree. The exponential mechanism for the combinatorial pub-

lic project problem is incentive compatible, ε-differentially

private, and achieves nearly optimal social welfare for any

constant ε > 0. However, we cannot implement the expo-

nential mechanism in polynomial time for CPPP in general

because implementing VCG for CPPP is known to be NP-

hard and the exponential mechanism is a generalization

of VCG. For the other two applications, we manage to

implement the exponential mechanism in polynomial time,

where the implementation for multi-item auction is only

approximate so that it is only approximately truthful and

approximately differentially private, and the implementation

for procurement auction for spanning trees is exact. The

social welfare for these two cases, however, is nearly optimal

only when the privacy parameter ε is super-constantly large.

Nonetheless, we show that the trade-offs between privacy

and social welfare of the exponential mechanism in these

two applications are asymptotically optimal.

A. Combinatorial Public Project Problem

The first interesting application of our result is a truthful

and differentially private mechanism for the Combinatorial

Public Project Problem (CPPP) originally proposed by Pa-

padimitriou et al. [25]. In CPPP, there are n agents and m
public projects. Each agent i has a private valuation function

vi that specifies agent i’s value (between 0 and 1) for every

subset of public projects. The objective is to find a subset S
of public projects to build, of size at most k (a parameter),

that maximizes the social welfare, namely,
∑

i vi(S).
This problem has received a lot of attention in the algo-

rithmic game theory literature because strong lower bounds

can be shown for the approximation ratio of this problem by

any truthful mechanism when the valuations are submodular

(e.g. see [10], [25]).

Further, the CPPP is of practical interest as well. The

following is a typical CPPP scenario in the real world.

Suppose some central entity (e.g. the government) wants

to build several new hospitals where there are m potential

locations to choose from. Due to resource constraints, the

government can only build k hospitals. Each citizen has a

private value for each subset of locations that may depend

on the distance to the closest hospital and the citizen’s health

status.

Note that the agents may be concerned about their privacy

if they choose to participate in the mechanism because
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their valuations typically contain sensitive information. For

example, the citizens who have high values for having a

hospital close by in the above scenario are more likely to

have health problems. Therefore, it would be interesting to

design mechanisms for the CPPP that are not only truthful

but also differentially private. The size of the range of

outcomes is
(
m
k

)
= O(mk). So by Theorem 1 and Theorem

2, we have the following.

Theorem 6. For any ε > 0, the exponential mechanism
EXP

CPPP
ε for CPPP is IC, ε-differentially private, and ensures

Pr

[
n∑

i=1

vi
(
EXP

CPPP
ε

)
< opt− k lnm

ε
− t

ε

]
≤ exp(−t) .

It is known that the exponential mechanism achieves the

optimal trade-off between privacy and social welfare for

CPPP (e.g., [27]).

Further, note that the optimal social welfare could be as

large as n. Moreover, the number of projects k ≤ m is typi-

cally much smaller than the number of agents n. Therefore,

the exponential mechanism achieves social welfare that is

close to optimal. However, it is worth noting that we only

requires k and m to be mildly smaller than n (e.g. O(n1−c)
for any small constant c > 0), in which cases the size of the

type space, which is exponential in k and m, is still quite

large so that the approach in [28] does not apply.

In some scenarios such as the one above where the gov-

ernment wants to build a few new hospitals, k is sufficiently

small so that it is acceptable to have running time polynomial

in the size of the range of outcomes. In such cases, it is

easy to see that the exponential mechanism for CPPP can

be implemented in time polynomial in n and
(
m
k

)
.

B. Multi-Item Auction

Next we consider a multi-item auction. Here, the auction-

eer has n heterogeneous items (one copy of each item) that

she wishes to allocate to n different agents4. Agent i has a

private valuation vi = (vi1, . . . , vik), where vij is her value

for item j. We will assume the agents are unit-demand, that

is, each agent wants at most one item. It is easy to see

that each feasible allocation of the multi-item auction is a

matching between agents and items. We will let the RM

denote the range of multi-item auction, that is, the set Πn

of all permutations on [n].
The multi-item auction and related problems are very

well-studied in the algorithmic game theory literature

(e.g. [4], [7]). They capture the motivating scenario of

allocating oil fields and many other problems that arise

from allocating public resources. The VCG mechanism can

be implemented in polynomial time to maximize social

welfare in this problem since max-matching can be solved

4The case when the number of items is not the same as the number
of agents can be reduced to this case by adding dummy items or dummy
agents. So our setting is w.l.o.g.

in polynomial time. The new twist in our setting is to design

mechanisms that are both truthful and differentially private
and have good social welfare guarantee.

Approximate Implementation of the Exponential Mech-
anism: Unfortunately, exactly sampling matchings accord-

ing to the distribution specified in the exponential mecha-

nism seems hard due to its connection to the problem of

computing the permanent of non-negative matrices (e.g. see

[18]), which is #P -complete. Instead, we will sample from

the desired distribution approximately. Moreover, we show

that there is an efficient approximate implementation of

the payment scheme. As a result of the non-exact imple-

mentation, we only get γ-IC instead of perfect IC, (ε, δ)-
differential privacy instead of ε-differential privacy, and lose

an additional nγ additive factor in social welfare. Here, γ
will be inverse polynomially small. The discussion of this

approximate implementation of the exponential mechanism

is deferred to the full version.

Note that the size of the range of feasible outcomes

of multi-item auction is n!. By Theorem 1, we have the

following:

Theorem 7. For any δ ∈ (0, 1), ε > 0, γ > 0, there is a
polynomial time (in n, ε−1, γ−1, and log(δ−1)) approximate
implementation of the exponential mechanism, ÊXP

RM

ε that
is γ-IC, (ε, δ)-differentially private, and ensures that

Pr

[
n∑

i=1

vi

(
ÊXP

RM

ε

)
< opt− γn− ln(n!)

ε
− t

ε

]
≤ exp(−t) .

Note that here we are achieving γ-IC and (ε, δ)-
differentially privacy while in the instantiation of the expo-

nential mechanism by McSherry and Talwar [22] is ε-IC and

ε-differentially private. Our result in Theorem 7 is better in

most applications since typically ε is large, usually a constant

or occasionally a super-constant, while γ is small, usually

requires to be 1/poly for γ-IC to be an appealing solution

concept.

The trade-off between privacy and social welfare in Theo-

rem 7 can be interpreted as the follows: if we want to achieve

social welfare that is worse than optimal by at most an O(n)
additive term, then we need to choose ε = Ω(log n). The

next theorem shows that this is tight. The proof is deferred

to the full version.

Theorem 8. Suppose M is an ε-differentially private mech-
anism for the multi-item auction problem and the expected
welfare achieve by M is at least opt − n

10 . Then ε =
Ω(log n).

Note that in this theorem, we do not restrict M to be

incentive compatible. In other word, this lower bound holds

for arbitrary differentially private mechanisms. So there is

no extra cost for imposing the truthfulness constraint.
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Implication in BIC Blackbox Reduction: Recently,

Hartline et al. [17] and Bei and Huang [3] introduce

blackbox reductions that convert any algorithm into nearly

Bayesian incentive-compatible mechanisms with only a

marginal loss in the social welfare. Both approach essentially

create a virtual interface for each agent which has the struc-

ture of a matching market and then run VCG in the virtual

matching markets. By running the exponential mechanism

instead of the VCG mechanism, we can obtain a blackbox

reduction that converts any algorithm into a nearly Bayesian

incentive-compatible and differentially private mechanism.

We will defer more details to the full version of this paper.

C. Procurement Auction for Spanning Trees

Another interesting application is the procurement auction

for a spanning tree (e.g. see [6]). Procurement auctions (also

known as reverse auctions) are a type of auction where the

roles of buyers and sellers are reversed. In other word, the

central entity seeks to buy, instead of sell, items or services

from the agents. In particular in the procurement auction

for spanning trees, consider n =
(
k
2

)
selfish agents own

edges in a publicly known network of k nodes. We shall

imagine the nodes to be cities and the edges as potential

highways connecting cities. Each agent i has a non-negative

cost ci for building a highway along the corresponding

edge. The central entity (e.g. the government) wants to

purchase a spanning tree from the network so that she can

build highways to connect the cities. The goal is to design

incentive compatible and differentially private mechanisms

that provide good social welfare (minimizing total cost).

Although this is a reverse auction in which agents have

costs instead of values and the payments are from the central

entity to the agents, by interpreting the costs as the negative

of the valuations (i.e. vi = −ci if the edge is purchased

and vi = 0 otherwise), we can show that the exponential

mechanism with the same payment scheme is incentive

compatible for procurement auctions via almost identical

proofs. We will omit the details in this extended abstract.

Next, we will discuss how to efficiently implement the

exponential mechanism.

Sampling Spanning Trees: There has been a large

body of literature on sampling spanning tree (e.g. see [20]

and the reference therein). Recently, Asadpour et al. [1]

have developed a polynomial time algorithm for sampling

entropy-maximizing distributions, which is exactly the kind

of distribution used by the exponential mechanism. There-

fore, the allocation rule of the exponential mechanism can

be implemented in polynomial time for the spanning tree

auction.

Implicit Payment Scheme by Babaioff, Kleinberg, and
Slivkins [2]: Although we can efficiently generate samples

from the desired distribution, it is not clear how to compute

the exact payment explicitly. Fortunately, Babaioff et al. [2],

[19] provide a general method of computing an unbiased

estimator for the payment given any rationalizable allocation

rule5. Hence, we can use the implicit payment method in [2],

[19] to generate the payments in polynomial time.

Note that the size of the range of feasible outcomes of

spanning tree auction is the number of different spanning

tree in a complete graph with k vertices, which equals kk−2.

By Theorem 1 we have the following:

Theorem 9. For any ε > 0, the exponential mechanism
EXP

tree
ε runs in polynomial time (in k and ε−1), is IC, ε-

differentially private, and ensures that

Pr

[
n∑

i=1

ci

(
ÊXP

tree
ε

)
> opt+

(k − 2) log k

ε
+

t

ε

]
≤ exp(−t) .

This trade-off between privacy and social welfare in

Theorem 9 essentially means that we need ε = Ω(log k)
in order to get opt+O(k) guarantee on expected total cost.

The next theorem shows that this tradeoff is also tight. The

proof is deferred to the full version due to space constraint.

Theorem 10. Suppose M is an ε-differentially private
mechanism for the procurement auction for spanning tree
and the expected total cost by M is at most opt+ k

24 . Then
ε = Ω(log k).

Similar to the case in the multi-item auction, the above

lower bound does not restrict M to be incentive compatible.

So the exponential mechanism is optimal even if we compare

it to non-truthful ones.
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APPENDIX

In this section, we will discuss what is the amount of

noise one needs to add to the payments in order to achieve

ε-differential privacy. We will consider two different models

depending on how the payments are implemented: the public
payment model and the private payment model.

In the public payment model, the payments of the agents

will become public information at the end of the auction, that

is, the adversary who tries to learn the private valuations of

the agents can see all the payments. Therefore, a payment

scheme is ε-differentially private in the public payment

model if and only if for any i ∈ [n], any value profiles

v = (v1, . . . , vn) and v′ = (v1, . . . , v
′
i, . . . , vn) that differ

only in the valuation of agent i, and any possible payment

profile p, the probability

Pr[p1(v), . . . , pn(v) = p]

≤ exp(ε)Pr[p1(v
′), . . . , pn(v′) = p] .

In the private payment model, we will assume the pay-

ments are implemented via secure channels such that the

payment of each agent is only known to the corresponding

agent and a few trusted parties, e.g. the central entity who

runs the mechanism and/or the bank. Here, there are two

cases based on what information the adversary can learn

from the payments. If the adversary is not one of the

agents, then by our assumption, he cannot see any of the

payments and therefore cannot learn any information from

the payments. If the adversary is one of the agents, then

the only information of the payments that he will have

access to is his own payment. Therefore, a payment scheme

is ε-differentially private in the public payment model if

and only if for any i �= j ∈ [n], any value profiles

v = (v1, . . . , vn) and v′ = (v1, . . . , v
′
i, . . . , vn) that differ

only in the valuation of agent i, and any possible payment

p of agent j, the probability

Pr[pj(v) = p] ≤ exp(ε)Pr[pj(v
′) = p] .

We will measure the amount of noise in the payments

using L2 norm, that is, we aim to minimize the to-

tal variance of the agents’ payments in the worst-case:

maxv
∑n

i=1 Var[pi(v)].

148



Next, we will proceed to analyze the amount of noise

needed in each of the two models. We will start with an

upper bound on the sensitivity of each agent’s payment as

a function of the bids.

Lemma 2. For any i, j ∈ [n], and any value profiles v =
(v1, . . . , vn) and v′ = (v1, . . . , v

′
i, . . . , vn) that only differ

in the valuation of agent i, we have |pj(v)− pj(v
′)| ≤ 1.

Proof: Note that by Theorem 2, the exponential mech-

anism is individual rational. It is also easy to see that it

has no positive transfer for that otherwise the zero-value

agent could gain by lying. So by our assumption that the

agents’ valuations are always between 0 and 1, we have

0 ≤ pj(v), pj(v
′) ≤ 1. So Lemma 2 follows trivially.

In the public payment model, the mechanism has to

reveal a vector of n real numbers (the payments) at the

end of the auction, where each entry has sensitivity 1 by

Lemma 2. Therefore, we can use the standard treatment for

answering numerical queries, namely, adding independent

Laplace noise LAP(nε ) to each entry, where LAP(b) is the

Laplace distribution with p.d.f. fLAP(b)(x) =
1
2b exp

(
− |x|b

)
.

More precisely, we can show the following theorem.

Theorem 11. In the public payment model, the following
payment scheme is ε-differentially private and has total
variance O(n3/2ε−1), while maintaining the IC and IR in
expectation: let p1, . . . , pn be the payments specified in
the exponential mechanism (Figure 1); let x1, . . . , xn be
i.i.d. variables following the Laplace distribution LAP(nε );

use payment scheme (p1 + x1, . . . , pn + xn).

The proof follows by standard analysis of the Laplace

mechanism (e.g. see [15]). So we will omit the details in

this extended abstract. It is worth mentioning that since

the problem of designing payment scheme in the public

payment model is a special case of answering n non-linear

numerical queries, it may be possible to reduce the amount

of noise by using more specialized scheme on a problem-by-

problem basis. However, we feel this is less insightful than

the other results we have in this paper, so we will focus on

general mechanisms and payment schemes that work for all

mechanism design problems.

Now let us turn to the private payment model. By our

previous discussion, the mechanism only need to release at

most one real number to each potential adversary in this

model. So one may expect much less noise is needed in this

model. Indeed, we could again use the standard treatment

of adding Laplace noise, but this time it suffices to add

independent Laplace noise LAP( 1ε ) to each entry.

Theorem 12. In the private payment model, the following
payment scheme is ε-differentially private and has total
variance O(

√
nε−1), while maintaining the IC and IR: in

expectation: let p1, . . . , pn be the payments specified in
the exponential mechanism (Figure 1); let x1, . . . , xn be
i.i.d. variables following the Laplace distribution LAP( 1ε );
use payment scheme (p1 + x1, . . . , pn + xn).
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