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Abstract—We present an iterative approach to constructing
pseudorandom generators, based on the repeated application
of mild pseudorandom restrictions. We use this template to
construct pseudorandom generators for combinatorial rect-
angles and read-once CNFs and a hitting set generator for
width-3 branching programs, all of which achieve near-optimal
seed-length even in the low-error regime: We get seed-length
Õ(log(n/ε)) for error ε. Previously, only constructions with
seed-length O(log3/2 n) or O(log2 n) were known for these
classes with error ε = 1/poly(n).

The (pseudo)random restrictions we use are milder than
those typically used for proving circuit lower bounds in that
we only set a constant fraction of the bits at a time. While
such restrictions do not simplify the functions drastically, we
show that they can be derandomized using small-bias spaces.

Keywords-Pseudorandom generators, random restrictions,
DNF formulas, combinatorial rectangles, branching programs.

I. INTRODUCTION

A. Pseudorandom Generators

The theory of pseudorandomness has given compelling

evidence that very strong pseudorandom generators exist.

For example, assuming that there are computational prob-

lems solvable in exponential time that require exponential-

sized circuits, Impagliazzo and Wigderson [1] have shown

that for every n, c and ε > 0, there exist efficient pseu-

dorandom generators (PRGs) mapping a random seed of

length O(log(nc/ε)) to n pseudorandom bits that cannot be

distinguished from n uniformly random bits with probability

more than ε, by any Boolean circuit of size nc. These PRGs,

which fool arbitrary efficient computations (represented by

polynomial-sized Boolean circuits), have remarkable conse-

quences for derandomization: every randomized algorithm

can be made deterministic with only a polynomial slow-

down, and thus P = BPP.

These results, however, remain conditional on a circuit

complexity assumption whose proof seems far off at present.

Since PRGs that fool a class of Boolean circuits also imply

lower bounds for that class, we cannot hope to remove the

assumption. Thus unconditional generators are only possible
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for restricted models of computation for which we have

lower bounds.

Bounded-depth circuits and bounded-space algorithms are

two models of computations for which we know how to

construct PRGs with O(logO(1)(n/ε)) seed length [2], [3].

Known PRG constructions for these classes have found sev-

eral striking applications including the design of streaming

algorithms [4], algorithmic derandomization [5], randomness

extractors [6], hashing [7], hardness amplification [8], almost

k-wise independent permutations [9], and cryptographic

PRGs [10]. Arguably, constructing PRGs with the optimal

O(log(n/ε)) seed length for these classes are two of the

outstanding open problems in derandomization.

Nisan [3] devised a PRG of seed length O(log2 n)
that fools polynomial-width branching programs, the non-

uniform model of computation that captures logspace ran-

domized algorithms: a space-s algorithm is modeled by

a branching program1 of width 2s. Nisan’s generator has

been used by Saks and Zhou [11] to prove that every

randomized logspace algorithms can be simulated in space

O(log3/2 n), Nisan’s generator remains the best known

generator for polynomial-width branching programs (and

logspace randomized algorithms) and, despite much progress

in this area [12], [13], [14], [15], [16], [17], [18], [19], [20],

there are very few cases where we can improve on Nisan’s

twenty year old bound of O(log2 n) [3]. For constant-width

regular branching programs, Braverman et al. [17] have

given a pseudorandom generator with seed length Õ((log n)·
(log(1/ε))), which is Õ(log n) for ε = 1/polylog(n), but is

no better than Nisan’s generator when ε = 1/poly(n). Only

for constant-width permutation branching programs and for

width-2 branching programs has seed length O(log(n/ε))
been achieved, by Koucký, Nimbhorkar, Pudlák [19] and

Saks and Zuckerman [21], respectively. Remarkably, even

for width-3 branching programs we do not know of any

efficiently computable PRG with seed length o(log2 n).
Recently, Sima and Zak [22] have constructed hitting set
generators (HSGs, which are a weaker form of pseudo-

random generators) for width-3 branching programs with

optimal seed length O(log n), for a large error parameter

ε > 5/6.

1Space-bounded randomized algorithms are modeled by oblivious, read-
once branching programs, which read the input bits in a specified order and
read each input bit only once. In this paper, all the references to “branching
programs” refer to “oblivious read-once branching programs.”
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In a different work, Nisan [2] also gave a gives a PRG that

ε-fools AC0 circuits of depth d and size s using seed length

O(log2d+6(s/ε)). For the special case of depth-2 circuits,

that is, CNFs and DNFs, the work of Bazzi [23], simplified

by Razborov [24], provides a PRG of seed length O(log n ·
log2(s/ε)), which has been improved to Õ(log2(s/ε)) by

De et al. [25]. For the restricted case of read-k DNFs and

CNFs, De et al. (for k =1), and Klivans et al. [26] (for k
constant) improve the seed length to O(log ε−1·log s), which

is optimal for constant ε, but it is essentially no better than

the bound for general CNFs and DNFs when ε is polynomial

in 1/n.

The model of combinatorial rectangles is closely related

to both bounded-width branching programs and read-once

CNFs and are interesting combinatorial objects with a va-

riety of applications of their own [27]. The problem of

constructing PRGs for combinatorial rectangles is closely

related to the construction of small sample spaces that

approximate the uniform distribution on many multivalued

random variables [28]: they can be seen as an alternate

generalization of the versatile notion of almost k-wise in-

dependent distributions on {0, 1}n to larger domains [m]n.

Versions of this problem where each coordinate is a real

interval were first studied in number theory and analysis

[27]. Subsequently there has been much work on this prob-

lem [28], [29], [27], [30], [31]. A PRG with seed length

O(log n + log3/2(1/ε)) [30] is known for combinatorial

rectangles; such a generator achieves the optimal seed

length O(log n) when ε ≥ 2−O(log2/3 n), but not for ε =
1/poly(n). It is known how to construct HSGs (which are

a weakening of PRGs) with seed length O(log(n/ε)) [29].

Indeed, there are few models of computations for which

we know how to construct PRGs with the optimal seed

length O(log(n/ε)) or even log1+o(1)(n/ε). The most

prominent examples are bounded-degree polynomials over

finite fields [32], [33], [34], [35], [31], with parities (which

are fooled by small-bias distributions [32]) as a special case,

and models that can be reduced to these cases, such as width-

2 branching programs [21], [36].

In summary, there are several interesting models of com-

putation for which a polylogarithmic dependence on n and

1/ε is known, and the dependence on one parameter is

logarithmic on its own (e.g. seed length O(log n log(1/ε))),
but a logarithmic bound in both parameters together has been

elusive. Finally, we remark that not having a logarithmic

dependence on the error ε is often a symptom of a more

fundamental bottleneck. For instance, HSGs with constant

error for width 4 branching programs imply HSGs with

polynomially small error for width 3 branching programs, so

achieving the latter is a natural first step towards the former.

A polynomial-time computable PRG for CNFs with seed

length O(log n/ε) would imply the existence of a problem in

exponential time that requires depth-3 circuits of size 2Ω(n)

and that cannot be solved by general circuits of size O(n)

and depth O(log n), which is a long-standing open problem

in circuit complexity [37].

B. Our Results

In this paper, we construct the first generators with seed

length Õ(log(n/ε)) (where Õ( ) hides polylogarithmic

factors in its argument) for several well-studied classes of

functions mentioned above.

• PRGs for combinatorial rectangles. Previously, it was

known how to construct HSGs with seed length

O(log(n/ε)) [29], but the best seed length for PRGs

was O(log n+ log3/2(1/ε)) [30].

• PRGs for read-once CNF and DNF formulas. Previ-

ously, De, Etesami, Trevisan, and Tulsiani [25] and

Klivans, Lee and Wan [26] had constructed PRGs with

seed length O(log n · log(1/ε)).
• HSGs for width 3 branching programs. Previously,

Sima and Zak [22] had constructed hitting set genera-

tors for width 3 branching programs with seed length

O(log n) in case the error parameter ε is very large

(greater than 5/6).

As a corollary of our PRG for combinatorial rectangles we

get improved hardness amplification in NP by combining

our results with those of Lu, Tsai and Wu [38]. We defer

the details to the full version.

C. Techniques

Our generators are all based on a general new technique

— the iterative application of “mild” (pseudo)random re-

strictions.

To motivate our technique, we first recall Håstad’s switch-

ing lemma [39], [40], [41]: if we randomly assign a

1 − 1/O(k) fraction of the variables of a k-CNF, then

the residual formula on the n/O(k) unassigned variables

is likely to become a constant. Ajtai and Wigderson [42]

proposed the following natural approach to constructing

PRGs for CNFs: construct a small pseudorandom family

of restrictions that: 1) makes any given CNF collapse to

a constant function with high probability; and 2) ensures

that the CNF collapses to each constant function with the

right probability as determined by the bias of the formula.

Known derandomizations of the switching lemma are far

from optimal in terms of the number of random bits needed

[42], [43], [44]. We will show that, for read-once CNFs,

such a pseudorandom restriction can be generated using

Õ(log(m/ε)) random bits.

We apply restrictions that only set a constant fraction of

the variables at a time. The novel insight in our construction

is that although we cannot set all the bits at one go from

a small-bias distribution, we can set a constant fraction of

bits from such a distribution and prove that the bias of

the formula is preserved (on average). Hence we use only

Õ(log(m/ε)) truly random bits per phase. While such mild

random restrictions do not drastically simplify the formulas,
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we show that in each phase a suitable measure of progress

improves (e.g. most clauses will either be satisfied or will

have reduced width), implying that the formula collapses

to a constant after O(log log(m/ε)) steps; and so the total

randomness will be Õ(log(m/ε)). The idea of setting a few

variables at a time is inspired by a recent PRG for hashing

balls into bins due to Celis, Reingold, Segev, and Wieder [7].

We illustrate our technique below with a toy example.

A Toy Example: Consider a read-once CNF formula f
of width w with m = 2w+1 clauses in which the variables

appear in order (aka the Tribes function of [45]). That is,

f(x) = f1(x1, . . . , xw) ∧ · · · ∧ fm(x(m−1)w+1, . . . , xmw)

where each fi is the OR function. f has constant bias and

can be computed both by a combinatorial rectangle and a

width-3 branching program. De et al. showed that fooling

this function with error ε using small-bias spaces requires

seed-length Ω(w log(1/ε)/ log log(1/ε)).
Assume we partition the input bits into two parts: x which

contains the first w/2 variables of each clause and y which

contains the rest. Let x ◦ y denote the concatenation of the

two strings. We would like to show that for D a small-bias

distribution and U the uniform distribution,∣∣∣∣ E
x∼D,y∼U

[f(x ◦ y)]− E
x∼U,y∼U

[f(x ◦ y)]
∣∣∣∣ ≤ ε (I.1)

A naive approach might be to view setting y ∼ U as

applying a random restriction with probability 1/2. If this

simplified the function f to the extent that it can be fooled

by small-bias spaces, we would be done. Unfortunately, this

is too much to hope for; it is not hard to see that such a

random restriction is very likely to give another Tribes-like

function with width w/2, which is not much easier to fool

using small bias than f itself.

Rather, we need to shift our attention to the bias function
of f . For each partial assignment x, we define the bias

function F (x) as

F (x) = E
y∼U

[f(x ◦ y)]. (I.2)

We can now rewrite Equation (I.1) as∣∣∣ E
x∼D

[F (x)]− E
x∼U

[F (x)]
∣∣∣ ≤ ε (I.3)

Our key insight is that for restrictions as above, the function

F is in fact easy to fool using a small-biased space. This is

despite the fact that F (x) is an average of functions f(x◦y)
(by Equation (I.2)), most of which are Tribes-like and hence

are not easy to fool.

Let us give some intuition for why this happens. Since

f(x ◦ y) = ∏m
i=1 fi(x ◦ y),

F (x) = E
y∼U

[f(x ◦ y)] =
m∏
i=1

E
y∼U

[fi(x ◦ y)] =
m∏
i=1

Fi(x),

where Fi(x) is the bias function of the ith clause. But note

that over a random choice of y, fi(x) is set to 1 with

probability 1−2−w/2 and is a clause of width w/2 otherwise.

Hence

Fi(x) = E
y∼U

[fi(x ◦ y)] = 1− 1

2w/2
+
∨w/2
j=1xw(i−1)+j

2w/2
.

As a consequence, over a random choice of x, we now have

Fi(x) =

{
1 w.p. 1− 2−w/2

1− 2−w/2 w.p. 2−w/2

Thus each Fi(x) is a random variable with Ex[Fi(x)] =
1 − 2−w and Varx[Fi(x)] ≈ 2−3w/2. In contrast, when we

assign all the variables in the clauses at once, each fi(x)
behaves like a Bernoulli random variable with bias 1−2−w.

While it also has Ex[fi(x)] = 1 − 2−w, the variance is

much larger: Varx[fi(x)] ≈ 2−w. The qualitative difference

between 2−3w/2 and 2−w is that in the former case, the sum

of the variances over all 2w+1 clauses is small (2−w/2), but

in the latter it is more than 1. We leverage the small total

variance to show that small-bias fools F , even though it does

not fool f itself. Indeed, setting any constant fraction α < 1
of variables in each clause would work.

We now sketch our proof that small-bias spaces fool F .

Let gi(x) = Fi(x)− (1− 2−w) be Fi shifted to have mean

0, so that Ex[gi(x)
2] = Var[Fi(x)]. We can write

F (x) =
m∏
i=1

(
1− 2−w + gi(x)

)
(I.4)

=
m∑

k=1

ckSk(g1(x), . . . , gm(x)) (I.5)

where Sk denotes the kth elementary symmetric polynomial

and ck ∈ [0, 1].2

Under the uniform distribution, one can show that

E
x∼U

[ |Sk(g1(x), . . . , gm(x))| ] ≤
(

m∑
i=1

E
x∼U

[
gi(x)

2
])k/2

≤ 2−wk/4.

Thus for k ≥ O((log n)/w), we expect each term in the

summation in Equation (I.4) to be 1/poly(n). So we can

truncate at d = O((log n)/w) terms and retain a good

approximation under the uniform distribution.

Our analysis of the small-bias case is inspired by the grad-
ually increasing independence paradigm of Celis et al. [7],

2In the toy example we are currently studying, an alternative and
simpler approach is to write Fi(x) = (1 − 2−w/2)1−hi(x), where

hi(x) = ∨w/2
j=1xw(i−1)+j is the indicator for whether x already satisfies

the i’th clause on its own. Then F (x) =
∏

i Fi(x) expands as a power

series in
∑

i(1 − hi(x) − 2−w/2), and higher moment bounds can be
used to analyze what happens when we truncate this expansion. However,
this expansion is rather specific to the highly symmetric Tribes function,
whereas the expansion in terms of symmetric polynomials is much more
general.
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developed in the context of hashing. Every monomial in the

gi’s of degree at most d depends on at most wd = O(log n)
variables. A small-bias space provides an almost O(log n)-
wise independent distribution on the variables of x, so the

gi(x)’s will be almost d-wise independent. This ensures that

polynomials in g1(x), . . . , gm(x) of degree at most d (such

as S1, . . . , Sd) will behave like they do under the uniform

distribution. But we also need to argue that the Sk’s for

k > d have a small contribution to Ex∼D [F (x)].
Towards this end, we prove the following inequality

for any real numbers z1, . . . , zm: If |S1(z1, . . . , zm)| ≤
μ
2 , |S2(z1, . . . , zm)| ≤ μ2

2 , then |Sk(z1, . . . , zm)| ≤ μk.

The proof uses the Newton–Girard formulas (see [46])

which relate the symmetric polynomials and power sums.

This lets us repeat the same truncation argument, provided

that S1(g1(x), . . . , gm(x)) and S2(g1(x), . . . , gm(x)) are

tightly concentrated even under small-bias distributions. We

prove this concentration holds via suitable higher moment

inequalities.3

This lets us show that small bias fools F (x). By iterating

this argument logw times, we get a PRG for f with poly-

nomially small error and seed-length O((log n)(logw)) =
O((log n)(log log n)).

Read-Once CNFs: The case of general read-once CNFs

presents several additional challenges. Since we no longer

know how the variables are grouped into clauses, we

(pseudo)randomly choose a subset of variables to assign

using ε-biased spaces, and argue that for most clauses, we

will not assign few variables. Clauses could now have very

different sizes, and our approximation argument relied on

tuning the amount of independence (or where we truncate)

to the width of the clause. We handle this via an XOR
lemma for ε-biased spaces, which lets us break the formula

into O(log log n) formulae, each having clauses of nearly

equal size and argue about them separately.
Combinatorial Rectangles: A combinatorial rectan-

gle f : [W ]m → {0, 1} is a function of the form

f(x1, . . . , xm) = ∧m
i=1fi(xi) for some Boolean functions

f1, . . . , fm. Thus, here we know which parts of the input

correspond to which clauses (like the toy example above),

but our clauses are arbitrary functions rather than ORs.

To handle this, we use a more powerful family of grad-

ual restrictions. Rather than setting w/2 bits of each co-

ordinate, we instead (pseudo)randomly restrict the domain

of each xi to a set of size W 1/2. More precisely, we use a

small-bias space to pseudorandomly choose hash functions

h1, . . . , hm : [W 1/2] → [W ] and replace f with the

restricted function f ′(z1, . . . , zm) = ∧m
i=1(fi ◦ hi)(zi).

Width 3 Branching Programs: For width 3 branching

programs, inspired by Sima and Zak [22] we reduce the task

of constructing HSGs for width 3 to that of constructing

3These inequalities actually require higher moment bounds for the gi’s.
We ignore this issue in this description for clarity, and because we suspect
that this requirement should not be necessary.

HSGs for read-once CNF formulas where we also allow

some clauses to be parities. Our PRG construction for read-

once CNFs directly extends to also handle such formulas

with parities (intuitively because small-bias spaces treat

parities just like individual variables). The first step of our

reduction actually works for any width d, and shows how

to reduce the the task of constructing HSGs for width d
to constructing hitting set generators for width d branching

programs with sudden death, where the states in the bottom
level are all assumed to be Reject states.

II. PRELIMINARIES

We briefly review some notation and definitions. We use

x ∼ D to denote sampling x from a distribution D. For

a set S, x ∼ S denotes sampling uniformly from S. By

abuse of notation, for a function G : {0, 1}s → {0, 1}n
we let G denote the distribution over {0, 1}n of G(y) when

y ∼ {0, 1}s. For a function f : {0, 1}n → R, we denote

E[f ] = Ex∼{0,1}n [f(x)].
Sandwiching Approximators.: One of the central tools

we use is to construct sandwiching polynomial approxima-
tions for various classes of functions. The approximating

polynomials (P�, Pu) we construct for a function f will have

two properties: 1) low-complexity as measured by the “L1-

norm” of P�, Pu and 2) they “sandwich” f , Pu ≤ f ≤ Pu.

The first property will be important to argue that small-

bias spaces fool the approximating polynomials and the

second property will allow us to lift this property to the

function being approximated. We formalize these notions

below. For notational convenience, we shall view functions

and polynomials as defined over {±1}n.

Definition II.1. Let P : {±1}n → R be a polynomial de-
fined as P (x) =

∑
I⊆[n] cI

∏
i∈I xi. Then, the L1-norm of P

is defined by L1[P ] =
∑

I⊆[n] |cI |. We say f : {±1}n → R

has δ-sandwiching approximations of L1 norm t if there exist
functions fu, f� : {±1}n → R such that

f�(x) ≤ f(x) ≤ fu(x) ∀x,
E[fu(x)]− E[f�(x)] ≤ δ

L1(f�), L1(fu) ≤ t.

We refer to f� and fu as the lower and upper sandwiching
approximations to f respectively.

It is easy to see that the existence of such approximations

implies that f is δ + tε fooled by any ε-biased distribution.

In fact, as was implicit in the work of Bazzi [23] and

formalized in the work of De et. al. [25], being fooled by

small-bias spaces is essentially equivalent to the existence

of good sandwiching approximators. We defer the detailed

statements to the full version.
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III. TOOLS FOR CONSTRUCTING SANDWICHING

APPROXIMATORS

Sandwiching Symmetric Functions: We state our main

result on sandwiching approximators for symmetric func-

tions.

For k ≥ 1, let Sk : Rm → R denote the kth elementary

symmetric polynomial defined by

Sk(z1, . . . , zm) =
∑

I⊆[m],|I|=k

∏
i∈I

zi.

Theorem III.1. Let g1, . . . , gm : {±1}n → R be functions
on disjoint sets of input variables and σ1, σ2, . . . , σm be pos-
itive numbers such that for all i ∈ [m], E[gi] = 0, L1[gi] ≤ t,
and for k ≥ 1,

E
x∼{±1}n

[(gi)
2k] ≤ (2k)2kσ2k

i .

Let σ2 = (
∑

i σ
2
i )/m and δ ∈ (0, 1) and ε, k > 0 be such

that

mσ2 ≤ 1

log(1/δ)25
,

k =

⌈
5 log(1/δ)

log(1/mσ2)

⌉
,

ε =
δ4

(mt+ 1)2k
. (III.1)

Let P (x) =
∑m

i=0 ciSi(g1(x), . . . , gm(x)) be a symmetric
multilinear function of the gis that computes a bounded
function P : {±1}n → [−B,B], with |ci| ≤ C for all
i ∈ [m]. Then,

1) For every ε-biased distribution D, we have∣∣∣∣ E
x∼{±1}n

[P (x)]− E
x∼D

[P (x)]

∣∣∣∣ ≤ O(B + C)δ.

2) P has O(B +C)δ sandwiching approximations of L1
norm O((B + C)(mt+ 1)2kδ−3).

As an illustration of this theorem, we state the following

immediate corollary which formalizes the intuition behind

our arguments for the toy example in the introduction.

Theorem III.2. Let κ > 0 be a constant. Let g1, . . . , gm :
{±1}n → [−σ, σ] be functions on disjoint sets of input vari-
ables with E[gi] = 0, L1[gi] = O(1) and σ ≤ 1/m−1/2−κ.
Let P : {±1}n → [−1, 1] be a symmetric polynomial
in gi’s of the form P (x) =

∑m
i=0 ciSi(g1, . . . , gm), with

|ci| ≤ 1. Then, for every δ ∈ (0, 1), with log(1/σ) ≥
Ωκ(log(1/δ)), P has δ-sandwiching polynomials of L1-norm
at most poly(1/δ).

In the notation from Section I-C, m = 2w+1, σ2 ≈
2−3w/2 and all the other conditions hold.

A key insight in the proof of Theorem III.1 is that |∑i gi|,∑
i g

2
i being small implies the smallness in absolute value

of Sk(g1, . . . , gm) for every k ≥ 2.4. This is done using the

following inequality, which might be of independent interest.

Lemma III.3. Let z1, . . . , zm be real numbers that satisfy∣∣∣∣∣
m∑
i=1

zi

∣∣∣∣∣ ≤ μ,
m∑
i=1

z2i ≤ μ2.

Then for every k ≥ 2 we have |Sk(z1, . . . , zm)| ≤ μk.

Proof: To prove this lemma, we first bound the power

sums Ek(z1, . . . , zm) which are defined as

Ek(z1, . . . , zm) =
m∑
i=1

zki .

Note that E1 = S1. We start by bounding Ek for k ≥ 2
using the Lk norm inequalities

|Ek(z1, . . . , zm)| 1k ≤
(

m∑
i=1

|zi|k
) 1

k

≤
(

m∑
i=1

z2i

) 1
2

= E2(z1, . . . , zm)
1
2

Hence we have |Ek(z1, . . . , zm)| ≤ μk.

The relation between the power sums and elementary

symmetric polynomials is given by the Newton-Girard iden-

tities (see [46], Chapter 7.1 for instance) discovered in the

17th century.

Sk(z1, . . . , zm) =

1

k

k∑
i=1

(−1)i−1Sk−i(z1, . . . , zm)Ei(z1, . . . , zm). (III.2)

We use these to show by induction on k that |Sk| ≤ μk.

For k = 2, we have

S2(z1, . . . , zm) =
1

2
(S1(z1, . . . , zm)2 − E2(z1, . . . , zm))

≤ 1

2
(μ2 + μ2) ≤ μ2.

Assume we have proved the bound up to k−1. Using the

Newton-Girard formula,

|Sk(z1, . . . , zm)| ≤ 1

k

k∑
i=1

|Sk−i(z1, . . . , zm)||Ei(z1, . . . , zm)|

≤ 1

k

k∑
i=1

μk−iμi ≤ μk.

4Up to constants, the hypothesis is equivalent to assuming bounds on
|S1| and |S2|
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XOR Lemma for ε-biased spaces: We now state an

XOR Lemma that helps us show the existence of good

sandwiching approximators for the composition of a function

on few variables with functions on disjoint sets of variables,

each of which have good sandwiching approximators. We

call it an XOR lemma, since one can view it as a general-

ization of Vazirani’s XOR lemma.

Theorem III.4. Let f1, . . . , fk : {±1}n → [0, 1] be
functions on disjoint input variables such that each f i

has ε-sandwiching approximations of L1 norm t. Let H :
[0, 1]k → [0, 1] be a multilinear function in its inputs. Let h :
{±1}n → [0, 1] be defined as h(x) = H(f1(x), . . . , fk(x)).
Then h has (16kε)-sandwiching approximations of L1 norm
4k(t+ 1)k.

Proof: For S ⊆ [k] define the monomial

MS(x) =
∏
i∈S

f i(x)
∏
j �∈S

(1− f j(x)).

Let f i
u and f i

� denote the upper and lower sandwiching

approximations to f i. Then we have

f i
u(x) ≥ f i(x), E

x∼{±1}n
[f i

u(x)− f i(x)] ≤ ε.

1− f j
� (x) ≥ 1− f j

� (x),

E
x∼{±1}n

[(1− f j
� (x))− (1− f j(x))] ≤ ε.

Hence, if we define

MS
u (x) =

∏
i∈S

f i
u(x)

∏
j �∈S

(1− f j
� (x)),

then we have

MS
u (x) ≥MS(x) ∀ x ∈ {±1}n,

L1[M
S
u ] =

∏
i∈S

L1[f
i
u]

∏
j �∈S

L1[1− f j
� ] ≤ (t+ 1)k.

One can show using a hybrid argument, that

E
x∼{±1}n

[MS
u (x)−MS(x)] ≤ 2kε.

We omit the proof for lack of space.
To construct a lower-sandwiching approximator, we ob-

serve that∑
S⊆[k]

MS(x) =
∏
i∈[k]

(f i(x) + 1− f i(x)) = 1.

Hence if we define

MS
� (x) = 1−

∑
T �=S

MT
u (x)

then

MS
� (x) ≤ 1−

∑
T �=S

MT (x) = MS(x),

E
x∼{±1}n

[MS(x)−MS
� (x)] =

∑
T �=S

MT
u (x)−MT (x) ≤ 4kε,

L1[M
S
� ] ≤ 2k(t+ 1)k.

Finally, let 1S ∈ {0, 1}k denote the indicator vector of

the set S. Since H is multilinear, we can write

H(y) =
∑
S⊆[k]

H(1S)
∏
i∈S

yi
∏
j �∈S

(1− yj)

where H(1S) ∈ [0, 1]. Hence

h(x) =
∑
S⊆[k]

H(1S)
∏
i∈S

fi(x)
∏
j �∈S

(1− fj(x))

=
∑
S⊆[k]

H(1S)M
S(x)

We define the polynomials

hu(x) =
∑
S⊆[k]

H(1S)M
S
u (x),

h�(x) =
∑
S⊆[k]

H(1S)M
S
� (x).

It follows that hu(x) ≥ h(x) ≥ h�(x). Further

E
x∼{±1}n

[hu(x)− h�(x)] ≤∑
S⊆[k]

H(1S) E
x∼{±1}n

[MS
u (x)−MS

� (x)] ≤ 16kε,

L1[hu] ≤ 2k(t+ 1)k, L1[h�] ≤ 4k(t+ 1)k.

IV. PRG FOR COMBINATORIAL RECTANGLES

We start by defining combinatorial rectangles (CRs).

Definition IV.1. A combinatorial rectangle is a function
f : ({±1}w)m → {0, 1} of the form f(x1, . . . , xm) =∧m

i=1 fi(xi), where fi : {±1}w → {0, 1}, and each
xi ∈ {±1}w.We refer to the fis as the co-ordinate functions

of f . We refer to m as the size5 of f and w as the width.

We construct an explicit PRG for CRs with seed-length

Õ(logm+w+log(1/δ)). The previous best construction by

Lu had a seed-length of O(logm+ w + log3/2(1/δ)) [30].

Theorem IV.2. There is an explicit pseudorandom generator
for the class of combinatorial rectangles of width w and size
m with error at most δ and seed-length O((logw)(log(m)+
w + log(1/δ)) + log(1/δ) log log(1/δ) log log log(1/δ)).

Our generator uses a recursive sampling technique. We

describe a single step of this procedure. For this informal

description suppose that δ = 1/poly(m), w = O(logm)
and let v = 3w/4. Fix a CR f : ({±1}w)m → {0, 1}.

Consider the following two-step process for generating a

uniformly element x from ({±1}w)m.

• Choose a sequence of multi-sets S1, . . . , Sm ⊆ {±1}w
each of size 2v by picking 2v elements of {±1}w
independently and uniformly at random.

5This is usually referred to as the dimension in the literature; we use this
terminology for the CNF analogy.
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• Sample xi ∼ Si and set x = (x1, . . . , xm).

This results in an x that is uniformly distributed over

({±1}w)m. We will show that the Ex[f(x)] will not change

much, even if the sampling in the first step can is done

pseudorandomly using a small-bias space for suitably small

ε.

Our final generator is obtained by iterating the one-step

procedure for T = O(log logm)) steps: At step t we choose

multi-sets St
1 ⊆ St−1

1 , . . . , St
m ⊆ St−1

m each of cardinality

exactly 2(3/4)
tw using small-bias. After T steps, we are left

with a rectangle of width w = O(log logm). Such rectangles

can be fooled by ε-bias spaces where ε = 1/mO(log logm).

The total randomness used over all the steps is O((logm) ·
(log logm)).

A. Sandwiching Approximations for Bias Functions

In the following, let f be a CR of width w and coordinate

functions f1, . . . , fm : {±1}w → {0, 1}. We describe

a restriction of f which reduces the width from w to

v = 3w/4.

• For every a ∈ {±1}v , we sample string xa =
(xa,1, . . . , xa,m) ∼ {{±1}w}m.

• For i ∈ [m], we define restricted co-ordinate functions

fv
i on inputs yi by fv

i (yi) = f(xyi,i).
• Define the restricted rectangle fv : ({±1}v)m →
{0, 1} on y1, . . . , ym by fv(y1, . . . , ym) =∧m

i=1 f
v
i (yi).

Let x̄ ∈ {{±1}w}2v×m denote the matrix whose rows

are indexed by a ∈ {±1}v , the columns by i ∈ [m] and

(a, i)’th entry is given by x̄[a, i] = xa,i ∈ {±1}w. Every

such matrix defines a restriction of f . We will show that

if choosing x̄ from an ε-biased space for ε = 1/poly(m)
suitably small, and from the uniform distribution have almost

the same effect on f . For i ∈ [m], let x̄[i] denote the i’th
column of x̄. For each coordinate function fi, define the

sample average function

f̄i(x̄) =
1

2v

∑
a∈{±1}v

fi(xa,i) = E
a∼{±1}v

[fv
i (a)] . (IV.1)

Note that each f̄i only depends on column i of x̄. Define

the bias function of x̄ as

F (x̄) =

m∏
i=1

f̄i(x̄) = E
y∼({±1}v)m

[fv(y)] . (IV.2)

The main lemma of this section shows that this bias

function can be fooled by small-bias spaces.

Lemma IV.3 (Main). Let F be as defined in Equation IV.2.
Assume that δ < 1/4 and w ≤ log(1/δ), v = 3w/4 ≥
50 log log(1/δ). Then F (x) has δ-sandwiching approxima-
tions of L1 norm poly(1/δ).

We start by stating two simple claims, the second one

justifies the name ‘bias function’ for F .

Claim IV.4. For the sample average functions f̄i defined as
in Equation IV.1, we have

L1(f̄i) ≤ L1(fi) ≤ 2w/2, E
x̄∼U

[f̄i(x̄)] = E
a∼{±1}w

[fi(a)].

Claim IV.5. For fv and F as defined in Equation IV.2,
Ey∼({±1}v)m [fv(y)] = F (x̄).

We will prove Lemma IV.3 by applying Theorem III.1

to the functions gi : {{±1}w}2v → R defined as follows:

gi(x̄) = (f̄i(x̄)−pi)/pi,, where pi = Ea∼{±1}w [fi(x)]. (We

assume pi 
= 0.)

We will need the following technical lemma, which helps

us show that the functions gi satisfy the moment conditions

needed to apply Theorem III.1. For brevity, let U denote

({±1}v)2v×m
in the remainder of this section. We defer the

proof to the full version.

Lemma IV.6. Let pi, gi,U be defined as above. We have
Ex̄∼U [gi(x̄)2k] ≤ (2k)2kσ2k

i where

σ2
i =

⎧⎪⎨
⎪⎩

(1−pi)
2vpi

for pi ∈ [2−v/10, 1/2],
2(1−pi)

2v for pi ∈ [1/2, 1− 2−v],
2

22v for pi ∈ [1− 2−v, 1].

Proof of Lemma IV.3: We first show the claim under

the assumption that E[f ] = p ≥ δ and later show how to get

around this assumption. Define the sets

S1 = {i : pi ∈ (0, 2−v/10]},
S2 = {i : pi ∈ (2−v/10, 1− 2−v],

S3 = {i : pi ∈ (1− 2−v, 1]}
For j ∈ [3], let Fj(x̄) =

∏
i∈Sj

f̄i(x̄) so that F (x̄) =∏3
j=1 Fj(x̄). We will construct sandwiching approxima-

tions for each Fj and then combine them via Theorem III.4.

We assume without loss of generality that pi ≤ 1 − 2−w.

Else, the i’th coordinate has bias 1 and can be ignored

without changing the rest of the proof.

Sandwiching F1.: We show that L1[F1] is itself small.

Observe that

δ ≤ p =
m∏
i=1

pi ≤
∏
i∈S1

pi ≤ 2−v|S1|/10

which implies that |S1| ≤ 10 log(1/δ)/v. Thus, by

Claim IV.4,

L1[F1] ≤
∏
i∈S1

L1[f̄i] ≤ 2
w
2 |S1| ≤

(
1

δ

)5w/v

≤ 1

δ20/3
.

Sandwiching F2.: Note that

F2(x̄) =
∏
i∈S2

f̄i(x̄) =
∏
i∈S2

pi · (1 + gi(x̄)).
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Notice that F2 is a symmetric polynomial in the gi’s, so

we will obtain sandwiching polynomials for F2 by applying

Theorem III.1 to gi’s. As before,

δ ≤ p ≤
∏
i∈S2

pi ≤ (1− 2−v)|S2|,

so we have |S2| ≤ 2v log(1/δ). Further we can write

δ ≤ p ≤
∏
i∈S2

(1− (1− pi)) ≤ e−
∑

i∈S2
(1−pi),

Hence
∑
i∈S2

(1− pi) ≤ 2 log(1/δ).

By Lemma IV.6, we have

E
x∼{±1}n

[gi(x̄)
2k] ≤ (2k)2kσ2k

i ,

where 2/2v ≤ σ2
i = (1 − pi)/2

9v/10 for every i ∈ S2.

Hence,∑
i∈S2

σ2
i =

∑
i∈S2

1− pi
29v/10

≤ 2 log(1/δ)

29v/10
≤ 1

log(1/δ)25
.

Hence Theorem III.1 implies the existence of O(δ) (B = 1
and C =

∏
i∈S2

pi ≤ 1) sandwiching approximations with

L1 norm bounded by (mt+ 1)2k where

m = |S2| ≤ 2v log(1/δ) ≤ 25v/4,

t ≤ 2w/2 ≤ 2v,

k ≤ 5 log(1/δ)

log(1/
∑

i σ
2
i )
≤ 25 log(1/δ)

4v
.

which implies the L1 norm is bounded by poly(1/δ).
The arguments for getting sandwiching approximators for

F3 and from there to F are similar. For lack of space, we

defer the details to the full version.

B. A Recursive Sampler for Combinatorial Rectangles

We now use Lemma IV.3 recursively to prove Theo-

rem IV.2. Our generator is based on a derandomized re-

cursive sampling procedure which we describe below. The

inputs are the width w and the size m of the rectangles we

wish to fool and an error parameter δ ≤ 1/2w.

1) Let v0 = w, vj =
(
3
4

)j
w.

2) While vj ≥ 50 log log(1/δ) we sample x̄j ∈
{{±1}vj−1}2vj×m according to an ε1-biased distribu-

tion for ε ≤ (1/δ)c1 for some large constant c1.

3) Assume that at step t (where t = O(logw)), vt ≤
50 log log(1/δ). Sample an input x̄t ∈ ({±1}vt−1)

m

from an ε2-biased distribution where, for some large

constant c2,

ε2 ≤ (1/δ)
c2(log log(1/δ) log log log(1/δ))

.

We next describe how we use x = (x̄1, . . . , x̄t) to output

an element of ({±1}w)m. For k ∈ {1, . . . , t − 1} we

denote by sk the recursive sampling function which takes

strings x̄j ∈ {{±1}vj−1}2vj×m for j ∈ {k + 1, . . . , t −
1} and x̄t ∈ ({±1}vt)m and produces an output string

sk(x̄k+1, . . . , x̄t) ∈ ({±1}vk)m. Set st−1(x̄t) ≡ x̄t. Fix

k < t−1 and let z = sk+1(x̄k+2, . . . , x̄t) be already defined.

To define sk, we will use z to look up entries from the matrix

x̄k+1, so that the i’th coordinate of sk will be the entry of

x̄k+1 in the zi’th row and i’th column:

sk(x) ≡ sk(x̄k+1, . . . , x̄t)

= ((x̄k+1)z1,1, (x̄k+1)z2,2, . . . , (x̄k+1)zm,m)

∈ ({±1}vk)m .

The above definition, though intuitive is a bit cumbersome

to work with. It will be far easier for analysis to fix the

input combinatorial rectangle f : ({±1}w)m → {0, 1} and

study the effect of the samplers sk on f . Let f0 = f . Each

matrix x̄j gives a restriction of f j−1: it defines restricted

co-ordinate functions f j
i : {±1}vj → {0, 1} and a corre-

sponding restricted rectangle f j : {{±1}vj}m → {0, 1}.
We only use the following property of the sjs:

f(s0(x)) = f1(s1(x)) · · · f t−1(st−1(x)). (IV.3)

To analyze the last step, we shall use the following simple

corollary that follows from [25]. We defer the proof of the

corollary to the full version.

Corollary IV.7. Every combinatorial rectangle f :
{{±1}v}m → {±1} is δ-fooled by ε-bias spaces for
ε = (m2v/δ)

−O(v log v).

Let U equal the domain of x:

({±1}v0)2v1×m · · · × ({±1}vt−2)
2vt−1×m × ({±1}vt−1)

m
.

Let Dj denote the distribution on U where x̄i are sampled

from an ε-biased distribution for i < j and uniformly for i ≥
j. Then, s0(D0) is the uniform distribution on {{±1}w}m
whereas s0(Dt) is the output of our Recursive Sampler.

Lemma IV.8. Let f : {{±1}w}m → {0, 1} be a combina-
torial rectangle with width w and size m. For distributions
D0 and Dt defined above, we have∣∣∣∣ E

x∼D0
[f(s0(x))]− E

x∼Dt
[f(s0(x))]

∣∣∣∣ ≤ δ.

Proof: Let δ′ = δ/t. We will show by a hybrid

argument that for all j ∈ {1, . . . , t}∣∣∣∣ E
x∼Dj−1

[f(s0(x))]− E
x∼Dj

[f(s0(x))]

∣∣∣∣ ≤ δ′. (IV.4)

In both Dj−1 and Dj , x̄i is drawn from an ε-biased

distribution for i < j, and from the uniform distribution for

i > j. The only difference is x̄j which is sampled uniformly

in Dj−1 and from an ε-biased distribution in Dj .
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We couple the two distributions by drawing x̄i for i < j
according to an ε-biased distribution. By Equation (IV.3),

E
x∼Dj−1

[f(s0(x))] = E
x∼Dj−1

[f j−1(sj−1(x))],

E
x∼Dj

[f(s0(x))] = E
x∼Dj

[f j−1(sj−1(x))]

and our goal is now to show that∣∣∣∣ E
x∼Dj−1

[f j−1(sj−1(x))]− E
x∼Dj

[f j−1(sj−1(x))]

∣∣∣∣ ≤ δ′.

(IV.5)

Define the bias function F j−1 of the rectangle f j−1 as in

Equation (IV.2). The string x̄j defines a restricted rectangle

f j : {{±1}vj}m → {0, 1}. Applying Claim IV.5 we get

E
z∼({±1}vj )m

[f j(z)] = F j−1(x̄j).

In both distributions Dj−1 and Dj , x̄j+1, . . . , x̄t are dis-

tributed uniformly at random, hence sj(Dj−1) = sj(Dj) ∼
({±1}vj )m are uniformly distributed, and this variable is

independent of x̄j . So we have

E
x∼Dj−1

[f j−1(sj−1(x))] =

E
x̄j∼Dj−1

[
E

(x̄j+1...,x̄t)∼Dj−1
[f j(sj(x̄j+1, . . . , x̄t))]

]
=

E
x̄j∼Dj−1

[F j−1(x̄j)] ,

E
x∼Dj

[f j−1(sj−1(x))] =

E
x̄j∼Dj

[
E

(x̄j+1...,x̄t)∼Dj
[f j(sj(x̄j+1, . . . , x̄t))]

]
=

E
x̄j∼Dj

[F j−1(x̄j)]

Thus it suffices to show that∣∣∣∣ E
x̄j∼Dj−1

[F j−1(x̄j)]− E
x̄j∼Dj

[F j−1(x̄j)]

∣∣∣∣ ≤ δ′

By Lemma IV.3, this holds true for j ≤ t− 1 provided that

ε1 ≤ poly(1/δ′).
For j = t, note that this is equivalent to showing that

ε2-bias fools the rectangle f t. By Corollary IV.7, f t is δ′

fooled by ε2-biased spaces where

ε2 =

(
m2vt

δ′

)−O(vt log vt)

=

(
1

δ′

)O(log log(1/δ′) log log log(1/δ′))

.

Plugging these back into Equation (IV.4), the error is

bounded by t · δ′ ≤ δ.

To complete the proof of Theorem IV.2, we observe that

the total seed-length is

s = O ((logw)(log(m2w/ε1) + log(m2w/ε2))

= O( logw (logm+ w + log(1/δ))+

log(1/δ) log log(1/δ) log log log(1/δ)).
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