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Abstract—We provide a reduction from revenue
maximization to welfare maximization in multi-
dimensional Bayesian auctions with arbitrary—possibly
combinatorial—feasibility constraints and independent
bidders with arbitrary—possibly combinatorial—demand
constraints, appropriately extending Myerson’s single-
dimensional result [21] to this setting. We also show that
every feasible Bayesian auction—including in particular
the revenue-optimal one—can be implemented as a
distribution over virtual VCG allocation rules. A virtual
VCG allocation rule has the following simple form:
Every bidder’s type ti is transformed into a virtual
type fi(ti), via a bidder-specific function. Then, the
allocation maximizing virtual welfare is chosen. Using
this characterization, we show how to find and run the
revenue-optimal auction given only black-box access to an
implementation of the VCG allocation rule. We generalize
this result to arbitrarily correlated bidders, introducing
the notion of a second-order VCG allocation rule.

Our results are computationally efficient for all multi-
dimensional settings where the bidders are additive, or
can be efficiently mapped to be additive, albeit the feasi-
bility and demand constraints may still remain arbitrary
combinatorial. In this case, our mechanisms run in time
polynomial in the number of items and the total number
of bidder types, but not type profiles. This is polynomial
in the number of items, the number of bidders, and
the cardinality of the support of each bidder’s value
distribution. For generic correlated distributions, this is
the natural description complexity of the problem. The
runtime can be further improved to polynomial in only
the number of items and the number of bidders in item-
symmetric settings by making use of techniques from [15].

I. INTRODUCTION

The multi-dimensional mechanism design problem

has received much attention from the economics com-

munity, and recently the computer science community

as well. The problem description is simple: a seller has

a limited supply of several heterogenous items for sale

and many interested buyers. The goal is for the seller

to design an auction for the buyers to play that will

maximize her revenue. In order to make this problem

1Supported by a Sloan Foundation Fellowship, a Microsoft Re-
search Faculty Fellowship, and NSF Award CCF-0953960 (CAREER)
and CCF-1101491.

2Supported by a NSF Graduate Research Fellowship.

tractable (not just computationally, but at all), some

assumptions must be made. First, we assume that the

seller has some Bayesian prior D on the types of buyers

that will show up to the auction. Second, we assume that

the buyers have the same prior as the seller, and that they

will play any auction at a Bayes-Nash Equilibrium. We

also assume that all buyers are quasi-linear and risk-
neutral, terms that are defined formally in Section II.

Finally, we say that the goal of the seller is to maximize

her expected revenue over all auctions when played at a

Bayes-Nash Equilibrium (BNE). All these assumptions

have become standard for this problem. Indeed, all

were made in Myerson’s seminal paper on revenue-

maximizing mechanism design where this problem is

solved for a single item and product distributions over

bidders’ types [21]. In addition, Myerson introduces the

revelation principle, showing that every auction played

at a Bayes-Nash Equilibrium is strategically equivalent

to a Bayesian Incentive Compatible (BIC) direct rev-
elation mechanism. In a direct revelation mechanism,

each bidder reports a bid for each possible subset of

items they may receive. A direct revelation mechanism

is called BIC if it is a BNE for each bidder to bid ex-

actly their value for each subset. In essence, Myerson’s

revelation principle says that one only needs to consider

BIC direct revelation mechanisms rather than arbitrary

auctions played at a BNE to maximize revenue (or any

other objective for that matter).

As we depart from Myerson’s single-item setting, the

issue of feasibility arises. With only a single item for

sale, the feasibility constraints are simply that the item is

always awarded to at most a single bidder. With many

heterogenous items, there are many natural scenarios

that we would like to model. Here are some examples:

1) Maybe the items are houses. In this case, a feasible

allocation awards each house to at most one bidder,

and to each bidder at most one house.
2) Maybe the items are appointment slots with doc-

tors. Then, a feasible allocation does not award the

same slot to more than one bidder, and does not

award a bidder more than one slot with the same

doctor, or overlapping slots with different doctors.
3) Maybe the items are bridges built at different
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locations. In this case, a feasible allocation awards

each bridge to everyone or to no one.

Sometimes, feasibility constraints are imposed by the

supply side of the problem: a doctor cannot meet with

two patients at once, and a bridge cannot be built

for one bidder but not another. Other times, feasibility

constraints are imposed by the demand side of the prob-

lem: no bidder wants two houses or two appointments

with the same doctor. Without differentiating where

feasibility constraints come from, we model them in

the following way: let A = [m] × [n] denote the

space of assignments (where (i, j) denotes that bidder

i is assigned item j), and let F be a set system on

A (that is, a subset of 2A). Then in a setting with

feasibility constraints F , it is possible for the seller to

simultaneously make any subset of assignments in F .

F may be a truly arbitrary set system, it need not even
be downward-closed.

As we leave the single-dimensional setting, we also

need to consider how a bidder values a bundle of

multiple items. In general, a bidder may have arbitrarily

complicated ways of evaluating bundles of items, and

this information is encoded into the bidder’s type.

For the problem to be computationally meaningful,

however, one would want to either assume that the

auctioneer only has oracle access to a bidder’s valuation,

or impose some structure on the bidders’ valuations

allowing them to be succinctly described. Indeed,

virtually every recent result in revenue-maximizing

literature [2], [3], [6], [7], [9], [10], [11], [15], [17]

assumes that bidders are capacitated-additive.1 In

fact, most results are for unit-demand bidders. It is

easy to see that, if we are allowed to incorporate

arbitrary demand constraints into the definition of F ,

such bidders can be described in our model as simply

additive. In fact, far more complex bidders can be

modeled as well, as demand constraints could instead

be some arbitrary set system. Because F is already an

arbitrary set system, we may model bidders as simply

additive and still capture virtually every bidder model

studied in recent results, and more general ones as well.

In fact, we note that every multi-dimensional setting

can be mapped to an additive one, albeit not necessarily

computationally efficiently.2 So while we focus our

1A bidder is capacitated-additive if for some constant c her value
for any set S of at most c goods is equal to the sum of her values
for each item in S, and her value for any set S of more than c goods
is equal to her value for her favorite S′ ⊆ S of at most c goods.

2The generic transformation is to introduce a meta-item for every
possible subset of the items, and have the feasibility constraints (which
are allowed to be arbitrary) be such that an allocation is feasible
if and only if each bidder receives at most one meta-item, and the
corresponding allocation of real items (via replacing each meta-item
with the subset of real items it represents) is feasible in the original
setting. Many non-additive settings allow much more computationally
efficient transformations than the generic one.

discussion to additive bidders throughout this paper,

our results apply to every auction setting, without

need for any additivity assumption. In particular, our

characterization result (Informal Theorem 2) of feasible

allocation rules holds for any multi-dimensional setting,

and our reduction from revenue to welfare optimization

(Informal Theorem 1) also holds for any setting, and

we show that it can be carried out computationally

efficiently for any additive setting. We proceed to state

our main results.

Optimal Multi-dimensional Mechanism Design:
With the above motivation in mind, we formally state

the revenue optimization problem we solve. We re-

mark that virtually every known result in the multi-

dimensional mechanism design literature (see references

above) tackles a special case of this problem, possibly

with budget constraints on the bidders (which can be

easily incorporated in all results presented in this paper

as discussed in Appendix H of the full version [8]),

and possibly replacing BIC with IC. We explicitly

assume in the definition of the problem that the bidders

are additive, recalling that this is not a restriction if

computational considerations are absent.

Revenue-Maximizing Multi-Dimensional Mechanism
Design Problem (MDMDP): Given as input m distri-

butions (possibly correlated across items) D1, . . . ,Dm

over valuation vectors for n heterogenous items and

feasibility constraints F , output a BIC mechanism M
whose allocation is in F with probability 1 and whose

expected revenue is optimal relative to any other, pos-

sibly randomized, BIC mechanism when played by m
additive bidders whose valuation vectors are sampled

from D = ×iDi.

We provide a poly-time black-box reduction from

the MDMDP with feasibility constraints F to imple-

menting VCG subject to feasibility constraints F , by

introducing the notion of a virtual VCG allocation rule.

A virtual VCG allocation rule is defined by a collection

of functions fi for each bidder i. fi takes as input

bidder i’s reported bid vector and outputs a virtual bid

vector. When the reported bid vectors are �v1, . . . , �vm,

the virtual VCG allocation rule with functions {fi}i∈[m]

simply implements the VCG allocation rule (subject

to feasibility constraints F) on the virtual bid vec-

tors f1(�v1), . . . , fm(�vm). We remark that implementing

VCG for additive bidders is in general much easier

than implementing VCG for arbitrary bidders.3 Our

3When the bidders are additive, implementing VCG is solving the
following problem, which is well understood for a large class of
feasibility constraints: Every element of A = [m]× [n] has a weight.
The weight of any subset of A is equal to the sum of the weights of
its elements. Find the max-weight subset of A that is in F .
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solution to the MDMDP is informally stated below, and

is formally given as Theorem 4 of Section VI:

Informal Theorem 1. For a given F , let AF denote
an implementation of the VCG allocation rule with
respect to F (i.e. AF takes as input a profile of bid
vectors and outputs the VCG allocation in F). Then
for all D1, . . . ,Dm with finite support and all F ,
given D1, . . . ,Dm and black-box access to AF (and
without need of knowledge of F), there exists a fully
polynomial-time randomized approximation scheme4 for
the MDMDP whose runtime is polynomial in n, the
number of bidder types (and not type profiles), and the
runtime of AF . Furthermore, the allocation rule of the
output mechanism is a distribution over virtual VCG
allocation rules.

We remark that the functions defining a virtual VCG

allocation rule may map a bidder type to a vector with

negative coordinates. Therefore, our given implementa-

tion of the VCG allocation rule should be able to handle

negative weights. This is not a restriction for arbitrary

downwards-closed F as any implementation of VCG

that works for non-negative weights can easily be (in

a black-box way) converted into an implementation of

VCG allowing arbitary (possibly negative) inputs.5 But

this is not necessarily true for non downwards-closed

F’s. If the given AF cannot accommodate negative

weights, we need to replace it with an algorithm that

can in order for our results to be applicable.

Several extensions are stated and discussed in Sec-

tion 6 of the full version [8], including solutions for

distributions of infinite support, and improved runtimes

for item-symmetric settings, making use of techniques

from [15]. We also extend all our solutions to ac-

commodate strong budget constraints by the bidders in

Appendix H of [8].

So how does our solution compare to Myerson’s

single-dimensional result? One interpretation of

Myerson’s optimal auction is the following: First, he

shows that the allocation rule used by the optimal

auction is just the Vickrey allocation rule, but on virtual

bids instead of true bids. Second, he provides a closed

form for each virtual transformation using (ironed)

virtual values. And finally, he provides a closed form

pricing rule that makes the entire mechanism BIC

(in fact, IC). In the multi-dimensional setting, it is

known that randomness is necessary to achieve optimal

revenue, even with a single bidder and two items [5],

4This is often abbreviated as FPRAS, and we provide its formal
definition in Section II.

5The following simple black-box transformation achieves this: first
zero-out all negative coordinates in the input vectors; then run VCG;
in the VCG allocation, un-allocate item j from bidder i if the
corresponding coordinate is negative; this is still a feasible allocation
as the setting is downwards-closed.

[12], so we cannot possibly hope for a solution as clean

as Myerson’s. However, we have come quite close in

a very general setting: Our allocation rule is just a

distribution over virtual VCG allocation rules. And

instead of a closed form for each virtual transformation

and the pricing rule, we provide a computationally

efficient algorithm to find them.

Characterization of Feasible Interim Allocation
Rules: In addition to our solution of the MDMDP, we

provide a characterization of feasible interim allocation

rules of multi-dimensional mechanisms in all (not nec-

essarily additive) settings.6 We show the following in-

formal theorem, which is stated formally as Theorem 1

in Section III. Recall that a virtual VCG allocation

rule is associated with a collection of functions fi that

map types ti to virtual types fi(ti) for each bidder i,
and allocates the items as follows: for a given type

vector (t1, ..., tm), the bidders’ types are transformed

into virtual types (f1(t1), . . . , fm(tm)); then the virtual

welfare optimizing allocation is chosen.

Informal Theorem 2. Let F be any set system of
feasibility constraints, and D any (possibly correlated)
distribution over bidder types. Then the interim alloca-
tion rule of any feasible mechanism can be implemented
as the interim rule of a distribution over virtual VCG
allocation rules.

A. Related Work

1) Structural Results: Structural results for the al-

location rule of optimal auctions were already known

prior to this work for special cases of the MDMDP and

its extension to correlated bidders. As we have already

discussed, Myerson showed that the revenue-optimal

auction for selling a single item is a virtual Vickrey

auction: bids are transformed to virtual bids, and the

item is awarded to the bidder with the highest non-

negative virtual value [21]. It was later shown that this

approach also applies to all single-dimensional settings

(i.e. when bidders can’t tell the difference between

different houses, appointment slots, bridges, etc) as long

as bidders’ values are independent. In this setting, bids

are transformed to virtual bids (via Myerson’s trans-

formation), and the virtual-welfare-maximizing feasible

allocation is chosen. These structural results are strong,

but only hold for the single-dimensional setting and are

therefore of very limited applicability.

On the multi-dimensional front, it was recently shown

that similar structure exists in restricted settings. It is

shown in [7] that when selling multiple heterogenous

6For non-additive settings, the characterization is more usable for
the purposes of mechanism design when applied to meta-items (see
discussion above), although it still holds when directly applied to
items as well.
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items to additive bidders with no demand constraints

(i.e. F only ensures that each item is awarded to at most

one bidder), the optimal auction randomly maps bids to

virtual bids (according to some function that depends on

the distributions from which bidders’ values are drawn),

then separately allocates each item to the highest virtual

bidder.7 It is shown in [2] that when there are many

copies of the same customizable item and a matroid

constraint on which bidders can simultaneously receive

an item (i.e. F only ensures that at most k items are

awarded, subject to a matroid constraint on the served

bidders), that the optimal auction randomly maps bids to

virtual bids (according to some function that depends on

the distributions from which bidders’ values are drawn),

then allocates the items to maximize virtual surplus (and

customizes them after). Both results, while quite strong

for their corresponding settings, are extemely limited in

the settings where they can be applied. In particular,

neither says anything about the simple setting of selling

houses to unit-demand bidders (i.e. when F ensures that

each house is awarded at most once and each bidder

receives at most one house: Example 1, Section I).

Selling houses to unit-demand bidders is on the easy

side of the settings solved in this paper, as we provide a

characterization of allocation rules in multi-dimensional

settings with arbitrary feasibility constraints. We do not

even assume that F is downward-closed.

For correlated bidders, the series of results by Cremer

and McLean [13], [14] and McAfee and Reny [20]

solve for arbitrary feasibility constraints subject to a

non-degeneracy condition on the bidder correlation (that

is not met when bidders are independent). Under this

assumption, they show that the optimal auction ex-

tracts full surplus (i.e. has expected revenue equal to

expected welfare) and simply uses the VCG allocation

rule (the prices charged are not the VCG prices, but

a specially designed pricing menu based on the bidder

correlation). Our characterization of feasible allocation

rules (Informal Theorem 2) applies, in fact, to arbitrary
feasibility constraints as well as arbitrary bidder corre-

lation, without need of the non-degeneracy assumption.

Nevertheless, we argue that it is not directly usable for

the purposes of optimizing over BIC auctions when the

bidders are correlated (see discussion in Section 7 of

the full paper [8]). To rectify this, we provide an algo-

rithmically usable generalization of our characterization

result for correlated bidders that remains rather simple:

Any feasible auction randomly maps pairs of actual

bids and possible alternative bids to second-order bids.

7In fact, the allocation rule of [7] has even stronger structure in
that each item is independently allocated to the bidder whose virtual
value for that item is the highest, and moreover the random mapping
defining virtual values for each item simply irons a total ordering of
all bidder types that depends on the underlying distribution.

Then, the second-order bids are combined (based on the

underlying bidder correlation) to form virtual bids, and

the virtual-welfare-maximizing allocation is chosen.

2) Algorithmic Results: The computer science com-

munity has contributed computationally efficient solu-

tions to special cases of the MDMDP in recent years.

Many are constant factor approximations [1], [3], [10],

[11], [17]. These results cover settings where the bid-

ders are unit-demand (or capacitated-additive) and the

seller has matroid or matroid-intersection constraints on

which bidders can simultaneously receive which items.

All these settings are special cases of the MDMDP

framework solved in this paper.8 In even more restricted

cases near-optimal solutions have already been pro-

vided. Tools are developed in [6], [9], [15] that yield

solutions for simple cases with one or few bidders.

Cases with many asymmetric independent bidders are

considered in [7] and [2]. As discussed above, in [7],

the case where F ensures that each item is awarded

at most once is solved. In [2], the case where F
ensures that at most k items are awarded, subject to

a matroid constraint on the served bidders is solved.

Our computational results push far beyond existing

results, providing a computationally efficient solution

for multi-dimensional settings with arbitrary feasibility

constraints, as long as the welfare-optimization problem

for the same constraints is tractable.

B. Our Approach and Intermediate results

Since receiving attention from computer scientists,

several special cases of the MDMDP have been solved

computationally efficiently by linear programming [9],

[15]. Simply put, these algorithms explictly store a vari-

able for every possible bidder profile denoting the prob-

ability that bidder i receives item j on that profile, and

write a linear program to maximize expected revenue

subject to feasibility and BIC constraints. Unfortunately,

the number of variables required for such a program is

exponential in the number of bidders, making such an

explicit description prohibitive. More recent solutions

have used the reduced form of an auction [2], [7] to

sidestep this curse. The reduced form of an auction was

first studied in [4], [18], [19] and contains, for every

bidder i, for every type A of bidder i, and every item

j, the probability that bidder i receives item j when

truthfully reporting type A over the randomness of the

auction and the randomness in the other bidders’ types,
assuming they report truthfully. Indeed, the reduced

form contains all the necessary information to verify

that an auction is BIC when bidders are independent,

8Again, in some of these results [1], [3] bidders may also have
budget constraints, which can be easily incorporated to the MDMDP
framework without any loss, as is shown in Appendix H of the full
version [8], and some replace BIC with IC [1], [10], [11], [17].
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although verifying its feasibility (i.e. whether a feasi-

ble mechanism exists matching its marginal allocation

probabilities) appears difficult. Despite this difficulty,

computationally efficient separation oracles were dis-

covered for independent bidders and a single item [2],

[7]. The techniques of [2] also accomodate many copies

of the same item and a matroid constraint on which

bidders may simultaneously be served. In this paper,

we go far beyond these results considering reduced

forms in settings with arbitrary feasibility constraints.

Surprisingly, we are able to give a simple proof of a

strong characterization result: for arbitrary feasibility

constraints, every feasible reduced form can be imple-

mented by a distribution over virtual VCG allocation

rules. Our proof is in Section III and follows the spirit

of [4], [7]: we examine the region of feasible reduced

forms (we show it must be a convex polytope) and

identify special structure in its extreme points.

In Section IV we provide a separation oracle for

checking feasibility of reduced forms, as well as a

decomposition algorithm for explicitly writing feasi-

ble reduced forms as distributions over virtual VCG

allocation rules for arbitrary feasibility constraints F ,

given only black-box access to an implementation of

VCG subject to the same constraints F . To make our

algorithms exact, we need time polynomial in |D|, mak-

ing them practically unusable. In Section V, we show

instead how to ε-implement both the separation oracle

and the decomposition algorithm in time polynomial

in
∑m

i=1 |Di| and 1/ε with high probability. By ε-
implementing a separation oracle and a decomposition

algorithm for some polytope P , we mean: (i) computing

a polytope P ′ such that every point in P is within

ε/poly(n
∑m

i=1 |Di|) (in �∞ distance) of a point in P ′

and vice versa; and (ii) exactly implementing a separa-

tion oracle and a decomposition algorithm for P ′. We

show that (i) and (ii) are sufficient for computationally

efficiently deciding whether a reduced form that is ε-
far (in �∞) from the boundary of P lies inside P , as

well as for computing a distribution over virtual VCG

allocation rules that is within ε/poly(n
∑m

i=1 |Di|) (in

�∞ distance) of any given feasible reduced form that is

ε-far from the boundary of P .

In Section VI, we show how to combine the linear

programs from [7], [15] with our algorithms for reduced

forms to obtain an FPRAS for MDMDP using only

black-box access to an implementation of VCG for F .

In generic cases, the runtime is polynomial in the num-

ber of items and
∑m

i=1 |Di| (but importantly not |D|).
In many settings (e.g. when there is correlation among

item values, or when the value distributions have sparse

supports) this is the natural description complexity of

the problem, and several recent algorithms [1], [2],

[3], [7], [16] have the same computational complex-

ity, namely polynomial in the number of bidders, the

number of items and the cardinality of the support of

each bidder’s value distribution. Additionally, by using

results of [15] we can reduce the runtime to polynomial

in only the number of items and number of bidders in

item-symmetric settings, as well as extend our solution

to distributions with infinite support. These extensions

are discussed in Section 6 of the full version [8]. Our

mechanisms can be made interim or ex-post individually

rational without any difference in revenue. We are also

able to naturally accommodate hard budget constraints

in our solutions. The simple modification that is neces-

sary is given in Appendix H of [8].

Finally, in Section 7 of [8], we provide our charac-

terization result for correlated bidders. To do this, we

introduce the notion of a second-order reduced form,

and show that every second-order reduced form can be

implemented as a distribution over second-order VCG

allocation rules. With this modification, all related tech-

niques of Section IV also apply to correlated bidders.

All discussion of correlated bidders is omitted due to

space constraints. See the full version of our paper [8].

II. PRELIMINARIES AND NOTATION

We denote the number of bidders by m, the number of

items by n, and the type space of bidder i by Ti. To ease

notation, we sometimes use A (B, C, etc.) to denote

the type of a bidder, without emphasizing whether it is

a vector or a scalar. The elements of ×iTi are called

type profiles, and specify a type for every bidder. We

assume type profiles are sampled from a distribution D
over ×iTi. We denote by Di the marginal of D over

bidder i’s type, and by D−i the marginal of D over

the types of all bidders, except bidder i. Finally, we

use ti for the random variable representing the type of

bidder i. So when we write Pr[ti = A], we mean the

probability that bidder i’s type is A. In Appendix B of

the full version [8], we also discuss how our algorithms

access distribution D.

We let A = [m] × [n] denote the set of possible

assignments (i.e. the element (i, j) denotes that bidder

i was awarded item j). We call (distributions over)

subsets of A (randomized) allocations, and functions

mapping type profiles to (possibly randomized) alloca-

tions allocation rules. We call an allocation combined

with a price charged to each bidder an outcome, and an

allocation rule combined with a pricing rule a (direct

revelation) mechanism. As discussed in Section I, we

may also have a set system F on A (that is, a subset

of 2A), encoding constraints on what assignments can

be made simultaneously by the mechanism. F may

be incorporating arbitrary demand constraints imposed

by each bidder, and supply constraints imposed by

the seller, and will be referred to as our feasibility
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constraints. In this case, we restrict all allocation rules

to be supported on F .

The reduced form of an allocation rule (also called the

interim allocation rule) is a vector function π(·), speci-

fying values πij(A), for all items j, bidders i and types

A ∈ Ti. πij(A) is the probability that bidder i receives

item j when truthfully reporting type A, where the

probability is over the randomness of all other bidders’

types (drawn from D−i) and the internal randomness

of the allocation rule, assuming that the other bidders

report their types truthfully. We sometimes want to view

the reduced form as a n
∑m

i=1 |Ti|-dimensional vector,

and may write �π to emphasize this view.

Given a reduced form π, we will be interested in

whether the form is “feasible”, or can be “imple-

mented.” By this we mean designing a feasible alloca-

tion rule M (i.e. one that respects feasibility constraints

F on every type profile with probability 1 over the ran-

domness of the allocation rule) such that the marginal

probability Mij(A) that bidder i receives item j when

truthfully reporting type A is exactly πij(A), where the

probability is computed with respect to the randomness

in the allocation rule and the randomness in the types of

the other bidders, assuming that the other bidders report

their types truthfully. While viewing reduced forms as

vectors, we will denote by F (F ,D) the set of feasible

reduced forms when the feasibility constraints are F
and bidders are sampled from D.

Throughout this paper we assume that the bidders are

additive, keeping in mind that this is not a restriction

computational considerations aside (see Section I). A

bidder is additive if her value for a bundle of items

is the sum of her values for the items in that bundle.

If bidders are additive, to specify the preferences of

bidder i, we can provide a valuation vector �vi, with

the convention that vij represents her value for item j.

Even in the presence of arbitrary demand constraints,

the value of additive bidder i of type �vi for a randomized

allocation that respects the bidder’s demand constraints

with probability 1, and whose expected probability of

allocating item j to the bidder is πij , is just the bidder’s

expected value, namely
∑

j vij ·πij . The utility of bidder

i for the same allocation when paying price pi is just∑
j vij · πij − pi. Such bidders whose value for a

distribution of allocations is their expected value for

the sampled allocation are called risk-neutral. Bidders

subtracting price from expected value are quasi-linear.

Throughout this paper, we denote by OPT the ex-

pected revenue of an optimal solution to MDMDP. Also,

most of our results for this problem construct a fully
polynomial-time randomized approximation scheme, or

FPRAS. This is an algorithm that takes as input two

additional parameters ε, η > 0 and outputs a mechanism

(or succinct description thereof) whose revenue is at

least OPT − ε, with probability at least 1 − η (over

the coin tosses of the algorithm), in time polynomial in

n
∑

i |Ti|, 1/ε, and log(1/η).

Finally, some arguments will involve reasoning about

the bit complexity of a rational number. We say that a

rational number has bit complexity b if it can be written

with a binary numerator and denominator that each have

at most b bits. In Appendix A of [8] we provide the

standard notions of Bayesian Incentive Compatibility

(BIC) and Individual Rationality (IR) of mechanisms.

III. CHARACTERIZATION OF FEASIBLE REDUCED

FORMS

In this section, we provide our characterization result,

showing that every feasible reduced form can be im-

plemented as a distribution over virtual VCG allocation

rules. For space considerations, all proofs of this section

are in Appendix C of the full version of this paper [8]. In

the following definition, V CGF denotes the allocation

rule of VCG with feasibility constraints F . That is, on

input �v = (�v1, . . . , �vm), V CGF outputs the allocation

that VCG selects when the reported types are �v.

Definition 1. A virtual VCG allocation rule is defined
by a collection of weight functions {fi : Ti → R

n}i
where fi maps a type of bidder i to a virtual type

of bidder i. On any type profile �v, the virtual VCG
allocation rule with functions {fi}i∈[m] runs V CGF
on input (f1(�v1), . . . , fm(�vm)).9 V V CGF ({fi}i∈[m])
denotes the virtual VCG allocation rule with feasibility
constraints F and weight functions {fi}i∈[m].

In other words, a virtual VCG allocation rule is

simply a VCG allocation rule, but maximizing virtual

welfare instead of true welfare. It will be convenient

to introduce the following notation, viewing the weight

functions as a (scaled) n
∑m

i=1 |Ti|-dimensional vector.

Below, fij denotes the jth component of fi.

Definition 2. Let �w ∈ R
n
∑m

i=1 |Ti|. Define fi so that
fij(A) =

wij(A)
Pr[ti=A] . Then V V CGF (�w) is the virtual

VCG allocation rule V V CGF ({fi}i∈[m]).

It is easy to see that every virtual VCG allocation

rule can be defined using the notation of Definition 2

by simply setting wij(A) = fij(A) · Pr[ti = A].
We scale the weights this way only for notational

convenience (which first becomes useful in Lemma 1).

We say that a virtual VCG allocation rule is simple iff,

for all �v1, . . . , �vm, V CGF (f1(�v1), . . . , fm(�vm)) has a

unique max-weight allocation. We now state the main

9If there are multiple VCG allocations, break ties arbitrarily, but
consistently. A consistent lexicographic tie-breaking rule is discussed
in Section III-A. For concreteness, the reader can use this rule for all
results of this section.
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theorem of this section, which completely characterizes

all feasible reduced forms.

Theorem 1. Let F be any set system of feasibility
constraints, and D be any (possibly correlated) dis-
tribution over bidder types with finite support. Then
every feasible reduced form (with respect to F and
D) can be implemented as a distribution over at most
n
∑m

i=1 |Ti|+ 1 simple virtual VCG allocation rules.10

The proof of Theorem 1 begins with a simple obser-

vation and proposition, proved in [8].

Observation 1. An allocation rule is feasible if and
only if it is a distribution over feasible deterministic
allocation rules.

Proposition 1. If |D| is finite, F (F ,D) is a convex
polytope.

Now that we know that F (F ,D) is a convex poly-

tope, we want to look at the extreme points by examin-

ing, for any �w, the allocation rule of F (F ,D) whose re-

duced form maximizes �π·�w. Lemma 1 and Proposition 2

characterize the extreme points of F (F ,D), allowing us

to prove Theorem 1. All three proofs are simple, and

provided in Appendix C of the full paper [8].

Lemma 1. Let �π be the reduced form of V V CGF (�w)
(using an arbitrary tie-breaking rule) when bidders are
sampled from D. Then, for all �π′ ∈ F (F ,D), �π · �w ≥
�π′ · �w.
Proposition 2. Every corner (i.e. vertex) of F (F ,D)
can be implemented by a simple virtual VCG allocation
rule, and the reduced form of any simple virtual VCG
allocation rule is a corner of F (F ,D).

We conclude with a necessary and sufficient con-

dition for feasibility of a reduced form. The proof

is simple and can be found in Appendix C of [8].

For the following statement, for any weight vector

�w ∈ R
n
∑m

i=1 |Ti|, WF (�w) denotes the total expected

weight of items awarded by V V CGF (�w) (where we

assume that the weight of giving item j to bidder i of

type A is fij(A) = wij(A)/Pr[ti = A]). The proof

of Lemma 1 implies that the tie-breaking rule used

in V V CGF (�w) does not affect the value of WF (�w),
and that no feasible allocation rule can possibly exceed

WF (�w). The content of the next corollary is that this

condition is also sufficient.

Corollary 1. A reduced form �π is feasible (with respect
to F and D) if and only if, for all �w ∈ [−1, 1]n

∑m
i=1 |Ti|,

�π · �w ≤WF (�w).

10Note that we are not claiming that every feasible allocation rule
can be implemented as a distribution over virtual VCG allocation
rules. See a brief example illustrating the content of Theorem 1 in
Section 3 of the full version [8].

A. Tie-breaking

Any given �w can be modified to some �w′ so that (i)

V V CGF (�w′) maximizes �π · �w over �π ∈ F (F ,D),
and (ii) V V CGF (�w′) is simple. The modification can

be carried out in polynomial time and implements a

lexicographic tie-breaking among allocations with equal

virtual welfare under �w. For details see Section 3.1

of [8]. From now on, whenever we use V V CGF (�w),
we will implicitly assume that this tie-breaking mod-

ification has been applied to �w. Sometimes we will

explicitly state so, if we want to get our hands on �w′.

IV. ALGORITHMS FOR REDUCED FORMS

The characterization result of Section III hinges on

the realization that F (F ,D) is a convex polytope whose

corners can be implemented by especially simple al-

location rules, namely simple virtual VCG allocation

rules. To compute the reduced form of an optimal

mechanism, we would like to be able to optimize a

linear objective (expected revenue) over F (F ,D). So

we need a separation oracle for this polytope. Addition-

ally, once we have found the revenue-optimal reduced

form in F (F ,D), we need some way of implementing

it. As we know that every corner of F (F ,D) can be

implemented by an especially simple allocation rule,

we would like to decompose a given feasible reduced

form into an explicit convex combination of corners

(which then corresponds to the reduced form of a

distribution over simple virtual VCG allocation rules).

Without worrying about computational complexity, in

this section we provide a generic framework for ob-

taining both algorithms. In Section V, we discuss how

to approximately implement these algorithms efficiently

with high probability obtaining an FPRAS with only

black-box access to an implementation of the VCG

allocation rule.

A. Separation Oracle

We know from Corollary 1 that if a reduced form

�π is infeasible, then there is some weight vector �w ∈
[−1, 1]n

∑m
i=1 |Ti| such that �π · �w > WF (�w). Finding

such a weight vector explicitly gives us a hyperplane

separating �π from F (F ,D), provided we can also

compute WF (�w). So consider the function:

g�π(�w) = WF (�w)− �π · �w.
We know that �π is feasible if and only if g�π(�w) ≥ 0

for all �w ∈ [−1, 1]n
∑m

i=1 |Ti|. So the goal of our

separation oracle SO is to minimize g�π(�w) over the

hypercube, and check if the minimum is negative. If

negative, the reduced form is infeasible, and the min-

imizer bears witness. Otherwise, the reduced form is

feasible. To write a linear program to minimize g�π(�w),
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recall that WF (�w) = max�x∈F (F ,D){�x · �w}, so g�π(�w) is

a piece-wise linear function. Using standard techniques,

we could add a variable, t, for WF (�w), add constraints

to guarantee that t ≥ �x · �w for all �x ∈ F (F ,D), and

minimize t − �π · �w. As this is a burdensome number

of constraints, we will use an internal separation oracle

ŜO, whose job is simply to verify that t ≥ �x · �w for all

�x ∈ F (F ,D), otherwise output a violating hyperplane.

To implement ŜO, let RF (�w) denote the reduced

form of V V CGF (�w). Then we know that RF (�w) · �w ≥
�x · �w for all �x ∈ F (F ,D). So if any equation of the

form �x · �w ≤ t is violated, then certainly RF (�w) · �w ≤ t
is violated. Therefore, for an input �w, t, we need only

check a single constraint of this form. So let ŜO(�w, t)
output “yes” if RF (�w) · �w ≤ t, otherwise output the

violated hyperplane RF (�w) · �z − y ≤ 0. ŜO allows us

to reformulate the linear program and minimize g�π(�w)
efficiently using Ellipsoid. Our LP is explicitly given in

Figure 1 of Appendix D of [8].
So our separation oracle SO for checking whether

�π ∈ F (F ,D) works as follows: first we run the afore-

described LP to minimize g�π(�w). Let the optimum

output by the LP be t∗, �w∗. If the value of the LP is

negative, we know that �w∗ ·�π > t∗ = WF (�w∗), and we

obtain our violated hyperplane. Otherwise, the reduced

form is feasible, so we output “yes.”
We conclude this section with a lemma relating the

bit complexity of the corners of F (F ,D) to the bit

complexity of the output of our separation oracle. This

is handy for efficiently implementing our algorithms in

the next section. The proof is simple, and provided in

Appendix D of [8]. We make use a standard property

of the Ellipsoid algorithm (see Theorem 10 of [8]).

Lemma 2. If all coordinates of each corner of F (F ,D)
are rational numbers of bit complexity �, then every
coefficient of any hyperplane output by SO is a rational
number of bit complexity poly(n

∑m
i=1 |Ti|, �).

B. Decomposition Algorithm via a Corner Oracle
We provide an algorithm for writing a feasible re-

duced form as a convex combination of corners of

F (F ,D), i.e. reduced forms of simple virtual VCG

allocation rules. A decomposition algorithm for arbi-

trary polytopes P is already given in [7], and the only

required ingredients for the algorithm is a separation

oracle for P , a corner oracle for P , and a bound b on

the bit complexity of the coefficients of any hyperplane

that can possibly be output by the separation oracle.

The goal of this section is to define both oracles and

determine b for our setting. But let us first recall the

result of [7]. Before stating the result, let us specify the

required functionality of the corner oracle.
The corner oracle for polytope P takes as input

k (where k is at most the dimension, in our case

n
∑

i |Ti|) hyperplanes H1, . . . , Hk (whose coefficients

are all rational numbers of bit complexity b) and has

the following behavior: If no hyperplane intersects P
in its interior and there is a corner of P that lies in all

hyperplanes, then such a corner is output. Otherwise,

the behavior may be arbitrary. Below is the theorem

from [7].

Theorem 2. ([7]) Let P be a d-dimensional polytope
with corner oracle CO and separation oracle SO such
that each coefficient of every hyperplane ever output
by SO is a rational number of bit complexity b. Then
there is an algorithm that decomposes any point �x ∈ P
into a convex combination of at most d+ 1 corners of
P . Furthermore, if � is the maximum number of bits
needed to represent a coordinate of �x, then the runtime
is polynomial in d, b, � and the runtimes of SO and CO
on inputs of bit complexity poly(d, b, �).

So all we need to do is define CO and SO, and

provide a bound on the bit complexity of the hyper-

planes output by SO. We’ve already defined SO and

bounded the bit complexity of hyperplanes output by

it by poly(n
∑m

i=1 |Ti|, �), where � is the maximum

number of bits needed to represent a coordinate in a

corner of F (F ,D) (see Lemma 2 of Section IV-A).

So now we define CO and state its correctness in

Theorem 3 whose proof is in Appendix D of [8]. In the

last line, CO outputs the weights �w′ as well so that we

can actually implement the reduced form that is output.

Algorithm 1 Corner Oracle for F (F ,D)
1: Input: Hyperplanes (�w1, h1), . . . , (�wa, ha), a ≤

n
∑m

i=1 |Ti|.
2: Set �w =

∑a
j=1

1
a �wj .

3: Use the tie-breaking rule of Section III-A (stated

formally in Lemma 4 in [8]) on �w to obtain �w′.
4: Output the reduced form of V V CGF (�w′), and �w′.

Theorem 3. The Corner Oracle of Algorithm 1 cor-
rectly outputs a corner of F (F ,D) contained in
∩a
j=1Hj whenever the hyperplanes H1, . . . , Ha are

boundary hyperplanes of F (F ,D) and ∩a
j=1Hj con-

tains a corner. Furthermore, if all coordinates of all Hj

are rational numbers of bit complexity b, and Pr[ti = A]
is a rational number of bit complexity � for all i, A ∈ Ti,
then every coordinate of the weight vector �w′ is a ra-
tional number of bit complexity poly(n

∑m
i=1 |Ti|, b, �).

V. EFFICIENT IMPLEMENTATION OF ALGORITHMS

FOR REDUCED FORMS

In this section, we show how to approximately im-

plement the separation oracle (SO) of Section IV-A and

the corner oracle (CO) of Section IV-B efficiently with
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high probability, thereby obtaining also an approximate

decomposition algorithm for F (F ,D). We begin by

bounding the runtime of the exact implementations,

showing that they are especially good when D is a

uniform (possibly non-product) distribution of small

support. As above, AF denotes an algorithm that imple-

ments the VCG allocation rule with respect to feasibility

constraints F , and we use rtF (b) to denote the runtime

of AF when each input weight has bit complexity b.

A. Exact Implementation

The only tricky step in implementing SO and CO is

computing RF (�w) for a given �w. A simple approach

is to just enumerate every profile in the support of

D and check if V V CGF (�w) awards bidder i item j.

This can be done in time polynomial in the cardinality

|D| of the support of D, the bit complexity � of the

probabilities used by D and rtF (poly(b, �)), where b
is the bit complexity of �w’s coordinates. So, if b is an

upper bound on the bit complexity of the coordinates

of the weight vectors �w for which RF (�w) is computed

in an execution of SO (CO), then SO (CO) can be

implemented in time polynomial in n
∑

i |Ti|, |D|, �, b,
c, and rtF (poly(b, �)), where c is the bit complexity of

the numbers in the input of SO (CO). Alone, this result

is not very helpful as we can do much more interest-

ing computations in time polynomial in |D|, including

exactly solve MDMDP [15]. The interesting corollary

is that when D is a (possibly correlated) uniform

distribution over a collection of profiles (possibly with

repetition) whose number is polynomial in n
∑

i |Ti|,
the runtime of all algorithms of Section IV becomes

polynomial in n
∑

i |Ti|, c, and rtF (poly(n
∑

i |Ti|, c)),
where c is the bit complexity of the numbers in the input

to these algorithms. In Appendix E of [8], we quantify

this claim precisely, enabling efficient approximations

for arbitrary distributions in the next section.

B. Approximate Implementation

We discuss how to “approximately implement” both

algorithms in time polynomial in
∑m

i=1 |Di|, where |Di|
is the cardinality of the support of Di, using the results

of Section V-A. But we need to use the right notion of

approximation. Simply implementing both algorithms

approximately, e.g. separating out reduced forms that

are not even approximately feasible and decomposing

reduced forms that are approximately feasible, might

not get us very far, as we could lose the necessary

linear algebra to solve LPs. So we use a different notion

of approximation. We compute a “simple” polytope P ′

that, with high probability, is a “good approximation”

to F (F ,D) in the sense that we can optimize over

P ′ instead of over F (F ,D). Then we implement both

the separation and the decomposition algorithms for P ′

exactly so that their running time is polynomial in n,∑m
i=1 |Ti|, c and rtF (poly(n

∑m
i=1 |Ti|, c)), where c is

the number of bits needed to describe a coordinate of

the input to these algorithms.

Approach: So how can we compute an approximating

polytope? Our starting point is natural: Given an arbi-

trary distribution D, we can sample profiles P1, . . . , Pk

from D independently at random and define a new dis-

tribution D′ that samples a profile uniformly at random

from P1, . . . , Pk (i.e. chooses each Pi with probability

1/k). Clearly as k →∞ the polytope F (F ,D′) should

approximate F (F ,D) better and better. The question

is how large k should be taken for a good approxi-

mation. If taking k polynomial in n
∑m

i=1 |Ti| suffices,

then Section V-A implies that we can implement both

the separation and the decomposition algorithms for

F (F ,D′) in the desired running time.

However this approach fails, as some types may very

well have Pr[ti = A] << 1
poly(n

∑m
i=1 |Ti|) . Such types

likely wouldn’t even appear in the support of D′ if k
is taken polynomial in n

∑m
i=1 |Ti|. So then how would

the proxy polytope F (F ,D′) inform us about F (F ,D)
in the corresponding dimensions? To cope with this, for

each bidder i and type A ∈ Ti, we take an additional k′

samples from D−i and set ti = A on those samples. D′
is defined to choose uniformly at random from all k +
k′

∑m
i=1 |Ti| sampled profiles (original plus additional).

Now here is what we can guarantee. Taking k and

k′ both polynomial in n
∑m

i=1 |Ti|, we show that with

high probability every �π in F (F ,D) has some �π′ ∈
F (F ,D′) with |�π−�π′|∞ small. This is done by taking

careful concentration and union bounds. We also show

the converse: with high probability every �π′ ∈ F (F ,D′)
has some �π ∈ F (F ,D) with |�π − �π′|∞ small. This

requires a little more care as the elements of F (F ,D′)
are not fixed a priori (i.e. before taking samples from

D to define D′), but depend on the choice of D′,
which is precisely the object with respect to which we

want to use the probabilistic method. We resolve this

apparent circularity by appealing to some properties of

the algorithms of Section IV (namely, bounds on the bit

complexity of any output of SO and CO). We put these

results together to obtain our efficient approximation

algorithms. All details of this section can be found in

Appendix F of the full version [8].

VI. REVENUE-MAXIMIZING MECHANISMS

In this section we make Informal Theorem 1 precise,

stating how the algorithms of Section V-B combined

with the LPs of [7], [15] provide a computationally

efficient, nearly-optimal solution to MDMDP using only

black-box access to an implementation of the VCG

allocation rule. In the following statement, the allocation

rule of the output mechanism is a distribution over
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simple virtual VCG allocation rules. On the other hand,

there is no special structure in the pricing rule—it is just

the output of a linear program. Recall that AF denotes

an algorithm implementing the VCG allocation rule

with feasibility constraints F , and rtF (b) is the runtime

of AF when each input weight has bit complexity b.

Theorem 4. For all ε, η > 0, all D of finite support
in [0, 1]nm, and all F , given D and black-box ac-
cess to AF there is an additive FPRAS for MDMDP.
In particular, the FPRAS obtains expected revenue
OPT − ε, with probability at least 1− η, in time poly-
nomial in �, m,n,maxi∈[m]{|Ti|}, 1/ε, log(1/η) and
rtF (poly(n

∑m
i=1 |Ti|, log 1/ε, log log(1/η), �)), where

� is an upper bound on the bit complexity of the
coordinates of the points in the support of D, as well
as of the probabilities assigned by D1, . . . ,Dm to the
points in their support. The output mechanism is ε-BIC,
its allocation rule is a distribution over simple virtual
VCG allocation rules, and it can be implemented in the
afore-stated running time.

The assumption that D is supported in [0, 1]mn as

opposed to some other bounded set is w.l.o.g., as we

could just scale the values down by a multiplicative

vmax, causing the additive approximation error to be

εvmax. We also remark that the output mechanism can

be made interim or ex-post individually rational without

any difference in revenue, and we can accommodate

bidders with hard budget constraints. Finally, the run-

ning time can be improved to polynomial in just the

number of items and bidders in item-symmetric settings.

These variants of our result are presented in Section 6

of the full paper [8], while all proofs can be found in

Appendices G and H.
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