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Abstract—We prove a structural result for degree-𝑑 polyno-
mials. In particular, we show that any degree-𝑑 polynomial, 𝑝
can be approximated by another polynomial, 𝑝0, which can be
decomposed as some function of polynomials 𝑞1, . . . , 𝑞𝑚 with 𝑞𝑖
normalized and 𝑚 = 𝑂𝑑(1), so that if 𝑋 is a Gaussian random
variable, the probability distribution on (𝑞1(𝑋), . . . , 𝑞𝑚(𝑋))
does not have too much mass in any small box.

Using this result, we prove improved versions of a number
of results about polynomial threshold functions, including
producing better pseudorandom generators, obtaining a better
invariance principle, and proving improved bounds on noise
sensitivity.

Keywords-Polynomials, Gaussian distributions, Threshold
logic functions

I. INTRODUCTION

A. Polynomial Threshold Functions

A polynomial threshold function (PTF) is a function of
the form 𝑓(𝑋) = sgn(𝑝(𝑋)) for some polynomial 𝑝(𝑋).
We say that 𝑓 is a degree-𝑑 polynomial threshold function
of 𝑝 is of degree at most 𝑑. Polynomial threshold functions
are a fundamental class of functions with applications to
many fields such as circuit complexity [1], communication
complexity [23] and learning theory [17].

We present a new structural result for degree-𝑑 polynomi-
als that allows us to obtain improved versions of a number
of results relating to polynomial threshold functions. Our
result allows us to define a new notion of regularity for
polynomials for which we can prove an improved version of
the Invariance Principle of [20]. We also obtain a regularity
lemma (along the lines of the main theorem of [8]) for this
new notion of regularity. Although neither of these theorems
will be directly comparable to their classical versions (due
to the different notions of regularity), the combination of
our regularity lemma and Invariance Principle produces a
marked improvement over previous work. These results in
turn allow us to prove better bounds on the noise sensitivity
of polynomial threshold functions (improving on the bounds
of [6] for fixed 𝑑 ≥ 3) and provide us with an improved
analysis of the pseudorandom generators of [19] and [13].

*Full version of the paper is available at http://arxiv.org/abs/1204.0543

B. Anticoncentration and Diffuse Decompositions

Many of the analytic techniques for dealing with poly-
nomial threshold functions (most notably the replacement
method (see [9], [18])) work well for dealing with smooth
functions of polynomials. In order to get these techniques
to yield useful results for threshold functions, it is often
necessary to approximate the threshold function by a smooth
one. In order to obtain a good approximation, one needs
to know that with high probability that the value of 𝑝(𝑋)
does not lie too close to zero. Results of this form have
become known as a anticoncentration results. Such a result
was proved by Carbery and Wright in [3]. They prove that
for 𝑝 a degree-𝑑 polynomial and 𝑋 a random Gaussian that

Pr(∣𝑝(𝑋)∣ ≤ 𝜖∣𝑝∣2) = 𝑂(𝑑𝜖1/𝑑). (1)

This bound has proved to be an essential component
of many theorems about polynomial threshold functions.
Unfortunately, the presence of the 𝜖1/𝑑 term above often
leads to results that have poor 𝜖-dependence for moderately
large values of 𝑑, and the lack of a stronger form of
Equation (1) has proved to be a bottleneck for a number of
results on polynomial threshold functions. One might hope
to overcome this difficulty by proving an improved version
of Equation (1). In particular, a generic polynomial 𝑝 can be
thought of as a sum of largely uncorrelated monomials, and
thus, one might expect that 𝑝(𝑋) be Gaussian distributed.
Thus, while Equation (1) tells us little more than the fact
that the distribution of 𝑝(𝑋) has no point masses, one
might expect the stronger condition that 𝑝(𝑋) has bounded
probability density function to hold. Unfortunately, this is
not the case in general. For example, if 𝑝 is the 𝑑th power of
a linear polynomial, the probability that ∣𝑝(𝑋)∣ < 𝜖 will
in fact be proportional to 𝜖1/𝑑. On the other hand, this
counterexample is not as great an obstacle as it first appears
to be. While, in this case, the probability distribution of
𝑝(𝑋) does have poor analytic properties, this is because
𝑝 can be written as a composition of a well-behaved (in
this case linear) polynomial, and a simple, yet poorly-
behaved polynomial (the 𝑑th power). The fact that the value
of 𝑝 is governed by the value of this linear polynomial
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will allow one to overcome the difficulties posed by poor
anticoncentration in most applications.

In fact, this principle applies more generally. In particular,
as we shall show, any polynomial 𝑝 may be approximately
represented as the composition of a simple polynomial (i.e.
a polynomial dependent on few input variables) and an
analytically well-behaved polynomial (i.e. one with good
anticoncentration properties). In order to make this claim
rigorous, we provide the following definitions:

Definition. Given a degree-𝑑 polynomial 𝑝 : ℝ𝑛 → ℝ, we
say that a set of polynomials (ℎ, 𝑞1, . . . , 𝑞𝑚) is a decompo-
sition of 𝑝 of size 𝑚 if 𝑞𝑖 : ℝ𝑛 → ℝ, and ℎ : ℝ𝑚 → ℝ are
polynomials so that

∙ 𝑝(𝑥) = ℎ(𝑞1(𝑥), . . . , 𝑞𝑚(𝑥)).
∙ For every monomial 𝑐

∏
𝑥𝑎𝑖
𝑖 appearing in ℎ, we have

that
∑

𝑎1 deg(𝑞𝑖) ≤ 𝑑.

In other words, a decomposition of 𝑝 is a way of writing
𝑝 as a composition of a simple polynomial, ℎ, with an-
other polynomial 𝑄 = (𝑞1, . . . , 𝑞𝑚). The second condition
above tells us that if we expanded out the polynomial
ℎ(𝑞1(𝑥), . . . , 𝑞𝑚(𝑥)), we would never have to write any
terms of degree more than 𝑑.

Definition. We say that a tuple of polynomials (𝑞1, . . . , 𝑞𝑚) :
ℝ

𝑛 → ℝ
𝑚, is an (𝜖,𝑁)-diffuse set if for every

(𝑎1, . . . , 𝑎𝑚) ∈ ℝ
𝑚 and Gaussian random variable 𝑋 we

have that

Pr𝑋(∣𝑞𝑖(𝑋)− 𝑎𝑖∣ ≤ 𝜖 for all 𝑖) ≤ 𝜖𝑚𝑁,

and 𝔼[∣𝑞𝑖(𝑋)∣2] ≤ 1 for all 𝑖.

We note that while an anticoncentration result need only
tell us that the probability distribution of 𝑝(𝑋) contains
no point masses, an (𝜖,𝑁)-diffuse set of polynomials
will have the probability density function of the vector
(𝑞1(𝑋), . . . , 𝑞𝑚(𝑋)) average no more than 𝑁 on any small
box. This is a much stronger notion of “analytically well-
behaved”. Combining the two definitions above, we define
the notion of a diffuse decomposition.

Definition. Given a polynomial 𝑝 we say that
(ℎ, 𝑞1, . . . , 𝑞𝑚) is an (𝜖,𝑁)-diffuse decomposition of
𝑝 of size 𝑚 if (ℎ, 𝑞1, . . . , 𝑞𝑚) is a decomposition of 𝑝 of
size 𝑚 and if (𝑞1, . . . , 𝑞𝑚) is an (𝜖,𝑁)-diffuse set.

It is not obvious that diffuse decompositions should exist
in any useful cases. The main result of this paper will be
to show that not only can any polynomial be approximated
by a polynomial with a diffuse decomposition, but that the
parameters of this decomposition are sufficient for use in a
wide variety of applications.

Theorem 1 (The Diffuse Decomposition Theorem). Let 𝜖, 𝑐
and 𝑁 be positive real numbers and 𝑑 a positive integer. Let
𝑝(𝑋) be a degree-𝑑 polynomial. Then there exists a degree-𝑑

polynomial 𝑝0 with ∣𝑝−𝑝0∣2 < 𝑂𝑐,𝑑,𝑁 (𝜖𝑁 )∣𝑝∣2 so that 𝑝0 has
an (𝜖, 𝜖−𝑐)-diffuse decomposition of size at most 𝑂𝑐,𝑑,𝑁 (1).

It should be noted that if 𝑝 is a polynomial with a
diffuse decomposition, (ℎ, 𝑞1, . . . , 𝑞𝑚), then the distribution
of 𝑝(𝑋) will be determined in large part by the polynomial
ℎ, as the distribution for (𝑞1(𝑋), . . . , 𝑞𝑚(𝑋)) is controlled
by the diffuse property. Thus, Theorem 1 may be thought of
as a structural result for Gaussian chaoses. Theorem 1 may
also be thought of as a continuous analogue of theorems of
Green-Tao ([11]) and Kaufman-Lovett ([16]) which say that
a polynomial over a finite field can be decomposed in terms
of lower degree polynomials whose output distributions on
random inputs are close to uniform.

Remark. The bound on the size of the decomposition in
Theorem 1 is effective, but may be quite large. Working
through the details of the proof would lead to a bound
of 𝐴(𝑑 + 𝑂(1), 𝑁/𝑐), where 𝐴(𝑚,𝑛) is the Ackermann
function. The author believes that a polynomial in (𝑑𝑁/𝑐)
should be sufficient, but does not know of a proof for this
improved bound.

C. Applications of the Main Theorem

Theorem 1 has several applications that we will discuss.
The existence of diffuse decompositions allows us to make
better use of the replacement method and achieve a tighter
analysis of the pseudorandom generators for polynomial
threshold functions presented in [13] and [19]. We can also
use this theory to improve on the Invariance Principle of
[20]. In particular, we come up with a new notion of regular-
ity for a polynomial, so that for highly regular polynomials
their evaluation at random Gaussian variables and at random
Bernoulli variables are close in cdf distance. We then show
that an arbitrary polynomial can be written as a decision
tree of small depth almost all of whose leaves are either
regular or have constant sign with high probability. These
theorems of ours will produce a qualitative improvement
over the analogous theorems of [20] and [8]. Finally, we
make use of this technology to prove new bounds on the
noise sensitivity of polynomial threshold functions. Each of
these applications will be discussed in more detail in the
relevant section of this paper.

II. BASIC RESULTS AND NOTATION

In this section, we introduce notation that will be used
throughout the rest of the paper and state some results that
shall be used throughout. We use ∣𝑝∣𝑡 to denote the 𝐿𝑡

norm of a function 𝑝 with respect to the Gaussian measure.
Namely,

∣𝑝∣𝑡 := 𝔼𝑋∼𝒩 [∣𝑝(𝑋)∣𝑡]1/𝑡.
We use the asymptotic notation 𝑂(𝑋) to denote a quan-
tity bounded above by an absolute constant times 𝑋 , and
𝑂𝐴,𝐵,𝐶(𝑋) to denote a quantity bounded above by 𝑋
times some function depending only on 𝐴,𝐵 and 𝐶. We
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use 𝑂̃(𝑋) to denote a quantity that is bounded above by
𝑋 times some polynomial in log(𝑋), and use 𝑂̃𝐴,𝐵,𝐶(𝑋)
when the coefficients or degree of this polynomial depend
on 𝐴,𝐵,𝐶. We will also assume throughout that all random
variables are independent 𝑛-dimensional random Gaussians
unless otherwise stated.

We will also need to make use of the notion of strong
anticoncentration first mentioned by the author in [13].
This is the idea that a polynomial at a random input is
probably not much small than the value of its derivative
at the same point. As a key technical lemma we will need
a generalization of this idea to vector-valued functions. In
particular, we will make use of the following Proposition:

Proposition 2 (Strong Anticoncentration). Let 𝑝1, . . . , 𝑝𝑘 be
polynomials of bounded degree, and let 𝑋 be a random
Gaussian. Then

Pr

(
𝑘∏

𝑖=1

∣𝑝𝑖(𝑋)∣ ≤ 𝜖

∣∣∣∣∣
𝑘⋀

𝑖=1

∇𝑝𝑖(𝑋)

∣∣∣∣∣
)

= 𝑂̃𝑘(𝜖)

where
⋀𝑘

𝑖=1∇𝑝𝑖(𝑋) above is the wedge product of the
gradients of the 𝑝𝑖 at 𝑋 .

This Proposition says that after excepting events of small
probability, the 𝑝𝑖(𝑋) can only be simultaneously small if
their gradients are approximately linearly dependent.

III. THE DECOMPOSITION THEOREM

In this section, we provide a sketch of the proof of
Theorem 1. On a high level, we begin with the trivial
decomposition of 𝑝 as Id ∘ 𝑝 and iteratively refine this
decomposition until we have a diffuse one. If we have some
decomposition (ℎ, 𝑞1, . . . , 𝑞𝑚), where (𝑞1, . . . , 𝑞𝑚) does not
form an (𝜖, 𝜖−𝑐)-diffuse set, there must be constants 𝑎𝑖 so
that the ∣𝑞𝑖(𝑋) − 𝑎𝑖∣ are simultaneously small with abnor-
mally large probability. Using Strong Anticoncentration, we
see that this implies that some linear combination of the 𝑞𝑖
has a small gradient with reasonable probability.

That the entire gradient vector of a polynomial is small
turns out to be a very strong condition, in particular we
claim:

Proposition 3 (Small Derivative Proposition). Let 𝑝 be a
degree-𝑑 polynomial with ∣𝑝∣2 ≤ 1. Assume that for some
𝜖,𝑁, 𝑐 > 0 and for 𝑋 a standard Gaussian that

Pr(∣∇𝑝(𝑋)∣2 ≤ 𝜖) ≥ 𝜖𝑁 .

Then there exist 𝑂𝑐,𝑑,𝑁 (1) polynomials 𝑎𝑖,𝑏𝑖,𝑐 of degree less
than 𝑑 so that∣∣∣∣∣𝑝(𝑋)−

∑
𝑖

𝑎𝑖(𝑋)𝑏𝑖(𝑋)− 𝑐(𝑋)

∣∣∣∣∣
2

= 𝑂𝑐,𝑑,𝑁 (𝜖1−𝑐).

Furthermore, such polynomials can be found so that for each
𝑖, deg(𝑎𝑖) + deg(𝑏𝑖) = 𝑑.

In other words, a polynomial with a non-trivial probability
of having a small gradient can always be approximately
decomposed in terms of lower degree polynomials. Hence,
unless our decomposition is already diffuse, we can further
decompose at least one of the 𝑞𝑖 in terms of lower-degree
polynomials. This allows us to produce a finer decomposi-
tion of 𝑝. To show that this process terminates, we make use
of an ordinal monovariant depending on the number of 𝑞𝑖
of each degree. Using these ideas, we present the sketch of
a proof of Theorem 1 given Proposition 3.

Proof of Theorem 1 given Proposition 3 (sketch): In
this proof we will overlook some minor technical compli-
cations that are dealt with in the full paper. We start by
making some simplifying assumptions. We assume that 𝑁
and 𝑐−1 are both integers. We assume that 𝜖 is sufficiently
small. Additionally, we take the normalization of 𝑝 so that
∣𝑝∣2 = 1.

To formalize the ideas described above, we define a
partial decomposition of 𝑝 to be a sequence of polynomials
(ℎ, 𝑞1, . . . , 𝑞𝑚) and non-negative integers 𝑒1, . . . , 𝑒𝑚, with

𝑒𝑖 < 4 ⋅ 3𝑖(𝑁 + 1)𝑐−1

so that ∣ℎ∣2 = 𝑂(𝜖−1), ∣𝑞𝑖∣2 = 1 for each 𝑖, and so that 𝑝 is
within 𝑂(𝜖𝑁 ) of

ℎ
(
𝜖𝑒1𝑐/(2⋅3

1)𝑞1(𝑥), . . . , 𝜖
𝑒𝑚𝑐/(2⋅3𝑚)𝑞𝑚(𝑥)

)
.

To each partial decomposition, we assign a weight given by
the vector of non-negative integers 𝑣 = (𝑛𝑑, . . . , 𝑛1) where

𝑛𝑖 =
∑

𝑗:deg(𝑞𝑗)=𝑖

4 ⋅ 3𝑗(𝑁 + 1)𝑐−1 − 𝑒𝑗 .

We claim that every partial decomposition either gives us the
desired diffuse decomposition, or can be used to construct a
more refined partial decomposition. In particular we claim:

Claim. For any partial decomposition (ℎ, 𝑞𝑖, 𝑒𝑖), either
(𝑞1, . . . , 𝑞𝑚) is an (𝜖, 𝜖−𝑐)-diffuse set, or there exists another
partial decomposition whose weight is a vector that is
strictly smaller in lexicographic order.

To prove this claim, assume that (𝑞1, . . . , 𝑞𝑚) is not
(𝜖, 𝜖−𝑐)-diffuse. Unless it is the case that deg(𝑞1) ≥
deg(𝑞2) ≥ . . . ≥ deg(𝑞𝑚), an appropriate reordering
of the 𝑞𝑖 will lead to a partial decomposition of strictly
smaller weight. We may thus assume that the degrees of
the 𝑞𝑖 are ordered as above. Similarly, we may assume
that 𝑒𝑖 ≤ 2 ⋅ 3𝑖(𝑁 + 1)𝑐−1 for each 𝑖, since otherwise
removing 𝑞𝑖 entirely from our decomposition will introduce
an error on the order of 𝜖𝑁 and decrease the weight of the
decomposition.

By assumption, there exist real numbers 𝑎𝑖 so that

Pr(∣𝑞𝑖(𝑋)− 𝑎𝑖∣ ≤ 𝜖 for all 𝑖) > 𝜖𝑚−𝑐.

By Strong Anticoncentration, this implies that with proba-
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bility at least 𝜖𝑚 we have that∣∣∣∣∣
𝑚⋀
𝑖=1

∇𝑞𝑖(𝑋)

∣∣∣∣∣
2

≤ 𝜖𝑐(1−3−𝑚). (2)

Let 𝑉𝑖(𝑋) be the difference between ∇𝑞𝑖(𝑋) and it’s
projection onto the space spanned by the ∇𝑞𝑗(𝑋) for 𝑗 > 𝑖.
Since ∣∣∣∣∣

𝑚⋀
𝑖=1

∇𝑞𝑖(𝑋)

∣∣∣∣∣
2

=
𝑚∏
𝑖=1

∣𝑉𝑖(𝑋)∣2,

Equation (2) implies that ∣𝑉𝑖(𝑋)∣2 ≤ 𝜖2𝑐/3
𝑖

for some 𝑖.
There therefore exists some particular 𝑖 for which this holds
with probability at least 𝜖𝑚/𝑚.

For each 𝑋 we have that

𝑉𝑖(𝑋) =
𝑚∑
𝑗=𝑖

𝛽𝑗∇𝑞𝑗(𝑋)

for some constants 𝛽𝑗 with 𝛽𝑖 = 1. Furthermore, if ∣𝑉𝑗 ∣ >
𝜖2𝑐/3

𝑗

for all 𝑗 > 𝑖, it is not hard to show that ∣𝛽𝑗 ∣ ≤ 𝜖−𝑐/3𝑖 .
To avoid some technical complications, we will consider
only the case where ∣𝛽𝑗 ∣ ≤ 1 for all 𝑗. Since a randomly
chosen sequence of real numbers 𝛾𝑗 will have reasonable
probability of approximating the 𝛽𝑗 , we have that with
probability 𝜖𝑂(𝑚) that∣∣∣∣∣∣∇𝑞𝑖(𝑋) +

𝑚∑
𝑗>𝑖

𝛾𝑗∇𝑞𝑗(𝑋)

∣∣∣∣∣∣
2

≤ 2𝜖2𝑐/3
𝑖

.

It must therefore be the case that for some specific choice
of 𝛾𝑗 that the above holds with probability 𝜖𝑂(𝑚). Thus, if
we let

𝑄(𝑥) = 𝑞𝑖(𝑥) +
∑
𝑗>𝑖

𝛾𝑗𝑞𝑗(𝑥),

then
Pr
(
∣∇𝑄(𝑋)∣2 ≤ 2𝜖2𝑐/3

𝑖
)
> 𝜖𝑂(𝑚).

Applying the Small Derivative Proposition to 𝑄, we find
that 𝑄 may be rewritten as

𝑄(𝑥) =
∑

𝐴𝑖(𝑥)𝐵𝑖(𝑥) + 𝐶(𝑥) +𝑄′(𝑥)

with deg(𝐴𝑖), deg(𝐵𝑖), deg(𝐶) < deg(𝑄), deg(𝑄′) =
deg(𝑄), and ∣𝑄′∣2 = 𝑂𝑐,𝑑,𝑚(𝜖2𝑐/3

𝑖

). This means that we
can write 𝑞𝑖 as

𝑞𝑖(𝑥) =
∑

𝐴𝑖(𝑥)𝐵𝑖(𝑥) + 𝐶(𝑥) +𝑄′(𝑥)−
∑
𝑗>𝑖

𝛾𝑖𝑞𝑗(𝑥).

This allows us to construct a new partial decomposition of
𝑝 by letting the normalized version of 𝑄′ be the new 𝑞𝑖,
introducing 𝐴𝑖, 𝐵𝑖 and 𝐶 as new 𝑞′𝑗𝑠, and using the above
identity to rewrite ℎ. Since ∣𝑄′∣2 is small, we can construct
this new partial decomposition with an 𝑒𝑖 strictly larger than
before. Since the other 𝑒𝑗 remain the same and since the new
𝑞𝑗 all have degree strictly smaller than 𝑞𝑖, the weight of our

new partial decomposition is strictly smaller than before.
This completes the proof of our claim.

To prove our theorem, we begin with the trivial partial
decomposition, 𝐷0, given by

ℎ(𝑥) = 𝑥, 𝑞1 = 𝑝, 𝑒1 = 0.

Iteratively applying our claim, we produce a sequence of
partial decompositions, 𝐷0, 𝐷1, . . . each with weight strictly
smaller than the last until we end up with a partial decompo-
sition 𝐷𝑛 = (ℎ, 𝑞𝑖, 𝑒𝑖) with (𝑞1, . . . , 𝑞𝑚) an (𝜖, 𝜖−𝑐)-diffuse
set. Since the set of vectors of 𝑑 non-negative integers is well
ordered under the lexicographic ordering, we are guaranteed
that this process will eventually terminate with such a 𝐷𝑛.
On the other hand, letting

ℎ′(𝑥1, . . . , 𝑥𝑚) = ℎ
(
𝜖𝑒1𝑐/(2⋅3

1)𝑥1, . . . , 𝜖
𝑒𝑚𝑐/(2⋅3𝑚)𝑥𝑚

)
,

we have that (ℎ′, 𝑞1, . . . , 𝑞𝑚) is an (𝜖, 𝜖−𝑐)-diffuse decom-
position of an appropriate approximation to 𝑝. Since it is
possible to bound the complexity of 𝐷𝑖+1 in the above
sequence in terms of 𝑐, 𝑑,𝑁 and the complexity of 𝐷𝑖, it is
not hard to show that we can find an absolute bound on the
size of the resulting diffuse decomposition in terms of 𝑐, 𝑑
and 𝑁 .

The proof of the Small Derivative Proposition is quite
complicated. As a first step, one notes that having a small
derivative with reasonable probability implies that higher
order derivatives are also small. In particular, we show:

Proposition 4 (Higher Derivatives Proposition). Let 𝑐,𝑁 >
0 be real numbers and 𝑑 a positive integer and 𝜖 > 0
sufficiently small. Suppose that 𝑝 is a degree-𝑑 polynomial
so that for a random Gaussian 𝑋

Pr𝑋(∣∇𝑝(𝑋)∣2 < 𝜖) > 𝜖𝑁 .

Then we have for random Gaussians 𝑋 and 𝑌 that

Pr𝑋,𝑌 (∣∇𝐷𝑌 𝑝(𝑋)∣2 < 𝜖1−𝑐) > 𝜖𝑂𝑁,𝑐,𝑑(1),

where 𝐷𝑌 𝑝(𝑋) is the directional derivative of 𝑝 at 𝑋 in
the direction of 𝑌 .

This Proposition follows fairly easily from Strong Anti-
concentration. In particular, if there is a reasonable probabil-
ity that all of the partial derivatives of 𝑝 are simultaneously
small, then by Strong Anticoncentration, their derivatives
must be approximately linearly dependent. In particular, one
can show that with reasonable probability over 𝑋 that the
Hessian of 𝑝 at 𝑋 is approximately of low rank. When this
is the case, ∣∇𝐷𝑌 𝑝(𝑋)∣ = (𝐻(𝑝)(𝑋)) ⋅ 𝑌 is small with
reasonable probability.

The conclusion of Proposition 4 tells us that with prob-
ability at least 𝜖𝑂𝑁,𝑐,𝑑(1) over 𝑌 , the polynomial 𝑞 = 𝐷𝑌 𝑝
satisfies

Pr(∣∇𝑞(𝑋)∣ < 𝜖1−𝑐) > 𝜖𝑂𝑁,𝑐,𝑑(1).
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This allows us to apply Proposition 4 again to 𝑞. Applying
this argument iteratively, we find that if ∣∇𝑝(𝑋)∣ is small
with reasonable probability, that

Pr𝑋,𝑌 𝑖

(∣∇𝐷𝑌 1 ⋅ ⋅ ⋅𝐷𝑌 𝑑−1𝑝(𝑋)∣ < 𝜖1−𝑐
)
> 𝜖𝑂𝑁,𝑐,𝑑(1).

Since the 𝑑th order derivatives of 𝑝 are constant, the above
statement does not depend on 𝑋 . In fact, it depends on 𝑝
only through 𝑃 , the tensor of 𝑑th order partials of 𝑝. In
particular, it says that 𝑃 has the property:

Pr𝑌 𝑖(∣𝑃 (𝑌 1, . . . , 𝑌 𝑑−1,−)∣2 < 𝜖1−𝑐) > 𝜖𝑂𝑁,𝑐,𝑑(1). (3)

One way in which Equation (3) might hold is if 𝑃 is of
the form

𝑃 =
∑
ℓ

𝐴ℓ ⊗𝐵ℓ +𝑂(𝜖1−𝑐)

for some lower-rank tensors 𝐴ℓ and 𝐵ℓ. The necessary
inequality will then hold as long as 𝐴ℓ(𝑌 𝑖) is small for each
ℓ. As it turns out, the converse of this statement is also true.
This decomposition of 𝑃 corresponds more or less directly
to the desired decomposition of 𝑝.

Proposition 5 (Tensor Decomposition Proposition). Let 𝑑
be an integer, and let 𝑐,𝑁, 𝜖 > 0 be real numbers. Then for
all rank-𝑑 tensors 𝐴 with ∣𝐴∣2 ≤ 1 and

Pr𝑋𝑖(∣𝐴(𝑋1, . . . , 𝑋𝑑−1,−)∣2 < 𝜖) > 𝜖𝑁

there exist tensors 𝑈 ℓ, 𝑉 ℓ, 1 ≤ ℓ ≤ 𝑘 = 𝑂𝑐,𝑑,𝑁 (1) defined
on complimentary proper subsets of the coordinates of 𝐴
such that ∣𝑈 ℓ∣2∣𝑉 ℓ∣2 ≤ 𝑂𝑐,𝑑,𝑁 (∣𝐴∣2𝜖−𝑐) for all ℓ and∣∣∣∣∣𝐴−

𝑘∑
ℓ=1

𝑈 ℓ(𝐴)⊗ 𝑉 ℓ(𝐴)

∣∣∣∣∣
2

= 𝑂𝑐,𝑑,𝑁 (𝜖1−𝑐).

The proof of the Tensor Decomposition Proposition is
itself quite difficult. We show the stronger statement that
there is a probability distribution over sequences of tensor-
valued polynomials 𝑈 ℓ(𝐴), 𝑉 ℓ(𝐴), so that if 𝐴 satisfies the
necessary hypotheses, 𝑈 ℓ(𝐴), 𝑉 ℓ(𝐴) satisfy the conclusion
with probability at least 𝜖𝑂𝑐,𝑑,𝑁 (1). This is in turn proved by
induction on 𝑑.

We note that if 𝐴 satisfies the hypothesis of the Tensor
Decomposition Proposition, that 𝐴(𝑋1,−) also does with
probability 𝜖𝑂𝑐,𝑑,𝑁 (1) over 𝑋1. By the inductive hypothesis,
there must exist specific tensor-valued polynomials 𝑈 ℓ, 𝑉 ℓ

so that with probability 𝜖𝑂𝑐,𝑑,𝑁 (1) over 𝐵 = 𝐴(𝑋1,−) we
have that∣∣∣∣∣𝐵 −

𝑘∑
ℓ=1

𝑈 ℓ(𝐵)⊗ 𝑉 ℓ(𝐵)

∣∣∣∣∣
2

= 𝑂𝑐,𝑑,𝑁 (𝜖1−𝑐).

By Strong Anticoncentration, this implies that the derivative
of the above tensor with respect to 𝑋1 is approximately low

rank. This says that 𝐴 = ∇𝑋1𝐵 is approximated by

𝑘∑
ℓ=1

(∇𝑋1𝑈 ℓ(𝐵)
)⊗ 𝑉 ℓ(𝐵) + 𝑈 ℓ(𝐵)⊗ (∇𝑋1𝑉 ℓ(𝐵)

)
plus the sum of a bounded number of tensor products of a
tensor on the first coordinate with a tensor on the remaining
coordinates. This approximates 𝐴 as a sum of products
of lower-rank tensors. We have left to show that such an
approximation can be found with reasonable probability by
an appropriate probability distribution over tensor-valued
polynomials in 𝐴. We consider the tensor 𝑇 defined by

𝑇 (𝑋1) = 𝐷𝑋1

[
𝐵 −

𝑘∑
ℓ=1

𝑈 ℓ(𝐵)⊗ 𝑉 ℓ(𝐵)

]
.

We know that 𝑇 can be approximated by the sum of a
bounded number of products of a tensor over 𝑋1 with a ten-
sor over its other coordinates. In particular, thinking of 𝑇 as
a linear transformation taking 𝑋1 to the appropriate (𝑑−1)-
tensor, this says that 𝑇 is approximately a matrix of low-
rank. Thus 𝑇 is approximated by a sum

∑𝑘
𝑖=1 𝐶𝑖𝑣𝑖⊗𝑤𝑖 with

{𝑣𝑖} and {𝑤𝑖} orthonormal sets. For random 𝑍1, . . . , 𝑍𝑘,
we expect that {𝑇 (𝑍𝑖)} will approximately span {𝑤𝑖}. By
guessing the corresponding change of basis, we can with
reasonable probability obtain approximations 𝑤̃𝑖 ≈ 𝑤𝑖. If
this succeeds, we may then approximate 𝑇 as

𝑇 (𝑋) ≈
𝑘∑

𝑖=1

𝑤̃𝑖 ⟨𝑤̃𝑖, 𝑇 (𝑋)⟩ .

This completes the proof of Proposition 5, providing the
final piece in the proofs of Proposition 3 and Theorem 1.

IV. DIFFUSE DECOMPOSITIONS AND THE REPLACEMENT

METHOD

One of the main uses of the theory of diffuse decom-
positions is to improve upon applications of the replace-
ment method. Given a polynomial threshold function 𝑓 =
sgn(𝑝(𝑥)), standard applications of the replacement method
approximates 𝑓 by the smooth function 𝑔(𝑥) = 𝜌(𝑝(𝑥)).
This has the problem that if 𝑝 is poorly anticoncentrated
near zero, then 𝑔(𝑋) and 𝑓(𝑋) will necessarily disagree
with relatively high probability unless 𝜌 is picked to have
very large derivatives near zero. On the other hand, if 𝑝
has a diffuse decomposition (ℎ, 𝑞1, . . . , 𝑞𝑚), then 𝑓 may be
approximated instead by 𝑔(𝑥) = 𝜌(𝑞1(𝑥), . . . , 𝑞𝑚(𝑥)) for 𝜌
some smooth approximation to sgn ∘ ℎ. Since (𝑞1, . . . , 𝑞𝑚)
is a diffuse set, 𝜌 can now be allowed to transition between
1 and −1 over a much larger distance without producing
a large discrepancy between 𝑔(𝑋) and 𝑓(𝑋). In particular,
we show:

Proposition 6. Let (ℎ, 𝑞1, . . . , 𝑞𝑚) by an (𝜖,𝑁)-diffuse
decomposition of a degree-𝑑 polynomial 𝑝 for 1/2 > 𝜖 > 0.
There exists a function 𝑔 : ℝ𝑚 → [−1, 1] so that:
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1) 𝑔(𝑞1(𝑥), 𝑞2(𝑥), . . . , 𝑞𝑚(𝑥)) ≥ sgn(𝑝(𝑥)) pointwise.
2) 𝔼[𝑔(𝑞1(𝑋), 𝑞2(𝑋), . . . , 𝑞𝑚(𝑋))] − 𝔼[sgn(𝑝(𝑋))] =

𝑂𝑚,𝑑(𝜖𝑁 log(𝜖−1)𝑑𝑚/2+1).
3) For any 𝑘 ≥ 0, ∣𝑔(𝑘)∣∞ = 𝑂𝑚,𝑘(𝜖

−𝑘), where ∣𝑔(𝑘)∣∞
denotes the largest 𝑘th order mixed partial derivative
of 𝑔 at any point.

Using the above 𝑔 in a more or less standard application
of the replacement method, we obtain the following Propo-
sition:

Proposition 7. Let 𝑝0 : ℝ𝑛 → ℝ be a degree-𝑑 polynomial
with an (𝜖,𝑁)-diffuse decomposition (ℎ, 𝑞1, . . . , 𝑞𝑚) for
some 1/2 > 𝜖 > 0. Let 𝑛𝑖 be positive integers so that
𝑛 =

∑ℓ
𝑖=1 𝑛𝑖. We can then consider 𝑝0 and each of the

𝑞𝑖 as functions on ℝ
𝑛1 × ⋅ ⋅ ⋅ × ℝ

𝑛ℓ .

Let 𝑋1, . . . , 𝑋ℓ and 𝑌 1, . . . , 𝑌 ℓ be any independent
random variables, where 𝑋𝑗 and 𝑌 𝑗 take values in ℝ

𝑛𝑗

and 𝑌 𝑗 is a random Gaussian. Furthermore, assume that
for some integer 𝑘 > 1 that for any polynomial 𝑔 in 𝑚
variables of degree less than 𝑘, any 1 ≤ 𝑗 ≤ ℓ and any 𝑧𝑖

that

𝔼
[
𝑔(𝑞𝑖(𝑧

1, . . . , 𝑧𝑗−1, 𝑋𝑗 , 𝑧𝑗+1, . . . , 𝑧ℓ))
]

= 𝔼
[
𝑔(𝑞𝑖(𝑧

1, . . . , 𝑧𝑗−1, 𝑌 𝑗 , 𝑧𝑗+1, . . . , 𝑧ℓ))
]
.

For each 1 ≤ 𝑖 ≤ 𝑚 and each 1 ≤ 𝑗 ≤ ℓ define

𝑄𝑖,𝑗(𝑥
1, . . . ,𝑥𝑗−1, 𝑥𝑗+1, . . . , 𝑥ℓ) :=

𝔼𝑌 𝑗 [𝑞𝑖(𝑥
1, . . . , 𝑥𝑗−1, 𝑌 𝑗 , 𝑥𝑗+1, . . . , 𝑥ℓ)],

and

𝑉𝑖,𝑗(𝑥
1, . . . , 𝑥ℓ) := 𝑞𝑖(𝑥

1, . . . , 𝑥ℓ)

−𝑄𝑖,𝑗(𝑥
1, . . . , 𝑥𝑗−1, 𝑥𝑗+1, . . . , 𝑥ℓ).

Define 𝑇𝑖,𝑗 to be

𝔼

[∣∣𝑉𝑖,𝑗(𝑌
1, . . . , 𝑌 𝑗 , 𝑋𝑗+1, . . . , 𝑋ℓ)

∣∣𝑘]
+𝔼

[∣∣𝑉𝑖,𝑗(𝑌
1, . . . , 𝑌 𝑗−1, 𝑋𝑗 , . . . , 𝑋ℓ)

∣∣𝑘] .
And let

𝑇 :=
𝑚∑
𝑖=1

ℓ∑
𝑗=1

𝑇𝑖,𝑗 .

Then we have that∣∣Pr
(
𝑝0(𝑋

1, . . . , 𝑋ℓ) ≤ 0
)− Pr

(
𝑝0(𝑌

1, . . . , 𝑌 ℓ) ≤ 0
)∣∣

≤ 𝑂𝑑,𝑚,𝑘

(
𝜖−𝑘𝑇 + 𝜖𝑁 log(𝜖−1)𝑑𝑚/2+1

)
.

Furthermore, if 𝑝 is a degree-𝑑 polynomial so that for
some parameters 𝛿, 𝜂 > 0 the probabilities

Pr (∣𝑝(𝑋)− 𝑝0(𝑋)∣ < 𝛿∣𝑝∣2) ,Pr (∣𝑝(𝑌 )− 𝑝0(𝑌 )∣ < 𝛿∣𝑝∣2)

are each at least 1− 𝜂, then∣∣Pr
(
𝑝(𝑋1, . . . , 𝑋ℓ) ≤ 0

)− Pr
(
𝑝(𝑌 1, . . . , 𝑌 ℓ) ≤ 0

)∣∣
≤ 𝑂𝑑,𝑚,𝑘

(
𝜖−𝑘𝑇 + 𝜖𝑁 log(𝜖−1)𝑑𝑚/2+1 + 𝛿1/𝑑 + 𝜂

)
.

This will prove to be the main technical tool for proving
the later results in this paper.

The basic idea of the proof of Proposition 7 is to sandwich
𝑓(𝑥) = sgn(𝑝0(𝑥)) between smooth functions 𝑔− ≤ 𝑓 ≤ 𝑔+
of the type given in Proposition 6. We then show for these
smooth functions that

𝔼[𝑔±(𝑋)] ≈ 𝔼[𝑔±(𝑌 )].

This is done by replacing the 𝑋𝑗 in the above expectation by
the corresponding 𝑌 𝑗 one at a time and bounding the errors.
When performing the 𝑗𝑡ℎ replacement, we may fix the values
of 𝑌 1, . . . , 𝑌 𝑗−1, 𝑋𝑖+1, . . . , 𝑋ℓ and approximate ℎ by its
degree 𝑘−1 Taylor polynomial about (𝑄1,𝑗 , . . . , 𝑄𝑚,𝑗). By
assumption, the expectations of the terms of this polynomial
are the same for 𝑗𝑡ℎ coordinate 𝑋𝑗 and for 𝑗𝑡ℎ coordinate
𝑌 𝑗 . Thus, the error in expectations is the difference in
expectations of the Taylor error. This is bounded in terms of
the 𝑘𝑡ℎ derivative of 𝑔± and the 𝑘𝑡ℎ moments of 𝑞𝑖 −𝑄𝑖,𝑗 ,
and is thus, easily seen to be

𝑂𝑑,𝑚,𝑘

(
𝜖−𝑘

𝑚∑
𝑖=1

𝑇𝑖,𝑗

)
.

Summing over 𝑗, shows that

∣𝔼[𝑔±(𝑋)]− 𝔼[𝑔±(𝑌 )]∣ = 𝑂𝑑,𝑚,𝑘(𝜖
−𝑘𝑇 ).

Our result now follows from the observation that

𝔼[𝑓(𝑌 )] ≈ 𝔼[𝑔−(𝑌 )] ≈ 𝔼[𝑔−(𝑋)] ≤ 𝔼[𝑓(𝑋)] ≤ 𝔼[𝑔+(𝑋)]

≈ 𝔼[𝑔+(𝑌 )] ≈ 𝔼[𝑓(𝑌 )].

V. THE DIFFUSE INVARIANCE PRINCIPLE AND

REGULARITY LEMMA

While there are many powerful analytic tools for dealing
with polynomials evaluated at Gaussian inputs, a number
of questions are both more difficult and perhaps more
interesting when Bernoulli inputs are considered. A key
tool for dealing with this challenge is that of an invariance
principle. An Invariance Principle is a theorem which states
that for certain polynomials, 𝑝, that

Dist(𝑝(Gaussian)) ∼ Dist(𝑝(Bernoulli)),

usually in terms of cdf distance. If, for example, 𝑝 is a linear
polynomial, the above reduces to a special case of the Berry-
Esseen Theorem.

As in the case of the Berry-Esseen Theorem, this approx-
imation will fail if any coordinate contributes too large a
portion of the final value of the polynomial. In order to
quantify this, we define the 𝑖th influence of a polynomial 𝑝
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to be

Inf𝑖(𝑝) :=

∣∣∣∣ ∂𝑝∂𝑥𝑖
∣∣∣∣
2

2

.

(Note that this is equivalent to the standard definition.) This
influence is a measure of how much changing the value
of the 𝑖th coordinate effects the value of 𝑝. We say that
a polynomial, 𝑝, is 𝜏 -regular if Inf𝑖(𝑝) ≤ 𝜏Var(𝑝(𝑋)) for
each 𝑖.

The celebrated Invariance Principle of [20] states that
if 𝑝 is a 𝜏 -regular, multilinear, degree-𝑑 polynomial, then
the cdf distance between 𝑝(Gaussian) and 𝑝(Bernoulli) is
𝑂(𝑑𝜏1/(8𝑑)).

Unfortunately, the dependence of this bound on 𝜏1/𝑑 is
necessary. In particular, consider (an appropriate multilinear
version of) the polynomial

𝑝(𝑥0, . . . , 𝑥𝑁 ) = 𝜏𝑥0 +

(
1√
𝑁

𝑁∑
𝑖=1

𝑥𝑖

)𝑑

for 𝑑 an even integer. It is easy to see that Inf0(𝑝) = 𝜏2,
while all other influences are 𝑂(1/𝑁), and Var(𝑝) = Θ𝑑(1).
It is also clear that under Bernoulli inputs, 𝑝(𝐵) is always at
least −𝜏 . On the other hand, under Gaussian inputs 𝑝(𝐺) <

−𝜏 whenever 𝑥0 < −2 and
∣∣∣ 1√

𝑁

∑𝑁
𝑖=1 𝑥𝑖

∣∣∣ < 𝜏1/𝑑, an event

of probability Ω(𝜏1/𝑑). Thus, despite 𝑝 being 𝑂(𝜏2)-regular,
these distributions differ in cdf distance by at least Ω(𝜏1/𝑑).

The essential problem arising in this example is that
despite its relatively small influence, 𝑥0 can have a large
effect on the sign of 𝑝(𝑥) + 𝜏 when ∣𝑝(𝑥)∣ is small, which
happens with decent probability. Thus, its influence alone
does not properly measure the impact of the value of
𝑥0 on the final distribution of 𝑝(𝑥), as it cannot see the
anticoncentration-related properties of the polynomial. Since
this information is summarized by a diffuse decomposition
of 𝑝, we suspect that the correct notion of regularity for the
purposes of an Invariance Principle will make use of the
notion of a diffuse decomposition. In particular, we use the
following definition:

Definition. For 𝑝 a degree-𝑑 multilinear polynomial, we say
that 𝑝 has a (𝜏,𝑁,𝑚, 𝜖)-regular decomposition if there exists
a polynomial 𝑝0 of degree-𝑑 so that

∙ 𝔼𝑋∼𝐵 [∣𝑝(𝑋)− 𝑝0(𝑋)∣2] ≤ 𝜖2Var(𝑝0(𝑋)).
∙ 𝑝0 has a (𝜏1/5, 𝑁)-diffuse decomposition of size 𝑚,

(ℎ, 𝑞1, . . . , 𝑞𝑚) so that 𝑞𝑖 is multilinear for each 𝑖 and
Inf𝑗(𝑞𝑖) ≤ 𝜏 for each 𝑖, 𝑗.

Using this notion of regularity we can show:

Theorem 8 (The Diffuse Invariance Principle). If 𝑝 is a
degree-𝑑 multilinear polynomial that has a (𝜏,𝑁,𝑚, 𝜖)-
regular decomposition for 1/2 > 𝜖, 𝜏 > 0, 𝐴 and 𝑋 and
random Bernoulli and Gaussian variables respectively and

𝑡 is a real number, then

∣Pr(𝑝(𝐴) ≤ 𝑡)− Pr(𝑝(𝑋) ≤ 𝑡)∣
= 𝑂𝑑,𝑚(𝜏1/5𝑁 log(𝜏−1)𝑑𝑚/2+1 + 𝜖1/𝑑 log(𝜖−1)1/2).

The proof of Theorem 8 is more or less a direct appli-
cation of Proposition 7, although there are some technical
complications relating to the fact that 𝑝0 will not be multi-
linear.

There are a number of applications for which one would
like to be able to apply an Invariance Principle to a polyno-
mial that is not necessarily regular. A standard technique
for dealing with this issue is to consider restrictions of
the polynomial which are regular. A number of regularity
lemmas have been proved to show that this can be done in
various contexts (for example see [6] or [8]). They tend to
say something along the lines of the following:

Theorem 9. If 𝑝 is a degree-𝑑 polynomial on {−1, 1}𝑛, then
𝑝 can be re-written as a decision tree of depth 𝑂̃𝑑(𝜏

−1)
whose internal nodes correspond to coordinates, and whose
leaves correspond to restrictions of 𝑝, so that with high
probability a random leaf of this decision tree corresponds
to a polynomial 𝑝𝜌 which is either 𝜏 -regular or has constant
sign with high probability.

A new regularity lemma is needed when dealing with
regular decompositions. The following theorem will suffice
for many such purposes.

Theorem 10 (Diffuse Regularity Lemma). Let 𝑝 be a
degree-𝑑 polynomial with Bernoulli inputs. Let 𝜏, 𝑐,𝑀 > 0
with 𝜏 < 1/2. Then 𝑝 can be written as a decision tree of
depth at most

𝑂𝑐,𝑑,𝑀

(
𝜏−1 log(𝜏−1)𝑂(𝑑)

)
with variables at the internal nodes and a degree-𝑑 poly-
nomial at each leaf, with the following property: with
probability at least 1 − 𝜏 , a random path from the root
reaches a leaf 𝜌 so that the corresponding polynomial
𝑝𝜌 either satisfies Var(𝑝𝜌) < 𝜏𝑀 ∣𝑝𝜌∣22 or 𝑝𝜌 has an
(𝜏, 𝜏−𝑐, 𝑂𝑐,𝑑,𝑀 (1), 𝑂𝑐,𝑑,𝑀 (𝜏𝑀 ))-regular decomposition.

The Diffuse Regularity Lemma is proved by maintaining
a diffuse decomposition of an approximation of 𝑝 and
repeatedly throwing any coordinates which have too large
an influence on any of the 𝑞𝑖 into the decision tree. It is
not hard to see that with high probability, this leads to a
decomposition in which all of the 𝑞𝑖 have small influences.
This will yield us a regular decomposition of the restricted
polynomial, unless it has small variance. A restriction with
small variance will satisfy our secondary condition unless it
additionally has a small 𝐿2 norm. Thus, we can construct
a decision tree that has the desired properties on any path
for which the 𝐿2 norm of the restricted polynomial does not
repeatedly drop.
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On the other hand, a martingale argument can be used
to show that in any decision tree, that the 𝐿2 norm of
the restricted polynomial does not drop by a factor of 2
more than 𝑂𝑑(log(𝛿

−1)) times along any path except with
probability at most 𝑂(𝛿). This completes the proof.

It should be noted that while Theorem 8 is not directly
comparable to the classical Invariance Principle (as they use
different notions of regularity), the combination of Theorems
8 and 10 can be compared to the combination of the
classical versions of the Invariance Principle and regularity
lemma. When combined, the later pair states that upon fixing
𝑂̃𝑑(𝜏

−1) coordinates a polynomial can be made to be either
constant sign with high probability or have 𝑂(𝑑𝜏1/(8𝑑)) cdf
distance between its Gaussian and Bernoulli evaluations.
The diffuse versions of these theorems can be combined to
produce a similar statement with the bound on cdf distance
replaced by 𝑂𝑐,𝑑(𝜏

1/5−𝑐). This improvement will be critical
for many applications.

VI. APPLICATION TO NOISE SENSITIVITY OF

POLYNOMIAL THRESHOLD FUNCTIONS

The noise sensitivity of a Boolean function is a measure
of the probability that a small change to the input of the
function will change the value of the output. There are
several different notions of noise sensitivity that are useful
in different contexts. The average sensitivity of a function 𝑓 ,
𝔸𝕊(𝑓), is the expectation over random Bernoulli inputs of
the number of input coordinates that one could flip in order
to change the value of 𝑓 . The corresponding notion in the
Gaussian setting is the Gaussian average sensitivity, denoted
𝔾𝔸𝕊(𝑓). There is also a notion called noise sensitivity,
which for a parameter 0 < 𝛿 < 1 measures the probability
that 𝑓(𝐴) ∕= 𝑓(𝐵) for Bernoulli inputs 𝐴 and 𝐵 that differ
on a 𝛿-fraction of their inputs, denoted ℕ𝕊𝛿(𝑓). There is also
a Gaussian notion of noise sensitivity, denoted 𝔾ℕ𝕊𝛿(𝑓),
defined using a notion of two Gaussians that are noisy
versions of one another.

The problem of studying the noise sensitivity of poly-
nomial threshold functions was first considered in the 1994
paper of Gotsman and Linial ([10]). They Conjecture that the
largest possible average sensitivity of degree-𝑑 polynomial
threshold function in 𝑛 variables is 𝑂(𝑑

√
𝑛). By some

reductions proved in [6] (and another in similar spirit for the
case of Gaussian average sensitivity), this Conjecture would
imply bounds of 𝔾𝔸𝕊(𝑓) = 𝑂(𝑑

√
𝑛),ℕ𝕊𝛿(𝑓) = 𝑂(𝑑

√
𝛿),

and 𝔾ℕ𝕊𝛿(𝑓) = 𝑂(𝑑
√
𝛿). All of these bounds would be

tight if true.
Progress towards proving the Gotsman-Linial Conjec-

ture has been limited. Gotsman and Linial already knew
the degree-1 case of their Conjecture in [10]. For 𝑑 >
1, the first non-trivial bounds were proved independently
by Diakonikolas-Raghavendra-Servedio-Tan and Harsha-
Klivans-Meka in [7] and [12] (these papers were later com-
bined to form [6]). These papers prove bounds of roughly

𝑂(𝑛1−𝑂(1/𝑑)) on average sensitivity and Gaussian average
sensitivity and bounds of roughly 𝑂(𝛿1−𝑂(1/𝑑)) on noise
sensitivity and Gaussian noise sensitivity. In [15], the author
proved an optimal bound of 𝑂(𝑑

√
𝛿) for the special case

of Gaussian noise sensitivity. Unfortunately, the techniques
used to prove this bound do not appear to generalize to the
other notions of sensitivity.

We use the Diffuse Invariance Principle and Regularity
Lemma to obtain a bound on the Bernoulli noise sensitivity
by relating it via an Invariance Principle to the Gaussian
noise sensitivity. While such an attack could have been
mounted with previously existing technology, the limited
power of the existing Invariance Principle would have made
it difficult to prove any bound better than ℕ𝕊𝛿(𝑓) =
𝑂(𝛿1−𝑂(1/𝑑)). Our improved Invariance Principle though
will allow us to do better. In particular, we prove:

Theorem 11. If 𝑓 is a degree-𝑑 polynomial threshold
function, and if 𝑐, 𝛿 > 0, then

ℕ𝕊𝛿(𝑓) = 𝑂𝑐,𝑑(𝛿
1/6−𝑐).

Using reductions between the various notions of sensitiv-
ity, we also prove bounds of 𝑂𝑐,𝑑(𝑛

5/6+𝑐) on the average
sensitivity and Gaussian average sensitivity of a degree-𝑑
polynomial threshold function in 𝑛 variables.

Theorem 11 is proved in two stages. First, we use a
modified form of the Diffuse Invariance Principle, to relate
the noise sensitive and Gaussian noise sensitivity of regular
PTFs. In particular, since good bounds are known on the
Gaussian noise sensitivity, we obtain the following bound
in the Bernoulli case:

Proposition 12. If𝑓 = sgn ∘ 𝑝 is a polynomial threshold
function for 𝑝 a degree-𝑑 polynomial with a (𝜏,𝑁,𝑚, 𝜖)-
regular decomposition for 1/2 > 𝜖, 𝜏 > 0, and if 1 > 𝛿 > 0
is a real number, then

ℕ𝕊𝛿(𝑓) = 𝑂(𝑑
√
𝛿) +𝑂(𝑑𝜖1/2𝑑 log(𝜖−1))

+𝑂𝑑,𝑚(𝑁𝜏1/5 log(𝜏−1)𝑑𝑚/2+1).

In order to reduce the general case to this one, we
use the regularity lemma to write 𝑝 as a decision tree
of depth 𝑂̃(𝛿−5/6), most of whose leaves correspond to
polynomials that are either constant with high probability,
or have a (𝛿5/6, 𝛿−𝑐/2, 𝑂𝑑,𝑐(1), 𝛿

2𝑑)-regular decomposition.
Two inputs to 𝑓 that differ on only a 𝛿-fraction of inputs,
agree on all of the inputs defining a path along this decision
tree with probability 1 − 𝑂̃(𝛿1/6). If this is the case, the
probability that 𝑓 differs on these inputs is the average of
the noise sensitivities of 𝑓 over all leaves of our decision
tree. On the other hand, in either the regular case or the near-
constant-sign case, these noise sensitivities are 𝑂𝑐,𝑑(𝛿

1/6−𝑐),
yielding our result.
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VII. APPLICATION TO PSEUDORANDOM GENERATORS

FOR POLYNOMIAL THRESHOLD FUNCTIONS

A fundamental problem in the study of polynomial thresh-
old functions is that of finding pseudorandom generators
to fool them. In particular, we wish to find some random
variable 𝑌 given by some easily computable function of
a small, purely random seed so that for any degree-𝑑
polynomial threshold function, 𝑓 , in 𝑛 variables,

∣𝔼[𝑓(𝑋)]− 𝔼[𝑓(𝑌 )]∣ ≤ 𝜖, (4)

where 𝑋 above is either an 𝑛-dimensional Gaussian or 𝑛-
dimensional Bernoulli random variable. In [19], Meka and
Zuckerman show using the probabilistic method, that such
𝑌 must exist with seed length as small as 𝑂(𝑑 log(𝑛) +
log(𝜖−1)), but the problem of finding explicit generators has
proved to be quite difficult.

A number of papers have attempted to produce generators
using simple 𝑘-wise independence. If it can be shown that
any 𝑘-wise independent family 𝑌 of Bernoullis or Gaussians
satisfies Equation (4), then a generator can be produced with
seed length 𝑂(𝑘 log(𝑛)) (for Gaussians, the story is slightly
more complicated since the Gaussian distribution must be
discretized first). Diakonikolas-Gopalan-Jaiswal-Servedio-
Viola show in [4] that 𝑘 = 𝑂(𝜖−2 log2(𝜖−1))-independence
suffices to fools degree-1 polynomial threshold functions of
Bernoullis. In [5], Diakonikolas, Kane and Nelson show that
𝑘 = 𝑂(𝜖−2) is sufficient for 𝑑 = 1 and Gaussians, and
𝑘 = 𝑂(𝜖−8) and 𝑘 = 𝑂̃(𝜖−9) for 𝑑 = 2 in the Gaussian and
Bernoulli case respectively (the later result can be improved
using Theorems 8 and 10 of this paper in place of the use of
the classical Invariance Principle and Regularity Lemma in
[5] to show that 𝑘 = 𝑂(𝜖−8) suffices for both cases). Finally,

in [14], it was shown that 𝑘 = 𝑂𝑑

(
𝜖−2𝑂(𝑑)

)
-independence

suffices for arbitrary degree polynomial threshold functions.
Unfortunately, a relatively simple construction can be used to
show that Ω(𝑑2𝜖−2)-independence is required in both cases,
eliminating the possibility of finding particularly small seed
lengths in this way.

There have also been some attempts to come up with
pseudorandom generators not based entirely on limited
independence. In [19], Meka and Zuckerman come up
with a generator of seed length 𝑂(log(𝑛) + log2(𝜖−1))
for 𝑑 = 1 using pseudorandom generators against space
bounded computation. They also develop a generator of seed
length 2𝑂(𝑑) log(𝑛)𝜖−8𝑑−3 for arbitrary degree functions in
the Bernoulli case. In [13], in what was in many ways a
predecessor to this work, the author developed a generator
of seed length 2𝑂𝑐(𝑑) log(𝑛)𝜖−4−𝑐 for any 𝑐 > 0 in the
Gaussian case.

These last two generators were both analyzed using some
form of the replacement method. By replacing the standard
replacement method in these cases with an appropriate
diffuse version, the analysis of these generators can be

improved. In particular, it is the case that with slightly
modified versions of these generators, degree-𝑑 PTFs can be
fooled with seed length 𝑂𝑐,𝑑(log(𝑛)𝜖

−2−𝑐) in the Gaussian
case and 𝑂𝑐,𝑑(log(𝑛)𝜖

−11−𝑐) in the Bernoulli case.

A. The Gaussian Generator

The generator in [13] is given by

𝑋 =
1√
𝑁

𝑁∑
𝑖=1

𝑋𝑖,

where the 𝑋𝑖 are chosen independently from 𝑘-independent
families of Gaussians. The basic idea of the analysis is that
for 𝑌 𝑖 taken independently from fully independent families
of Gaussians that

𝑌 =
1√
𝑁

𝑁∑
𝑖=1

𝑌 𝑖

is simply an 𝑛-dimensional Gaussian. One then attempts to
show that

𝔼[𝑓(𝑋)] ≈ 𝔼[𝑓(𝑌 )]

using some sort of replacement method.
The error bound that ones obtains using this technique is

greatly dependent on which smooth approximation, 𝑔 ≈ 𝑓 is
used in the replacement method. The standard choice of 𝑔 =
𝜌(𝑝(𝑥)) will lead to errors on the order of 𝑁−1/𝑑. In [13],
the author improves on this by using a 𝑔 that approximates
𝑓 well so long as

∣𝑝(𝑌 )∣ ≥ 𝜖∣𝑝′(𝑌 )∣ ≥ . . . ≥ 𝜖𝑑∣𝑝(𝑑)(𝑌 )∣.
This holds with high probability by Strong Anticoncentra-
tion, and the added control over the derivatives of 𝑔 allow
one to obtain error bounds on the order of 𝑁−1/4+𝑐 for large
enough 𝑘.

This can be improved further using the theory of Diffuse
Decompositions. A direct application of Proposition 7 yields
an error on the order of 𝑁−1/2+𝑐 for large enough 𝑘.

B. The Bernoulli Generator

The generator of Meka and Zuckerman is slightly more
complicated. Essentially, the coordinates are first hashed
into 𝑁 bins by some 𝑘-wise independent hash function
ℎ : {1, 2, . . . , 𝑛} → {1, 2, . . . , 𝑁}. The coordinates in the
𝑖𝑡ℎ bin are then set by some other 𝑘-wise independent hash
function 𝑍𝑖 : {1, 2, . . . , 𝑛} → {±1}. Together, this gives us
our generator

𝑋(𝑖) := 𝑍ℎ(𝑖)(𝑖).

In order to analyze this generator, we note that upon fixing
ℎ we can consider our polynomial, 𝑝, as some polynomial
in the 𝑍𝑖. Assuming that 𝑝 is regular and assuming that the
sum of the influences of the coordinates that ℎ maps to a
given bin is never too large (an event which happens with
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high probability), then one can use the replacement method
to show that

𝔼[sgn(𝑝(𝑍1, . . . , 𝑍𝑁 ))] ≈ 𝔼[sgn(𝑝(𝑌 1, . . . , 𝑌 𝑁 ))],

where the 𝑌 𝑖 are standard Gaussians. Since the same
approximation would hold for fully independent 𝑍𝑖 (thus,
yielding a fully independent 𝑋), we know that

𝔼[sgn(𝑝(𝑋))] ≈ 𝔼[sgn(𝑝(𝐵))]

when 𝑝 is sufficiently regular.
In order to analyze the case of a general polynomial 𝑝,

we reduce to the case of a regular one using an appropriate
regularity lemma. In order for this reduction to work, we
need to know that after conditioning on the values of the
coordinates in our decision tree, that the resulting conditional
distribution on 𝑋 is still of the above form. This is done by
increasing the independence with which the 𝑍𝑖 are chosen
by the depth of the decision tree. If we are using the classic
notion of regularity, then in order to obtain an error of 𝜖,
the tree must have depth 𝜖−𝑑, and thus, the generator must
have seed length more than 𝜖−𝑑. On the other hand, using
the diffuse notion of regularity, the decision tree can be as
small as 𝜖−5−𝑐, and a detailed analysis shows that a seed
length of 𝑂𝑐,𝑑(𝜖

−11−𝑐) is sufficient.
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