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Abstract—There has been considerable interest lately in the
complexity of distributions. Recently, Lovett and Viola (CCC
2011) showed that the statistical distance between a uniform
distribution over a good code, and any distribution which can
be efficiently sampled by a small bounded-depth AC0 circuit,
is inverse-polynomially close to one. That is, such distributions
are very far from each other. We strengthen their result, and
show that the distance is in fact exponentially close to one. This
allows us to strengthen the parameters in their application for
data structure lower bounds for succinct data structures for
codes.

From a technical point of view, we develop new large
deviation bounds for functions computed by small depth
decision trees, which we then apply to obtain bounds for AC0

circuits via the switching lemma. We show that if such functions
are Lipschitz on average in a certain sense, then they are in fact
Lipschitz almost everywhere. This type of result falls into the
extensive line of research which studies large deviation bounds
for the sum of random variables, where while not independent,
exhibit large deviation bounds similar to these obtained by
independent random variables.

Keywords-Small depth circuits, Lower Bounds, Sampling
Distributions, Concentration Bounds

I. INTRODUCTION

Perhaps the earliest use of randomized (Monte Carlo)

methods in algorithms was not to solve decision prob-

lems, but to sample from distributions as a simulation.

The complexity theory of randomized sampling algorithms

was introduced by Jerrum, Valiant and Vazirani [1], and

there have been a huge number of algorithmic results on

sampling, especially via the Monte Carlo Markov Chain

method [2]. However, the first lower bounds on the com-

plexity of sampling have been relatively recent. Explicitly,

the challenge of exhibiting a distribution which cannot be

efficiently sampled was raised by Goldreich, Goldwasser and

Nussboim [3] and by Viola [4]. Such a distribution was

given recently by Lovett and Viola [5], who showed that

the uniform distribution over good codes cannot be sampled,

or even approximately sampled, by bounded depth circuits

Research of the first author supported by NSF grants CCF-0832797,
CCF-1117309. Research of the second author supported by NSF grants
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(i.e. AC0 circuits). Our work was motivated by improving

the parameters obtained by [5], but has led us to discover

certain large deviation bounds which hold for bounded depth

circuits and for decision trees, which we believe should have

other applications.

Let us start by describing the result of [5]. In the fol-

lowing, an (n, k, d)-code is a subset C ⊂ {0, 1}n of size

|C| = 2k, such that the hamming distance between any

two distinct codewords is at least d. A code is called good
if k, d = Ω(n). A distribution D over {0, 1}n is said to

be sampled by an AC0 circuit of depth d and size s, if

there exists a function F : {0, 1}m → {0, 1}n for some m,

computed by an AC0 circuit of depth d and size s, such

that D is the output distribution of F given uniform input.

One may think of such distributions as distributions which

can be sampled efficiently in parallel given access to truly

uniform bits.

Theorem I.1 ([5]). The statistical distance between the

uniform distribution over a good code C ⊂ {0, 1}n and

any distribution sampled by an AC0 circuit of depth d and

size exp(nO(1/d)) is at least 1− n−Ω(1).

This result achieves the “correct” tradeoff between the

size and depth of the circuit. However, a shortcoming of the

parameters achieved is that the statistical distance between

the distributions is only guaranteed to be inverse-polynomial

close to 1, while in theory one could hope for it to be

exponentially close to 1. This can be seen as the analog of

correlation bounds in the world of distributions: statistical

distance 1 − ε between distributions can be seen as the

analog of two functions having correlation of at most ε.

In this work, we improve the statistical distance guarantee

to indeed be exponentially close to 1.

Theorem I.2 (This work). The statistical distance between

the uniform distribution over a good code C ⊂ {0, 1}n and

any distribution sampled by an AC0 circuit of depth d and

size exp(nO(1/d)) is at least 1− exp(−nΩ(1/d)).

Applications to data structures: One application of [5]

to the sampling lower bounds they obtained, is a corollary

which shows that data structures for codes, which allow
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to compute the codewords given their internal storage effi-

ciently, must have some redundancy in their internal storage.

Corollary I.3 ([5]). Let C be an (n, k, d) code with kd ≥
n1+ε. Suppose we can store codewords of C using only

k+ r bits so that each bit of the codeword can be computed

by an AC0 circuit of depth O(1) and size poly(n). Then

r ≥ Ω(log n).

Plugging in our improved bound on the statistical dis-

tance, we obtain the following improvement.

Corollary I.4 (This work). Let C be a good code of size

|C| = 2k. Suppose we can store codewords of C using only

k+ r bits so that each bit of the codeword can be computed

by an AC0 circuit of depth d and size exp(nO(1/d)). Then

r ≥ nΩ(1/d).

We note that the bound of [5] holds for codes for which

dk ≥ n1+ε, while our bounds as stated hold only for

good codes, i.e. codes for which k, d ≥ Ω(n). A careful

examination of our proof shows that the proof can be

extended to the case of d4k5 ≥ n8+ε. We leave it as an

open problem whether our result can be extended to the

case of dk ≥ n1+ε.

New tools: The proof of [5] was based on analyz-

ing the effect of noise on the circuit which samples the

distribution. Let F : {0, 1}m → {0, 1}n be a function

computed by a small AC0-circuit whose output distribution

is somewhat close to the uniform distribution over a code.

Let x ∈ {0, 1}m be a uniform input, and y ∈ {0, 1}m be

a correlated input chosen so Pr[xi = yi] = 1 − p. The

idea is to bound the probability that F (x), F (y) are two

distinct codewords, in two different ways. On the one hand,

if F is somewhat successful in sampling a code, then this

probability will be noticeably large, simply because of the

expansion of subsets of the noisy hypercube, and without

consideration of the complexity of computing F . For typical

parameters, this probability will be comparable to one minus

the statistical distance, i.e. the “overlap” of the sampled

distribution with the target distribution. On the other hand, if

each output bit Fi of F is computed by a small AC0-circuit,

then by the noise sensitivity results of [6], each output bit

has low noise sensitivity.

Pr[Fi(x) �= Fi(y)] ≤ p · logO(1) n.

Using this and a Markov argument, we see that

Pr[dist(F (x), F (y)) ≥ Ω(n)] ≤ p · logO(1) n.

Hence we obtain an upper bound on the probability to

obtain two distinct codewords, and thus the overlap of the

distribution with a code, as desired.

Suppose we could show that the output bits of F are not

only noise insensitive, but also uncorrelated in their response

to noise, so that the probability that t bits flip in response

to noise falls off exponentially in t. Then we would have

Pr[dist(F (x), F (y)) ≥ Ω(n)] ≤ exp(−nΩ(1)),

which would imply the desired exponential improvement

in the statistical distance bound. However, in general this

need not be the case. For instance each of the Fi might be

identical, or they could all depend on a tiny subset of the

variables and hence be highly correlated.

We show that in the setting where each bit of F is com-

puted by a small decision tree, this is the only way that such

concentration can fail. That is, if each Fi is computed by a

small decision tree and there are no particularly influential

variables, we show that an inequality as above holds, and

so by the previous considerations, balanced collections of

decision trees cannot sample a distribution with better than

exponentially small overlap with a good code.

Then, we essentially reduce the general case to this case.

First, we use random restrictions and the Håstad Switching

Lemma [7] (which underlies [6]) to show that if an AC0-

circuit samples a good code well, then a collection of small

decision trees samples a fairly good code fairly well. We

similarly reduce general decision trees to balanced decision

trees – the idea is that a small decision tree can only have

a small number of influential variables, so we can restrict

each of these randomly until none are left and obtain a

balanced tree. We believe that our technique of breaking

up decision forests into balanced decision forests, together

with the concentration bound for balanced forests, may be

useful in other contexts as well.

The reduction argument can also be understood roughly as

follows. Since balanced decision trees satisfy concentration,

they can only sample distributions which place significant

weight on at most one codeword of any code. On the other

hand, a general decision tree of height say nε will have at

most ≈ nε influential variables. If for each fixing of these,

there is at most one significant codeword, overall there can

only be significant weight on at most 2n
ε

codewords, and

hence the decision tree cannot be sampling a code with say

2O(n) codewords.

The main technical step in our work is the large deviation

bound for balanced collections of decision trees, which we

discuss and prove in Section II. The two reduction lemmas

are proved in Section III, where we also prove the main

theorem.

II. LARGE DEVIATION BOUND FOR DECISION FORESTS

One of the most common mistakes in reasoning about

probabilities is to identify a random variable with its expec-

tation. Fortunately, in many circumstances, there are large

deviation bounds that tell us that the variable is approxi-

mately its expectation with high probability. Examples of

such large deviation bounds are the Chernoff-Hoeffding

bounds for sums of independent Boolean variables, Azuma’s
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inequality for Martingales of bounded difference, Tala-

grand’s inequality, and the Kim-Vu inequality for low degree

polynomials. For a discussion, see [8].

We show a similar concentration bound for the sum of

Boolean variables that are computed as relatively small

height decision trees over a common set of variables. As

far as we are aware, there is no previous work giving such a

bound. The Kim-Vu bound [9] is closest to our situation,

since decision trees of height h can also be written as

polynomials of degree h. However, their bound, while useful

for a host of combinatorial applications, deteriorates sharply

in the degree, and so does not seem useful when the height

is greater than logarithmic in the number of bits output.

One reason why there may be no previous concentration

bounds is that, in general, such bounds are false. The

decision trees could all be identical, or more generally,

all depend on a small set of variables and so be highly

correlated. What we show is that, essentially, when these

pathological cases are ruled out, concentration around the

expectation holds.

We state our result more precisely below:

A decision tree is a binary tree whose leaves are labeled

with values {0, 1} and whose internal nodes are labeled with

Boolean variables x1, . . . , xm. Given an input assignment of

{0, 1} to the variables x1, . . . , xm, a path is determined from

the root to one of the leaves by identifying 0 with left and

1 with right and moving from each node labeled xi to the

child as indicated by the value of the assignment on xi. The

decision tree is then said to compute the value corresponding

to this leaf on that input. If the path passes through a node

labeled xi, then xi is said to be queried on this input. A

decision tree queries a variable at most once on a path. The

height of the decision tree is the height of the underlying

binary tree.

A decision forest is a collection of decision trees. Given a

forest F of n trees reading variables x1, . . . , xm, it computes

the function F : {0, 1}m → {0, 1}n whose i’th bit is the

function computed by the i’th tree.

Definition II.1. For a decision forest F and an input �x, a

Boolean variable xi has significance α if an α fraction of

trees query xi on input �x. We notate this

sigF (�x, xi) = α.

The average significance of a variable xi with respect to F
is the expected significance of xi for a uniformly random

assignment �x, notated sigF (xi).

Significance seems very related to the influence of vari-

ables. The influence of a variable on a boolean function is the

probability that changing that variable changes the function

value, starting from a random input. For functions computing

multiple bits, a natural generalization is the expected fraction

of outputs bits which flip. However, whereas influence

is a blackbox definition depending only on the function

computed by F , significance is a “whitebox” definition and

may be different for two forests even if they compute the

same function. The significance of a variable upper bounds

its influence – if a decision tree does not query variable

xi on some input �x, then flipping xi cannot change the

output value. Intuitively, the stronger assumption of bounded

average significances rather than bounded influences permits

us to show that on a random input, the paths followed in

each of the trees of F are “decoupled” and behave mostly

independently of one another.

Definition II.2. For �x a string in {0, 1}n, W (�x) is the

number of ones, i.e., the hamming weight of �x and w(�x)
is the fractional hamming weight, W (�x)/n.

Theorem II.3. Let F be a decision forest of height at most

h and with all average significances at most β. Then, for

any ε > 0,

Pr
�x

[
w(F(�x)) ≥ O

(
E
�x
[w(F(�x))] + h4

√
β log(h4/ε)

)]
≤ ε

While this result already has several interesting applica-

tions and is reminiscent of the polynomial setting, it is quite

different from the Kim and Vu result in several important

ways. In applications, the value β might be on the order of

n−δ where n is the number of trees, so in such cases h can

also be polynomially large in n while still giving a strong

bound on deviations. It is also interesting that the bound we

obtain does not depend explicitly on the number of input

variables, a fact which is convenient for us later. On the

other hand, we will mainly apply our bound to situations

where the expectation is comparable to β, where it is not a

true concentration bound, since the error term will be much

larger than the expectation.

The theorem has the following important corollary which

we will use for our primary applications:

Corollary II.4. Let F be a decision forest of height at most

h, with all average significances at most β. For any ε > 0,

Pr
�x

[
max

i
sigF (�x, xi) ≥ O

(
h4

√
β log(2h5/βε)

)]
≤ ε.

Thus, if F is small height and with all significances

small on average, then in a strong quantitative sense F
has all significances small almost always. Loosely, if such

an F is “Lipschitz on average”, usually a relatively benign

condition, F is automatically “Lipschitz almost everywhere”

for an appropriate small Lipschitz constant. This relatively

strong condition permits further analysis to take place via the

well-known tools described earlier. This automatic boosting

of a Lipschitz on average condition to a Lipschitz almost

everywhere condition is a rare and interesting feature of our

work.

Now we will prove Theorem II.3 and Corollary II.4. To

build intuition, we first prove a special case of the theorem

where the sets of variables queried at different heights of

103



the trees are disjoint. Then we show the general case by in

essence reducing to the special case.

A. Special Case

First we need some preliminaries. Say that a node is at

height i in a tree if it is i steps from the root. The i’th layer

is the set of nodes at height i. The way in which we will use

bounds on average significance is to bound the number of

times a variable is queried in any given layer. Generally we

will speak of the leaves of a decision tree as the “bottom”

of the tree.

Observation II.5. For any forest F ,

sigF (xi) =
1

|F| ·
h∑

j=0

2−j ·{# nodes at height j querying xi}

Proposition II.6. Let F be a decision forest of height at

most h, with average significances at most β, and with

expected hamming weight of an output at most α. Suppose

further that no input variable occurs at multiple layers in the

forest. Then,

Pr
�x

[
w(F(�x)) ≥ E

�x
[w(F(�x))] + h

√
β

2
log

h

ε

]
≤ ε.

The idea of the proof is to reveal the input variables one

layer at a time, starting at the bottom. Suppose we choose

values just for the inputs corresponding to the bottom layer.

Since these inputs aren’t queried anywhere else, the upper

portion of the tree remains the same. The bottom layer

nodes simplify, since the variable they query has now been

assigned, and become the new leaves. Thus the decision

forest becomes one smaller in height each time we reveal a

layer in this manner. We track how the expected hamming

weight of an input changes as we reveal all the layers one

by one, and show that at each step it is unlikely to increase

by much. In analyzing this, we are really only thinking

about trees of height 1; the following lemma encapsulates

our reasoning here, which is just a simple application of

Hoeffding’s inequality:

Fact II.7 (Hoeffding’s Inequality). Let X1, . . . , Xn be inde-

pendent random variables, such that for each i, Xi ∈ [ai, bi].
Then

Pr

[∑
i

Xi − E

[∑
i

Xi

]
> δ

]
≤ exp

(
− 2δ2∑

i(bi − ai)2

)
.

Lemma II.8. Let F be a decision forest of height 1, with

expected weight α and average significances at most β. For

any δ > 0,

Pr
�x

[
w(F(�x)) ≥ E

�x
[w(F(�x))] + δ

]
≤ exp

(
−2δ2

β

)
.

Proof: Let X denote the fractional weight of F(�x).
Write

X = X0 +
∑

i:xi is a variable

Xi,

for the contributions to X of trees querying a particular

variable xi and constant trees. Thus X0 is a constant and

the Xi’s are independent. Each Xi is at most sigF (xi) and

all are at least 0, so Hoeffding’s inequality gives the bound

Pr
�x

[
w(F(�x))− E

�x
[w(F(�x))] ≥ δ

]
< exp

(
− 2δ2∑

i sig(xi)2

)

We bound the sum of the squares of the significances by the

sum of the significances times the maximum significance,

the former being at most 1 and the latter being at most β
by assumption. This finishes the proof.

We can apply this argument recursively to prove Propo-

sition II.6.

Proof of Proposition II.6.: For simplicity throughout

this argument we will assume that all trees are complete

trees of height h, that is, no query path terminates early.

This can be achieved by padding the trees with dummy

queries without changing anything important; we think of

these dummy queries as all being answered randomly and

independent of one another and the input. It is convenient

to do this because when the trees are complete trees, the

expected fractional hamming weight of an output is exactly

equal to the fraction of leaves which are labeled 1.

We apply Lemma II.8 h times in succession, each time

to the bottom layer of the current forest; by revealing

this bottom layer, the forest becomes a forest of complete

trees one height smaller, and the average significances of

the variables don’t increase. Since the expected fractional

hamming weight of a forest is the fractional weight of the

leaves, Lemma II.8 bounds exactly the fractional weight of

the leaves of the reduced tree. Additionally, it is easy to see

using Observation II.5 that these bottom level decision trees

also have average significances at most β. If we apply the

bound with the same value of δ each time, we obtain

Pr
�x

[
w(F(�x)) > E

�x
[w(F(�x))] + hδ

]
≤ h exp

(
−2δ2

β

)
.

or, rewriting in terms of error probability,

Pr
�x

[
w(F(�x)) > E

�x
[w(F(�x))] + h

√
β

2
log

h

ε

]
≤ ε.

B. General Case

In the general case, the plan is again to prove the result

by induction on the height. We fix the following notation

for two operations on decision forests. Here F is a decision

forest of n trees of height h.
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Definition II.9 (truncating). F ′ is the forest of 2n subtrees

rooted at the immediate children of the roots of the trees of

F , thus F ′ has height h − 1. If one of the trees of F is a

constant, then corresponding to it F ′ will have 2 copies of

this constant tree.

Definition II.10 (pruning). For P a partition of the vari-

ables, FP is the pruned forest which never reads a variable

in any tree which is in the same class as the root variable in

that tree. That is, for each tree in F if the variable read at

the root is in part Pi, then the corresponding tree in FP has

all non-root nodes labeled with variables from Pi deleted

and instead replaced with leaves assigning the value 0.

The idea is to repeatedly prune and truncate the forest,

using standard techniques to ensure that with high probabil-

ity, a large deviation can only occur in the original forest

when it occurs in the pruned and truncated forest. When the

height is small we don’t lose much by iterating this. Very

important to this strategy is the observation that pruning and

truncating never increase the significance of a variable.

The proof of the inductive hypothesis will have two steps.

First we prune F using a random partition P of the variables

into h3 parts. Via an averaging argument, we can select

a partition such that if F has significant probability for a

large deviation, then FP also has similar probability for a

similarly large deviation. We observe that since we were

only pruning nodes, FP has small average significances if

F does.

Second, we consider each part of the pruned forest FP
and analyze as we did in the special case. We show that no

part is likely to deviate much from the corresponding part of

the truncated forest (FP)′. Aggregating across the different

parts, we conclude FP rarely deviates much from (FP)′,
which is controlled by the inductive assumption.

Lemma II.11. For any height h forest F , if Pr�x[w(F(�x)) >
α] > ε, then for some partition P of the variables into h3

parts, Pr�x[w(FP(�x)) > α(1− h−1)] > ε(1− h−1).

Proof: The proof is an averaging argument. Let P be a

random coloring of the input variables with h3 colors. Fix �x
and consider what fraction of ones of F(�x) are pruned by P ,

that is, are zeros of FP(�x). A particular one is pruned if in

the corresponding tree, one of the nonroot variables queried

on �x’s path is colored the same as the root variable. There

are at most h variables on a path, so by a union bound the

probability that it is pruned is at most h−2.

Let S := {�x : w(F(�x)) > α} be the set of inputs resulting

in high hamming weight. By assumption S has measure

exceeding ε.
Now, choose �x randomly from S and a random P . In

expectation, at most a fraction h−2 of the ones are pruned

by P , so by averaging there is a fixed choice of P for which

this holds. By Markov’s inequality, the probability that more

than h−1 are pruned by P from a random element of S

is at most h−1. Thus, FP has fractional weight exceeding

(1−h−1)α with probability exceeding ε(1−h−1), as desired.

Since we are only going to perform pruning h times,

we are over all only going to lose multiplicative factors of

(1− h−1)h = O(1) in the probability and magnitude of the

deviation overall to these steps.

Lemma II.12. Fix a forest FP of n trees of height h, with

P a partition having h3 parts. Then, for any δ > 0,

Pr
�x

[
w(FP(�x))− w(F ′P(�x)) > h3δ

]
≤ h3 exp

(
2δ2

β

)
.

Proof: The idea of the proof is to break the forest

into parts according to P , and bound the growth of each

separately using Hoeffding’s inequality as before. Note that

we can safely ignore any constant trees in FP , as before.

Let p be any part of P , and let Fp denote the set of trees

of F whose root is in p. For any fixed assignment to the

variables outside p, Fp becomes a forest of height 1, with

variables of p at the root. No variable occurs more than βn
times, or else it has significance exceeding β in the overall

forest. Applying Hoeffding’s bound essentially as we did in

Lemma II.8, we have that for any δ > 0,

Pr
�x

[
W (Fp(�x))− E

�x
[W (Fp(�x))] > δn

]

≤ exp

⎛
⎜⎝− 2(δn)2∑

i

(
|Fp|sigFp

(xi)
)2

⎞
⎟⎠

≤ exp

(
− 2δ2n2∑

i (|Fp|sig(xi))maxi (|Fp|sig(xi))

)

≤ exp

(
− 2δ2n2

n · βn

)
≤ exp

(
−2δ2

β

)
.

We saw before that the expected fractional hamming weight

of a height one forest (in which every root makes a query) is

the fractional hamming weight of the leaves, and the string

appearing at the leaves is computed by the truncated forest

F ′p, so this gives

Pr
�x

[
W (Fp(�x))−

1

2
W (F ′p(�x)) > δn

]
≤ exp

(
−2δ2

β

)
.

This bound holds for any fixed value of the variables outside

p, so it holds when these are chosen randomly as well. The

sum of the hamming weight for each part Fp is the hamming

weight for FP , and the sum of the hamming weight for each

part F ′p is the hamming weight for F ′P , so by a union bound

over each p ∈ P ,

Pr
�x

[
W (FP(�x))−

1

2
W (F ′P(�x)) > h3δn

]
≤ h3 exp

(
−2δ2

β

)

which, rewriting as fractional weight, is as desired.

Now we can prove Theorem II.3.

105



Proof of Theorem II.3.:
Following the sketch earlier, the proof is by induction on

the height. Fix some α, β later.

Suppose that F is of height h with E�x[w(F(�x))] ≤ α,

maxi sigF (xi) ≤ β, and Pr�x[w(F(�x)) > αh] > εh. By

Lemma II.11, there is a partition P with h3 parts so that

Pr�x[w(FP(�x)) > (1− h−1)αh] > (1− h−1)εh, where FP
the same or smaller expected fractional weight and average

significances. Fix some δ > 0 later; by Lemma II.12, and

a union bound, the probability that F ′P(�x) has fractional

weight exceeding (1−h−1)αh−h3δ is at least (1−h−1)εh−
h3 exp

(
− 2δ2

β

)
. Let αh−1 = (1 − h−1)αh − h3δ, εh−1 =

(1−h−1)εh−h3 exp
(
− 2δ2

β

)
, and apply recursively to F ′P .

When the height is reduced to one, Lemma II.8 bounds

α1 as at most α+ δ and ε1 as at most exp
(
− 2δ2

β

)
, so we

deduce a constraint on αh, εh. For convenience, we use the

same value of δ at every step and also the same value of h
when dividing into partitions. When we unfold the depth h
recursion above, an additive term may be multiplied by as

many as h factors of (1−h−1)−1, however as noted earlier

(1− h−1)−h = Θ(1), so up to O(1) factors

αh ≤ O(α+ h4δ), εh ≤ O

(
h4 exp

(
−2δ2

β

))
.

Let F be any forest of height h, take β = maxi sigF (xi),
α = E�x[w(F(�x))] and apply the result. Writing δ in terms

of our final ε, we have

Pr
�x

[
w(F(�x)) ≥ O

(
E
�x
[w(F(�x))] + h4

√
β log(h4/ε)

)]
≤ ε

as desired.

C. Average Lipschitz to Lipschitz Almost Everywhere

Here we give the proof of Corollary II.4.

Proof of Corollary II.4:
For any decision tree T of height h and any variable xi,

the function �x 	→ sigT (�x, xi) can be computed by a tree

of height h by relabeling the leaves of T . If F is a forest

with average significances at most β, then relabeling the

leaves of each tree of F this way produces a forest such

that w(F(�x)) = sigF (�x, xi). By assumption, the expected

fractional weight of this forest is at most β, so Theorem II.3

bounds the probability that sigF (�x, xi) is large. Suppose

there are n trees in F . A union bound over all n2h possible

variables queried by F yields

Pr
�x

[
max

i
sigF (�x, xi) ≥ O

(
h4

√
β log(h4n2h/ε)

)]
≤ ε,

which while good enough for some applications, is some-

what wasteful.

To do better, first cluster the variables greedily into

clusters such that the sum of the average significances of the

variables is between β/2 and β. Since on any input at most

h variables are queried, the sum of the average significances

of all variables is at most h, so we obtain at most 2hβ−1

clusters. For each cluster C, relabel the leaves of each tree

T ∈ F so that it computes the indicator
∨

xi∈C sigT (�x, xi).
The expected fractional weight is again at most β, so we

can apply Theorem II.3 to bound the probability that on

any input, many trees query a variable from C, which also

bounds the probability that many trees query any particular

variable of C. A union bound over all clusters implies

Pr
�x

[
max

i
sigF (�x, xi) ≥ O

(
h4

√
β log(2h5/βε)

)]
≤ ε.

III. A LOWER BOUND FOR SAMPLING BY

AC0-CIRCUITS

Lovett and Viola [5] showed that even exponentially large

AC0-circuits cannot approximate uniform distributions over

good error correcting codes, where approximation is mea-

sured by the statistical distance between the distributions.

For two distributions D,D′,

sd(D,D′) := max
S

∣∣∣Pr
D
[S]− Pr

D′
[S]

∣∣∣ .
Let Un denote the uniform distribution on {0, 1}n, and for

C a subset of {0, 1}n let UC denote the uniform distribution

on C.

Just for convenience, we will say that the statistical

distance between a function F : {0, 1}m → {0, 1}n and

a set C is the statistical distance between F (Um) and UC .

Here we formally restate Theorems I.1, I.2.

Theorem III.1 ([5], main result). Let F : {0, 1}m →
{0, 1}n be a function computable by an AC0 circuit of size

S and depth d. For any good code C,

sd(F, C) ≥ 1−O
(
n−1 logd−1 S

)1/3

.

Theorem III.2 (This work). Let ε = min( 1
5d+29 ,

4
6d+11 ).

Let F : {0, 1}m → {0, 1}n be a function computable by an

AC0-circuit of depth d and size 2O(nε). For any good code

C,

sd(F, C) ≥ 1− 4 · 2−Ω(nε),

the constants depending only on the quality of the code and

d.

A. Results from previous work

The following lemma is an application of hypercontrac-

tivity, which we will use in several places. We won’t use

hypercontractivity except via this lemma. In this section, for

S a subset of the hypercube {0, 1}m, μ(S) will denote the

measure of S, μ(S) = |S|/2m.

Lemma III.3 ([5], Lemma 6). Let S be a subset of the

hypercube {0, 1}m. Let x be a uniformly chosen point of the

hypercube, and let y be chosen from the noise distribution
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μp in which each component is iid, and 1 is chosen with

probability p. Then for any p,

(μ(S))
1+p ≥ Pr

x∈Um,y∈μp

[x ∈ S, x+ y ∈ S] ≥ (μ(S))
2
,

where + is bitwise xor.

We also need to use the Håstad Switching Lemma. Let

x1, . . . , xm be a set of boolean variables. A (boolean)

restriction is a map ρ be a map {x1, . . . , xm} → {0, 1, 	}.
If ρ(xi) = 	, xi is said to be unset by the restriction ρ, and

otherwise xi is set to the value ρ(xi). A random restriction
with unset probability p is the distribution on restrictions

where each variable is independently unset with probability

p and otherwise independently set to a uniformly random

value.

Proposition III.4. [Håstad switching lemma [7], (see also

[10], [11], [12], [13])] Let C be a circuit on n variables of

size S and depth d. For any h, let ρ be a random restriction

with unset probability p ≤ 1
14 · (14h)

−d
. Then each output

of C|ρ is computed by a decision tree of height at most h,

except with probability S
(
1
2

)h
.

B. High Level Overview

We follow the same general strategy as [5]. They showed,

using hypercontractivity, that if any function has significant

overlap with the uniform distribution on a code C, that there

if we look at two correlated inputs x and x′ = x + y
for noise vector y, there is a good probability that both

map to codewords, and that these codewords are distinct.

Since codewords are far in hamming distance, this means

that the small perturbation on the inputs is responsible for

a large perturbation on the outputs. Thus, with reasonable

probability, the outputs have to be very sensitive to the

inputs. Finally, they use the bound on the average sensitivity

of AC0 functions by [6] to get a contradiction.

It is this last step we improve. [6] prove their bound on

sensitivity by using the Håstad Switching Lemma, so we use

the full Switching Lemma rather than just its consequence.

Intuitively, this allows us to deal with decision trees rather

than with formulas. If these decision trees are balanced, in

that no variable has a high average significance, we can

use our concentration bound to show that there is only an

exponentially small probability of large sensitivity to an

input. Then it follows that the probability that x and x′ map

to distinct codewords is exponentially small.

Unfortunately, we have no guarantee that the decision

trees are balanced, even after the random restriction, and

if they are not, there could well be two codewords so that

half the time we map to one and the other half to the

other. However, what we show is that this is essentially the

only situation that can occur: once we fix a small number

of inputs, we get a balanced family of decision trees. So

while decision trees can compute maps that go to distinct

codewords, the number of such codewords cannot be very

large. Finally, we use hypercontractivity to show that a

random restriction of a map that has a large overlap with

a code also has a large intersection with a large subcode.

This allows us to move from circuits to decision trees.

C. Measuring overlap with good sets

In going from circuits to decision trees, and decision trees

to balanced decision trees, intuitively, we are also possibly

moving from the uniform distribution on codewords to a

distribution on codewords with smaller entropy. It simplifies

the argument to use the following parameters instead of

keeping track explicitly of this distribution.

Definition III.5 (“good set”). Let F : {0, 1}m → {0, 1}n
and let C be a subset of {0, 1}n. We’ll say that a subset

S ⊆ {0, 1}m is a (Δ, τ)-set for F with respect to C if

• F (S) ⊆ C
• μ(S) ≥ Δ
• For any c ∈ C, μ(S ∩ F−1(c)) ≤ τ .

The good set witnesses agreement of F with the code C.

As the below observation formalizes, when τ = 1/|C|, the

maximum achievable Δ is exactly one minus the statistical

distance. However, in our series of reductions, we will

need to increase τ , intuitively moving to a distribution

concentrated on a smaller subset of codewords. So our

lemmas will consider not just the value τ = 1/|C| that we

need at the end, but the range of possible tradeoffs between

τ and Δ.

Observation III.6. A function F : {0, 1}m → {0, 1}n has

statistical distance ≤ 1 − Δ from UC for some set C ⊆
{0, 1}n if and only if F has a (Δ, 1/|C|)-set with respect to

C.

Proof: Let D1(z) be the probability that F outputs

z and D2(z) be the uniform distribution on codewords.

Let max(z) = max(D1(z), D2(z)) and min(z) be the

minimum. Let SD be the statistical distance between the

two. Then SD = 1/2
∑

z(max(z) − min(z)) and 1 =
1/2

∑
z(max(z)+min(z)) since both are probability distri-

butions. Thus 1−SD =
∑

z min(z). min(z) is 0 unless it is

a codeword, in which case it is the minimum of the fraction

of preimages of z and 1/|C|. So for each codeword z ∈ C
we can pick a min(z) fraction of preimages, and achieve

Δ = 1−SD. No good set can have more than this number

of preimages for any z, so this is the best achievable.

In the sequel, the reader should generally think of τ as

on the order of 2−Ω(n1−ε), Δ on the order of 2n
ε

, and h on

the order of nε, where ε will be 1/O(d).

D. Bounds for balanced decision trees

Lemma III.7 (Step 1). For any forest of height h with all

average significances at most β which has a (Δ, τ) set with
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respect to a good code,

log
1

Δ
= Ω

(
h−10/3β−1/3

(
log 1

τ

n

)2/3
)
,

where the hidden constants depend only on the code.

As in [5], we use hypercontractivity to show that if Δ
is too large, correlated inputs are likely to map to distinct

codewords, which will contradict our concentration bound

from Section II.

Proof of Lemma III.7.: Let G be a (Δ, τ)-set of inputs

for F as assumed.

Let x be a random vector, and y be chosen from the noise

distribution μp. Applying Lemma III.3 to G, we have

Pr
x,y

[x, x+ y ∈ G] ≥ μ(G)2,

and applying it to G ∩ F−1(c) for any c ∈ C, we have

Pr
x,y

[x, x+ y ∈ G ∩ F−1(c)] ≤ μ(G ∩ F−1(c))1+p

≤ μ(G)
(
max

c
μ(G ∩ F−1(c))

)p

≤ Δ · τp.

By a union bound,

Pr
x,y

[x, x+ y ∈ G,F(x) �= F(x+ y)] ≥ Δ(Δ− τp) ,

for any p. In particular,

Pr
x,y

[dist(F(x),F(x+ y)) = Ω(n)] ≥ (Δ− τp)2.

Each tree in F where the output differs between x and

x+ y must have a bit i so that xi is queried by the tree for

assignment x and yi = 1, because if not, the path that the

tree follows with input x is still followed on input x + y.

Suppose we fix some x such that sigF (x, xi) ≤ γ for all i.
Then, each xi is queried in at most γn trees on input x and

so if y flips it, it can be responsible for at most γn changes

in outcome. In particular we see that for any D,

Pr
x,y

[dist(F(x),F(x+ y)) ≥ D] ≤ Pr
x

[
max

i
sig(x, xi) > γ

]
+ Pr

x,y

[
y flips at least

D

γn
variables queried on input x

]
.

So to get distinct codewords when x is such, at least Ω(1/γ)
variables that are queried with input x need to be flipped by

y. y is chosen independently of x, so if we prove a bound on

this second probability for fixed x it holds for random x as

well. There are at most nh variables total queried with input

x, and since y flips each independently with probability p,

the number of such variables is dominated by the binomial

distribution Bin(nh, p). For a value of γ < 1 to be chosen

later, set p = c/(nhγ), where c is at most 1/2 the relative

distance of the code, so that the expected number of such

flips is at most c/γ. Applying standard Chernoff bounds we

obtain:

Pr
x,y

[dist(F(x),F(x+ y)) = Ω(n)]

≤ Pr
x

[
max

i
sigF (x, xi) > γ

]
+ exp (−Ω(1/γ)) .

To bound the first probability, we do a change of variables

in Corollary II.4:

Pr
x

[
max

i
sigF (x, xi) = Ω

(
h4

√
β log

2h5

βε

)]
≤ ε,

becomes

Pr
x

[
max

i
sigF (x, xi) > γ

]
≤ 2h5β−1 exp

(
−Ω

(
γ2

h8β

))
.

Thus we have overall

(Δ− τp)2 ≤ 2h5β−1 exp

(
−Ω

(
γ2

h8β

))
+ exp (−Ω (1/γ)) .

Taking log’s and absorbing low order terms into the con-

stants, we have

log
1

Δ
= Ω

(
min

(
1

nhγ
· log 1

τ
,

γ2

h8β
,
1

γ

))
.

As long as τ ≥ 2−n and h ≥ 1, the last term is never the

minimum, so we pick γ to balance the first two.

γ3 = h7β
log 1

τ

n
.

This gives a bound on Δ of

log
1

Δ
= Ω

(
h−10/3β−1/3

(
log 1

τ

n

)2/3
)
,

as claimed.

(Note that, in particular, if τ = 1/|C|, then we get an

exponentially small bound on Δ if β < h−10n−ε. )

E. Balancing decision forests

The following reduction lemma shows how we can con-

struct balanced forests with a good set from arbitrary forests

with a good set, at a small cost in parameters.

Lemma III.8 (Step 2). If there is an forest of height h
with a (Δ, τ)-set for a good code C, then for any �, β with

� > 2hβ−1, there is a forest of height h and all average

significances at most β with a (Δ′, τ ′)-set, where

Δ′ = Δ− exp

(
− �β2

8h2

)
,

τ ′ = 2	τ.

Together with Lemma III.7, this gives us:
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Corollary III.9. [Step 2 Corollary] If there is a forest of

height h with a (Δ, τ)-set for a good code C, and log 1
τ =

Ω(n1/3h11/6), then

log
1

Δ
= Ω

(
log5/7

(
1

τ

)
· n−4/7h−22/7

)
,

where the constants depend only on the quality of the code.

Proof of Corollary III.9: Apply Lemma III.8 to the

forest in question, setting � = log 1
τ , so that log 1

τ =
Θ

(
log 1

τ ′
)

and log 1
Δ = Ω

(
min(log 1

Δ′ , β
2h−2 log 1

τ )
)
. By

Lemma III.7 applied to the resulting forest,

log
1

Δ′
= Ω

(
h−10/3β−1/3

(
log 1

τ

n

)2/3
)
.

Setting β = n−2/7h−4/7 log−1/7 1
τ balances the two terms.

As long as h, log 1
τ ∈ [1, n] are in bounds, this gives an

acceptable value β ∈ [n−1, 1]. Overall this yields

log
1

Δ
= Ω

(
log5/7

(
1

τ

)
· n−4/7h−22/7

)
,

as claimed. The constraint on τ is equivalent to � > 2hβ−1,

as required by Lemma III.8.

Note: This immediately gives an exponentially strong

sampling lower bound for small height forests. Setting

τ = 1/|C| = 2−Ω(n), for h ≤ n1/44, we get Δ ≤ 2−Ω(n1/14).

Proof of Lemma III.8: We’ll look at a process that fixes

the high significance variables, until none are left, and show

that few variables are fixed with high probability.

Claim III.10. Let F be an arbitrary forest of height h.

Suppose we play � rounds of the following game with an

adversary. Each round, the adversary identifies a variable xi

with sigF (xi) ≥ β, then xi is restricted randomly and F
is simplified. If there are no variables for the adversary to

identify, he loses.

Then for any adversary strategy, the probability that

the adversary does not lose after � rounds is at most

exp
(
− 	β2

8h2

)
, provided � > 2hβ−1.

Proof of Claim III.10.: Consider Aj , the average

number of variables queried in a tree, averaging over both

random inputs and trees in the forest, after j rounds. Each

round of the game, the expectation of Aj+1 over the settings

of the variable found is at most Aj − β. A0 ≤ h, and

|Aj − Aj+1| ≤ h, since the decision trees never query

more than h variables in the worst-case. Thus, the random

variables Aj + βj form a supermartingale of bounded

differences. The probability that A	 > 0 is the probability

that A	+β� > β� ≥ A0+(β�−h) ≥ A0+β�/2. Applying

Azuma’s inequality, this is at most exp(−(β�/2h)2/(2�)) =
exp

(
− 	β2

8h2

)
.

Now, the lemma follows from the claim. We claim that for

one of the restrictions in the above game, the restricted good

set is a (Δ′, τ ′)-set for the corresponding restricted forest.

The original volume of the good set is the average over all

restrictions in the above game of the restricted volume. Even

if this is 1 in all paths where the game exceeds � steps, this

would total the failure probability above. So there must be

a restriction of at most � variables in the above game where

the restricted volume is at least the difference of the original

volume and the failure probability. For this restriction, the

forest has all significances at most β by construction. The

size of any intersection of the good set with the preimage

of any code word has not increased after the restriction, but

since we restricted at most � variables, its relative measure

in the subcube corresponding to the restriction is larger by

at most a factor of 2	. Thus the restricted good set is a

(Δ′, τ ′)-set for this forest as claimed.

F. Lower bound for constant depth circuits

We reduce sampling bounds for constant depth circuits to

that for decision trees by taking a random restriction. With

very high probability, the circuits all become small depth

decision trees. The main thing we need to show is that, with

high probability, no one code word becomes too likely after

the restriction. Here, we use hypercontractivity again. (This

step, while developed independently, is similar to the idea

of Lemma 1.7 in [14].)

Lemma III.11. Let C be a good code, and let F be a func-

tion with a (Δ, 1/|C|) good set. Let ρ be a random restriction

with probability p of leaving a variable unset. Then with

probability at least Δ/4 , F |ρ has a (Δ/2, 2|C|−p/4)-set.

Proof: For any codeword c ∈ C, let Sc be the subset of

the good set mapping to the codeword. Consider picking

ρ and then two inputs x and x′ consistent with ρ and

otherwise random and independent. x + x′ is distributed

as a random noise vector with probability p/2 of noise,

since each bit position is unset with probability p, and they

are equally likely to agree and disagree if it is unset. Then

Eρ[μ(Sc|ρ)2] = Prρ,x,x′ [x, x
′ ∈ Sc] ≤ (μ(Sc))

1+p/2, by

Lemma III.3. By Markov’s inequality, the probability that

μ(Sc|ρ) ≥ 2|C|−p/4 is at most μ(Sc)
1+p/2 · |C|p/2/4. So the

probability that there exists such a codeword c is at most(∑
c

μ(Sc)
1+p/2

)
|C|p/2/4 ≤ Δ/4.

On the other hand, a simple averaging argument shows that

with probability at least Δ/2, the volume of the restricted

good set is at least Δ/2. So the probability over ρ that both

the restricted good set has size Δ/2 and no codeword has

probability greater than 2|C|−p/4 is at least Δ/4.

Combining this with the switching lemma gives:

Lemma III.12. Assume there is a size S depth d circuit

family C computing a function with statistical distance 1−Δ
from a good code C. Let h be such that |S|2−h < Δ/4.
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Then there is a family of height h decision trees with a

(Δ/2, 2|C|− 1
4 (14h)

−d

)-set for C.

Proof: For p = (14h)−d, consider C|ρ. By the previous

lemma, the probability that C|ρ has a good set of the given

size is at least Δ/4. On the other hand, by the Switching

Lemma, the fraction of ρ so that Cρ is not computable by

depth h decision trees is less than Δ/4. So there exists a ρ
so that C|ρ is equivalent to a family of height h decision

trees, and has a good set as claimed.

The main theorem III.2 now follows directly from Lem-

mas III.12, III.8; we omit the remaining details.

IV. CONCLUSION

Up to constants, it seems unlikely that Theorem III.2

can be improved without a major breakthrough in our

understanding of AC0-circuits, since getting a size lower

bound better than 2n
Ω(1/d)

, or getting improved correlation

bounds, are longstanding open questions.

Open Question 1. Other applications for Theorem II.3 and

Corollary II.4?

Open Question 2. Is something like Theorem II.3 true

under the weaker assumption of small average influences

rather than small average significances? Do small AC0

circuits with small average influences satisfy concentration?

Open Question 3. As mentioned earlier [5] gives a result

for (n, k, d) codes with dk = Ω(n1+ε). Although stated

only for good codes, our proof generalizes to give an

exponential improvement in the range d4k5 = Ω(n8+ε). Can

this improvement be obtained dk = Ω(n1+ε)?

A circuit source is a random string computed by a circuit

whose input bits are uniformly random. Trevisan and Vadhan

[15] pointed out that obtaining weak seedless extractors for

circuit sources is equivalent to proving weak sampling lower

bounds for those circuits.

Open Question 4. Viola [14] gave a seedless extractor

which yields, for any γ > 0, k(k/n1+γ)O(1) truly random

bits from any n-bit polynomial size AC0-circuit source of

min-entropy k, with superpolynomially small error. First,

this was reduced to the task of extracting from small height

decision tree sources. Since a decision tree of height h
depends on at most 2h bits, it is in particular a 2h-local

source. Viola then showed that Rao’s extractor [16] for low-

weight affine sources also extracts with some loss from local

sources. Is there a better seedless extractor for decision tree

sources or for AC0 sources?
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