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Abstract—We study the problem of constructing universal
Steiner trees for undirected graphs. Given a graph G and a
root node r, we seek a single spanning tree T of minimum
stretch, where the stretch of T is defined to be the maximum
ratio, over all terminal sets X , of the cost of the minimal
sub-tree TX of T that connects X to r to the cost of an
optimal Steiner tree connecting X to r in G. Universal Steiner
trees (USTs) are important for data aggregation problems
where computing the Steiner tree from scratch for every input
instance of terminals is costly, as for example in low energy
sensor network applications.

We provide a polynomial time UST construction for general
graphs with 2O(

√
log n)-stretch. We also give a polynomial time

polylog(n)-stretch construction for minor-free graphs. One
basic building block of our algorithms is a hierarchy of graph
partitions, each of which guarantees small strong diameter
for each cluster and bounded neighbourhood intersections for
each node. We show close connections between the problems
of constructing USTs and building such graph partitions. Our
construction of partition hierarchies for general graphs is based
on an iterative cluster merging procedure, while the one for
minor-free graphs is based on a separator theorem for such
graphs and the solution to a cluster aggregation problem that
may be of independent interest even for general graphs. To
our knowledge, this is the first subpolynomial-stretch (o(nε)
for any ε > 0) UST construction for general graphs, and the
first polylogarithmic-stretch UST construction for minor-free
graphs.

Keywords-universal Steiner tree; hierarchical graph parti-
tion; minor-free graphs; graph clustering.

I. INTRODUCTION

In this paper, we study universal approximations for the

Steiner Tree problem on undirected graphs. In the universal

Steiner Tree (UST) problem for graphs, we are given an

undirected graph G and a designated root vertex r in G,

and the task is to find a single spanning tree T of G such

that for any set X of terminal vertices, the minimal subtree

TX of T that connects X to r is a good approximation to the

optimal Steiner tree connecting X to r in G. The quality of

the solution T is given by its stretch, which is the maximum

ratio of the cost of TX to the cost of the optimal Steiner tree

connecting X to r in G over all terminal sets X .

The universal Steiner tree problem has been studied

extensively for the case of metrics where one is allowed to

output an “overlay tree”, whose edges correspond to paths

in the given graph [1], [2], [3], [4]. Equivalently, the case

of metrics can be viewed as a complete graph in which all

edge weights satisfy the triangle inequality. In fact, for the

case of metrics, there have been several important results

on extensions of the UST problem and variants seeking

sparse network structures that simultaneously approximate

the optimal solutions for a range of input instances [5], [6],

[7], [2].

The focus of this paper is on the UST problem on arbitrary

graphs where we require that the solution being sought is a

spanning tree of the given graph. The Minimum Steiner tree

problem on a graph can be well-approximated by solving

the same problem on the metric induced by the graph

and then computing the minimum subtree connecting the

terminals. Such an approach, however, does not apply to

the UST problem owing to the requirement that the tree

simultaneously approximate the optimal Steiner tree for all
terminal sets. Note that this is a much stronger requirement

than asking for a probability distribution over spanning trees

that has small expected stretch for every terminal set. In

the latter case, there might not be any single tree in the

distribution that is good for all terminal sets, i.e., for every

tree there is a terminal set such that the minimal subtree

connecting the terminals to the root has a cost much larger

than the optimal steiner tree.

Motivation. Our problem formulation is primarily motivated

by information aggregation and data dissemination in sensor

and ad-hoc wireless networks [8], [9], [10]. In a sensor

network, data is often collected by a central agent that
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periodically queries a subset of sensors for their sensed in-

formation. In many applications, the queries seek aggregate

information which can be transmitted using a low cost tree

that aggregates data at intermediate nodes. This reduces the

number of transmissions which is crucial as sensors have

limited battery life and wireless transmissions are power

intensive. It is not realistic, however, to expect the sensors

to compute and store a low cost tree for each potential

subset of sensors being aggregated as the sensors have

limited memory and computational power. In this setting, a

universal tree provides a practical solution where the nodes

just need to realize a single tree which approximates optimal

aggregation trees for all subsets of sensors. Thus, one natural

approach is to employ a universal overlay tree. This has

several disadvantages, however. First, aggregation over the

overlay tree requires a physical routing infrastructure that

supports point-to-point communication among distant nodes

in the network. Second, even if such an infrastructure exists,

it may not route packets along minimum-cost paths as re-

quired by the overlay tree. Furthermore, aggregation over the

overlay tree requires synchronization among distant nodes

in the network and incurs overhead in terms of delays and

storage. Thus, in some resource-constrained applications, we

would ideally want to construct a universal spanning tree as

opposed to an overlay tree.
Another motivation to study universal approximation al-

gorithms comes from their relation with differential privacy

which was recently established by Bhalgat, Chakrabarty

and Khanna [3]. They showed that universal solutions such

as USTs are differentially private, and argued that a kind

of “strong” lower bounds for universal algorithms implies

lower bounds for differentially private ones as well.
From a theoretical standpoint, our motivation is to find

out whether the results known for UST and related problems

in the metric case can, in fact, be achieved using spanning

trees of the underlying graphs. The analogous question for

approximating metrics by tree metrics has been answered

affirmatively by [11], [12], [13] who showed that nearly

logarithmic-stretch spanning trees exist for all graphs, almost

matching the best bound achievable by tree metrics [14]. No

comparable results are known for the UST problem.

A. Our results and techniques
Our main results are UST algorithms for general graphs

and for the special class of minor-free graphs.

• UST for general graphs: We present a polynomial-

time algorithm for computing a 2O(
√

log n)-stretch

spanning tree for any undirected graph.

• UST for minor-free graphs: We present a polynomial-

time algorithm for computing a polylog(n)-stretch

spanning tree for any graph that is H-minor free for

any finite graph H .

While the specific techniques used in the two algorithms

are substantially different, both are grounded in a common

general framework that draws close connections between

USTs and certain graph partitions based on strong diameter.

We define an (α, β, γ)-partition of a graph G as a partition

of the vertices of G into clusters such that each cluster has

strong diameter at most αγ, and for every vertex, the ball

of radius γ in G intersects at most β clusters. A primary

motivation to study these partitions is the following result.

• From USTs to partitions: If every n-vertex graph

has a σ(n)-stretch UST for some function σ, then

for any real γ > 0, every n-vertex graph has

an (O(σ(n)2), O(σ(n)), γ)-partition. Moreover, such a

partition can be efficiently constructed given black-box

access to a σ(n)-stretch UST algorithm. (Section III-A)

While the above result says that one cannot construct USTs

without (implicitly) constructing these graph partitions, the

significance of our framework stems from our next result that

one can also efficiently construct USTs from these strong

partitions. We define an (α, β, γ)-partition hierarchy as a

sequence of partitions starting from the trivial partition in

which each vertex forms its own cluster, and the ith partition

is an (α, β, γi)-partition that coarsens the (i−1)th partition.

(See Section II for formal definitions.) Given a partition

hierarchy, a natural divide-and-conquer method to construct

a UST (similar to one employed in [1] for metric UST) is

to connect together subtrees recursively computed for lower

levels of the hierarchy. This approach, however, does not

work. In fact, we prove that any UST construction that

strictly obeys the connectivity structure of the hierarchy, in

the sense that the subgraph of the tree induced by every

cluster of the hierarchy is connected, will have poor stretch

in the worst case (see Section III-B1). We overcome this

obstacle by introducing the novel notion of spanning trees

that approximately respect a given partition hierarchy; such

a tree may be disconnected within a cluster of the hierarchy,

but is joined externally so as to approximately respect the

distances within every cluster. We show how to construct

such spanning trees from a given partition hierarchy and

prove that they achieve desired stretch factors.

• From partition hierarchies to USTs: For any graph

G, given an (α, β, γ)-partition hierarchy for G, an

O(α2β2γ log n)-stretch UST for G can be constructed

in polynomial time. (Section III-B)

A major consequence of the above result is that one

can obtain a polylog(n)-stretch UST by constructing

a (polylog(n), polylog(n), polylog(n))-partition hierarchy.

Note that there is an Ω(log n) lower bound on the best

stretch achievable, even in the metric case [2], [3]. We next

obtain our main results for general graphs and minor-free

graphs by constructing suitable partition hierarchies.

• Partition hierarchies for general graphs: Every

graph G has a polynomial-time computable

(2O(
√

log n), 2O(
√

log n), 2O(
√

log n))-partition

hierarchy. (Section IV)

82



• Partition hierarchies for minor-free graphs: Ev-

ery minor-free graph G has a polynomial-time com-

putable (O(log3 n), O(log4 n), O(log3 n))-partition hi-

erarchy. (Section VI)

The partition hierarchy for general graphs is obtained by

an iterative procedure in which clusters are continually

merged by identifying vertices for which the number of

intersecting clusters within a specified distance exceeds the

desired bound. The particular order in which the vertices

are processed is carefully chosen; a natural greedy approach

fails.

Our construction of the partition hierarchy for minor-

free graphs is more complicated. It is based on a separator

theorem due to [15], [16] which builds on [17] and shows

that any minor-free graph can be decomposed into connected

components, each of which contains at most half the number

of nodes, by removing a sequence of a constant number of

shortest paths. A key ingredient of our hierarchical construc-

tion for minor-free graphs is a result on cluster aggregation

in general graphs, which is of independent interest.

• Cluster aggregation: We show that given any partition

of G into disjoint clusters each with strong diameter at

most D, and a set S of portal vertices, we can aggregate

the clusters into disjoint connected components, each

component with a distinguished portal from S, such that

for any vertex v, the distance, within the component of

v, from v to the distinguished portal in the component

is at most O(log2 n)D more than the distance of v to

S in G. (Section V)

Due to space constraints, we have omitted several proofs and

complete description of some algorithms in this extended

abstract. We refer the reader to the full paper [18] for all

details.

B. Related work

Research in network design over the past decade has

revealed that it is often possible to derive sparse network

structures (e.g., routes, multicast trees) that yield good ap-

proximations simultaneously for a range of input instances.

One of the earliest examples of such a result is due to Goel

and Estrin [5] who introduced the problem of simultaneous
single sink buy-at-bulk and gave an O(log D) bound on

the simulataneous ratio where D is the total demand. The

guarantee is that their solution works simultaneously for all

fusion cost function f which are concave and monotonically

non-deceasing with f(0) = 0. In a related paper [7], Goel

and Post constructed a distribution over trees such that the

expected cost of a tree for any f is within an O(1)-factor

of the optimum cost for that f . A recent improvement by

Goel and Post [6] provides the first constant guarantee on

the simultaneous ratio achievable by a tree. This result is

incomparable to our results since the set of terminals that

are being aggregated in the buy-at-bulk problem are fixed.

Jia et al. [1] introduced the notion of universal approx-

imation algorithms for optimization problems, focusing on

TSP, Steiner Tree and set cover problems. For the univer-

sal Steiner tree problem, they presented polynomial-time

algorithms that construct overlay trees with a stretch of

O(log4 n/ log log(n)) for arbitrary metrics and logarithmic

stretch for doubling, Euclidean, or growth-restricted metrics.

At a high-level, our approach of using partition hierarchies

to derive USTs is similar to that of [1]. There are several

critical differences, however. First, as we discussed in Sec-

tion I-A, the natural divide-and-conquer method employed

in [1] of constructing the UST fails for graphs. Second, the

construction of strong partitions for graphs (as opposed to

the weak partitions of [1]) require entirely new techniques

for both general graphs and minor-free graphs, and introduce

new subproblems of independent interest, e.g., the cluster

aggregation problem studied in Section V. The work of [1]

also provided a lower bound of Ω(log n/ log log n) for UST

that holds even when all the vertices are on a plane; for

general metrics, this can be improved to Ω(log n) [2], [3].

Note that these lower bounds extend to the UST problem on

graphs. Lower bounds for universal TSP are given in [19],

[20]. For earlier work on universal TSP, see [21], [22].

Gupta, Hajiaghayi and Räcke [2] developed an elegant

framework to model oblivious network design problems

and gave algorithms with poly-logarithmic approximation

ratios. They give network structures that are simultaneously

oblivious to both the link cost functions (subject to them

being drawn from a suitable class) and traffic demand. Their

algorithms are based on the celebrated tree metric embed-

dings of Fakcharoenphol et al. [14] and hierarchical cut-

based decompostions of Räcke [23]. For the UST problem

on metrics, the algorithm of [2] builds a UST as follows:

First obtain O(log n) trees from the distribution of [14]; next

assign each non-root vertex to a tree that well-approximates

its distances to all other nodes; finally, take the union, over

each of the O(log n) overlay trees, the subtree of the tree

induced by the root and the vertices assigned to the tree.

The resulting overlay tree is an O(log2 n)-stretch UST.

A potential approach to solving the UST problem on

graphs is to adapt the techniques of [2] with O(log n)
spanning trees drawn from the distributions of [11] instead of

the overlay trees of [14]. A major challenge here is that the

paths or subtrees chosen from the different O(log n) trees

may share several vertices and hence create unavoidable

cycles when combined. The only prior work on constructing

universal Steiner trees for graphs is due to Busch et al. [4]

who achieved a stretch of O(log3 n) for the restricted class

of graphs with bounded doubling dimension by showing

how one can continually refine an O(log n)-stretch overlay

tree by removing cycles to obtain an O(log3 n)-stretch UST.

Their techniques, however, are closely tied to the particular

class of graphs and seem difficult to generalize. We also note

that the spanning tree constructions aimed at minimizing
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average stretch [24], [11], [13], [12] with respect to distance

do not yield any useful bounds for our stretch measure with

respect to optimal Steiner trees.

As mentioned in Section I-A, our universal Steiner trees

are based on certain partitions of graphs where we would

like to bound the strong diameter of the clusters while

maintaining some sparsity constraints. Such partitions have

been extensively studied [25], [26]. While nearly optimal

partitions based on weak diameter bounds are known in

many cases, strong-diameter based decompositions are less

understood [25]. There have been recent results on strong-

diameter decompositions [13], [27], [12], [11]; while our

partitions share some of the ideas (e.g., of stitching together

judiciously chosen shortest paths), there are significant dif-

ferences in the details and the particular partitions being

sought. In particular, none of the proposed partitions satisfy

the requirement that the neighborhood around every node

intersects a small number of clusters. Furthermore, while

we seek partition hierarchies with deterministic guarantees,

many previous results concerned hierarchies with either

probabilistic or averaging guarantees or covers where clus-

ters are allowed to overlap.

II. DEFINITIONS AND NOTATIONS

Let G = (V,E, w) denote a weighted undirected graph,

where V and E are the sets of vertices and edges, respec-

tively, and w : E → R is the length function on edges. We

assume, without loss of generality, that the minimum edge

length is 1, since otherwise we can scale all the edge lengths

appropriately. The length of a path is simply the sum of the

lengths of the edges in it. For any u and v in V , the distance

between u and v, denoted by d(u, v), is the length of a

shortest path between u and v, according to w. For v ∈ V
and real number ρ, let B(v, ρ) denote the ball of radius ρ
centered at v, i.e., B(v, ρ) is the set of all vertices that are

at distance at most ρ from v, including v. The diameter of

the graph, denoted by DIAM(G), is the maximum distance

between any two vertices of G.

For any graph G and any subset X of vertices in G, let

G[X] denote the subgraph of G induced by X . For any

subset X of vertices and u, v in X , let dX(u, v) denote the

distance between u and v in G[X].
Universal Steiner tree. Given a specified root vertex r ∈ V
and a set of terminal vertices X ⊆ V , a Steiner tree T for

X is a minimal subgraph of G that connects the vertices of

X to the root. The cost of a tree T , denoted by COST(T ),
is the sum of the lengths of edges in it. Assume G and r to

be fixed. We let OPT(X) denote the cost of the minimum

cost steiner tree connecting X to r. Given a spanning tree

T of G and terminal set X , we define its projection on the

terminal set X , denoted by TX , as the minimal subtree of

T rooted at r that contains X .

Definition 1 (Universal Steiner tree (UST)): Let G be an

weighted undirected graph, and r be a specified root vertex

in V . We define the stretch of a spanning tree T of G to be

maxX⊆V COST(TX)/OPT(X). The universal Steiner tree
problem is to find a spanning tree with minimum stretch.

Partitions. A partition P of V is a collection of disjoint

subsets of V whose union equals V . We refer to each

element of P as a cluster of the graph G. There are two

notions for the diameter of a cluster C. This paper focuses

on the strong diameter, denoted by DIAM(C), which is

the diameter of the subgraph induced by the cluster, i.e.

DIAM(G[C]). In contrast, the weak diameter of a cluster is

simply the maximum distance between any two verices of

the cluster in G.

Definition 2 ((α, β, γ)-partition): An (α, β, γ)-partition

P of G is a partition of V satisfying:

1) Strong diameter: The strong diameter of every cluster

C in P is at most αγ; i.e., DIAM(C) ≤ αγ.

2) Cluster-valence: For every vertex v in V , B(v, γ) has

a nonempty intersection with at most β clusters in P .

We refer to β as the cluster-valence of P .

A notion of partition similar to our (α, β, γ)-partition

appeared in Jia et al. [1], which required a bound on the

weak diameter of clusters.

Definition 3 (Partition hierarchy): For γ > 1, an

(α, β, γ)-partition hierarchy of a graph G is a sequence

H = 〈P0,P1, . . . ,Pd〉 of partitions of V , where d =
	logγ(DIAM(G)/α)
, satisfying:

1) Partition: For 0 ≤ i ≤ d, Pi is an (α, β, γi)-partition

of G. Furthermore, Pd is the collection {V }. For con-

venience, we set P−1 to the collection {{v} | v ∈ V }.
2) Hierarchy: For 0 ≤ i < d, every cluster in Pi is

contained in some cluster in Pi+1.

3) Root Padding: For 0 ≤ i ≤ d, the ball B(r, γi) of

radius γi around root r is contained in some cluster

in Pi.

For a partition P of a graph G, let Ĝ[P] denote a weighted

graph in which the vertex set is P , and there is an edge

(C, C ′) between clusters C and C ′ if G has an edge between

a vertex in C and a vertex in C ′; the length of the edge

(C, C ′) is the minimum length of an edge between C and

C ′ in G.

For a partition P , let P(v) denote the cluster of P
that contains the vertex v and MAXDIAM(P) denote

maxC∈P DIAM(C). For a subset X of vertices, let P[X]
denote the partition restricted to X; i.e., P[X] is the collec-

tion {X ∩ C | C ∈ P}. For a partition hierarchy H and a

cluster C that is an element of a partition Pi in H, we let

H[C] denote the partition hierarchy projected to C; that is,

H[C] = 〈P0[C], . . . ,Pi[C]〉. Let T be a spanning tree and

H be an (α, β, γ)-partition hierarchy of G. We say that T
strictly obeys H if for each Pi ∈ H and each cluster C ∈ Pi,

the subgraph of T induced by C is connected. We say that

T μ-respects H if for each Pi ∈ H, each C ∈ Pi and every

pair of vertices u, v ∈ C, dT (u, v) is at most μαγi.
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III. STRONG PARTITIONS AND UNIVERSAL STEINER

TREES

We now present close connections between the strong

partitions of Definition 2 and universal Steiner trees. We

first show in Section III-A that partitions with low strong

diameter and low cluster-valence are necessary for deriving

low-stretch trees. We next show in Section III-B how par-

tition hierarchies yield USTs. Given an (α, β, γ)-partition

hierarchy for any graph G, Section III-B1 shows how to

get an O((αβ)logγ nγβ2 logγ n)-stretch UST for G that

strictly obeys the partition hierarchy, and also presents a

nearly matching lower bound on the stretch for such USTs.

Section III-B2 then presents an improved O(α2β2γ logγ n)-
stretch UST construction that does not strictly obey but

approximately respects the partition hierarchy.

A. From universal Steiner trees to strong partitions

Theorem 4: If every n-vertex graph has a σ(n)-stretch

UST for some function σ, then for any real γ > 0, ev-

ery n-vertex graph has an (O(σ(n)2), O(σ(n)), γ)-partition.

Moreover, such a partition can be efficiently constructed

given black-box access to a σ(n)-stretch UST algorithm.

B. From partition hierarchies to a universal Steiner trees

We first prove the following important lemma, showing

the significance of μ-respecting trees.

Lemma 5: A spanning tree T that μ-respects an (α, β, γ)-
partition hierarchy has a stretch of O(μαβγ log n).

Proof: Let 〈Pi〉 denote the given (α, β, γ)-partition

hierarchy. Fix a non-empty set X of vertices. Note that X
is assumed to not contain the root r. For each cluster C in

the partition hierarchy such that C∩ (X∪{r}) is nonempty,

let v(C) denote an arbitrary vertex in C ∩ (X ∪ {r}).
We place an upper bound on the cost of TX , the subgraph

of T connecting the vertices in X to the root r, as follows.

Let ni denote the number of clusters in Pi that X ∪ {r}
intersects. Since we have defined P−1 to be the trivial

clustering consisting of a singleton set for each vertex, n−1

is simply |X ∪ {r}|. Let j be the smallest integer such

that X is a subset of the cluster in Pj that contains r. In

other words, nj equals 1 and ni > 1 for all −1 ≤ i < j.

Fix an i, −1 ≤ i < j. Let C be any cluster of Pi that

intersects X ∪ {r}, and let C ′ denote the cluster of Pi+1

that contains C. Since T μ-respects the partition hierarchy,

it follows that the length of the path from v(C) to v(C ′)
in T is at most μαγi+1. Therefore, the cost of TX is at

most
∑
−1≤i<j niμαγi+1. Let I = {i | (i = j) ∨ (−1 ≤

i < j ∧ ∃p : ni ≥ 2p ∧ ni+1 < 2p)}. For � ∈ I , let

I� = {i | (−1 ≤ i ≤ �) ∧ ¬(∃�′ ∈ I : i ≤ �′ < �)}.
We have∑
i∈I�

niμαγi+1 ≤
∑
i∈I�

2n�μαγi+1 ≤
∑

−1≤i≤�

2n�μαγi+1

= O(n�μαγ�+1).

We next place a lower bound on OPT(X). Fix an i,
0 ≤ i < j. By the cluster-valence property of the hierarchy,

any ball of radius γi intersects at most β clusters in Pi.

Thus, there are at least 	ni/β
 vertices in X that are at

pairwise distance at least γi from one another. This implies

that OPT(X) is at least (	ni/β
 − 1)γi. If 	ni/β
 = 1,

we invoke the padding property which says there is at least

one vertex in X that is at distance at least γi from the root,

implying a lower bound of γi on OPT(X). Combining the

two bounds, we obtain a lower bound of Ω(niγ
i/β). For

i = −1, we also have a lower bound of n−1 since the

minimum edge-weight is 1. Noting that |I| = O(log n), we

get the stretch of T (G) to be

O

(∑
�∈I

∑
i∈I�

niμαγi+1

OPT(X)

)
= O

(∑
�∈I

n�μαγ�+1

n�γ�/β

)
= O

(∑
�∈I μαγ�+1β/γ�

)
= O(μαβγ log n).

1) A basic bottom-up algorithm: We first present a

bottom-up algorithm for constructing a spanning tree T from

a partition hierarchy that strictly obeys it. Though the stretch

achieved by the spanning tree is much weaker than what

we obtain by a different algorithm, it helps develop our

improved algorithm.

Algorithm UST:BASIC

Require: Undirected graph G, (α, β, γ)-partition hierarchy

〈Pi : −1 ≤ i ≤ d = 	logγ(DIAM(G)
α )
〉 for G.

Ensure: A spanning tree T of G.

1: For every cluster C in P−1, set T (C) to ∅.
2: for level i from 0 to d do
3: for cluster C in Pi do
4: For an edge e = (C1, C2) in Ĝ[C][Pi−1[C]], let

m(e) denote the edge between C1 to C2 in G[C]
that has minimum weight. (Recall that G[C] is the

subgraph of G induced by C and Pi−1[C] is the

partition Pi−1 restricted to the set C.)

5: Compute a shortest path tree T ′ from an arbitrary

source vertex in Ĝ[C][Pi−1[C]].
6: Set T (C) to be the union of ∪C′∈Pi−1[C]T (C ′) and

{m(e) : e ∈ T ′}.
7: end for
8: end for
9: Set T to be T (V ). (Note that V is the lone cluster in

Pd.)

Theorem 6: For any graph G, given an (α, β, γ)-partition

hierarchy, an O((αβ)logγ nγβ2 log n)-stretch UST is com-

puted by Algorithm UST:BASIC in polynomial time.
We complement the above construction by an almost

matching lower bound for stretch achievable by any span-

ning tree that strictly obeys a partition hierarchy.
Theorem 7: Let α, β < γ. There exists a graph G and an

(α, β, γ)-partition hierarchy H of G such that any spanning

tree T of G that strictly obeys H has sretch Ω((αβ)
logγ n

4 γ).
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2) Split and join: An improved top-down algorithm:
The tree returned by Algorithm UST:BASIC strictly obeys

the given partition hierarchy. In doing so, however, it pays

a huge cost in the distances within the cluster which is

unavoidable.

We now present a much more careful construction of

a universal Steiner tree which does not enforce the con-

nectivity constraint within clusters; that is, we use a given

partition hierarchy H to build a tree T in which T [C] may

be disconnected. By allowing this disconnectivity within

clusters, however, we show that we can build a tree that μ-

respects the given hierarchy for a much smaller μ, assuming

γ is sufficiently large. The pseudocode is given below in

Algorithm UST:SPLIT-JOIN.

Algorithm UST:SPLIT-JOIN

Require: Undirected graph G = (V,E), a nonempty

set SG ⊆ V of portals, a partition hierarchy H =
{P0,P1, . . . ,P�}.

Ensure: A forest F that connects every vertex in V to SG.

1: If the graph consists of a single vertex, then simply

return the vertex as the forest.

2: For an edge e = (C1, C2) in Ĝ[P�], let m(e) denote the

minimum-weight edge from C1 to C2 in G.

3: Let Ŝ denote the set of clusters that have a nonempty

intersection with SG.

4: For every cluster C in Ŝ, set SC to be C ∩ S.

5: Compute a shortest path forest F̂ in Ĝ[P�] rooted at Ŝ.

6: for cluster C in P� in order of decreasing distance from

Ŝ in F̂ do
7: if C is a leaf node in F̂ then
8: Set RANK(C) to be 0, SC to be {tail of m(e)}

where e is the edge connecting C to its parent in

F̂ .

9: else
10: Let MAXC be max{RANK(C ′) | C ′ is child of C}.

Set FAV(C) to be a child of C with rank MAXC.

Set HIGHWAY(C) to be a shortest path in C from

the head of m(e) to the tail of m(e′) where e and

e′ are the edges connecting FAV(C) to C and C to

its parent, respectively, in F̂ . Set SC to be the set

of nodes in HIGHWAY(C).
11: if there exist at least two children of C in F̂ whose

rank equals MAXC then
12: Set RANK(C) to be MAXC + 1
13: else
14: Set RANK(C) to be MAXC

15: end if
16: end if
17: end for
18: for each cluster C in P� do
19: Compute F (C) = UST(G[C], SC ,H[C])
20: end for
21: Return F to be the union of

⋃
C∈P�

HIGHWAY(C),

⋃
C∈P�

F (C), and {m(e) : e ∈ F̂}.
We have presented Algorithm UST:SPLIT-JOIN in a more

general context where the goal is to compute a forest rooted

at a given set of portals. To obtain a UST, we invoke

the algorithm with the portal set being the singleton set

consisting of the root.
Lemma 8: The output F of the algorithm is a spanning

forest, each tree containing exactly one vertex in SG.
Lemma 9: Let F be the final forest returned by the

algorithm. For any cluster C, when UST is called on cluster

C, either SC is a subset of SG or for any two vertices u
and v in SC , dF (u, v) is at most dC(u, v).

Lemma 10: The rank of any cluster C in partition P� is

at most log(|P�|).
Lemma 11: Let F be the final forest returned by the

algorithm. If γ ≥ 3 log n, then for any cluster C in Pi and

vertex u in C, dF (u, SC) is at most 3α2βγi.
Proof: We prove by induction on level i that dF (u, SC)

is at most 3α2βγi, with the base case being i = 0. In this

case, the cluster and its portal set are the same singleton

vertex set, trivially yielding the desired claim. For the

induction step, we consider i > 0. Let C be a cluster of

Pi. For any vertex u in C, let Cu denote Pi−1(u), that is,

the cluster in partition Pi−1 that contains u.
As in the algorithm, let Ŝ denote the set of clusters in the

partition of C that intersect SC . Let Cu = C0, C1, . . . , Ck,

where Ck ∈ Ŝ, denote the sequence of clusters in the unique

path from Cu to Ŝ in Ĝ[P�], which we refer to as the

supergraph in the following argument. Note that Ci is the

parent of Ci−1 in the supergraph. By our argument in the

proof of Theorem 6, we know that k is at most αβγ. We

now argue that there are at most log n elements Ci in the

sequence such that Ci is not FAV(Ci+1). To see this, we

note that if Ci is not FAV(Ci+1), then RANK(Ci+1) strictly

exceeds RANK(Ci). Since the rank of any cluster is at most

log n by Lemma 10, the desired claim holds.
This sequence of clusters induces a path from u to SC ,

which consists of (a) the connecting edges in the supergraph,

(b) the highway in each cluster Ci in the sequence, (c) for

each cluster Ci such that Ci−1 is not a favorite of Ci, the

unique path in F (Ci) (and, hence, in F ) that connects the

head of the edge connecting Ci−1 and Ci to SCi . Since the

number of clusters in the sequence is at most αβγ, and the

highway in each cluster is a shortest path of length at most

αγi−1, the total length of the paths in (a) and (b) is at most

2α2βγi. The number of clusters in (c) is at most log n, and

by the induction hypothesis, the length of each path in (c)

is at most 3α2βγi−1. We thus have,

dF (u, SC) ≤ 2α2βγi + (3 log n)α2βγi−1

≤ 3α2βγi

for γ ≥ 3 log n, thus completing the proof of the lemma.
Lemma 12: The forest F returned by the algorithm 7αβ-

respects H.
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Proof: We show that for any cluster C in Pi, and

vertices u, v in C, dF (u, v) is at most 7α2βγi; this will

establish the desired claim. By Lemma 11, dF (u, SC) and

dF (v, SC) are both at most 3α2βγi. By Lemma 9, for

any two nodes x and y in SC , dF (x, y) is at most the

strong diameter of C, which is at most αγi. Putting these

three distances together, we obtain that dF (u, v) is at most

7α2βγi.

Theorem 13: Given an undirected graph G, portal set

SG = {r}, where r is an arbitrary vertex of G, and (α, β, γ)-
partitionH of G as input, Algorithm UST:SPLIT-JOIN returns

an O(α2β2γ log n)-stretch UST.

Proof: By Lemma 8, the output F is a spanning forest,

each tree of which contains exactly one vertex of SG. Since

SG has only one vertex, the forest F returned is a tree. By

Lemma 12, F (7αβ)-respects H. By Lemma 5, we obtain

that F has stretch O(α2β2γ log n).

IV. PARTITION HIERARCHY FOR GENERAL GRAPHS

In this section we present our algorithm for obtaining a

partition hierarchy for general graphs. Our main result is the

following.

Theorem 14: Fix integer k ≥ 1 and ε > 0. For any graph

G, a hierarchical ((4
3 + ε)4k−1− 4

3 , kn
1
k , γ)-partition can be

constructed in polynomial time for γ ≥ 1
ε (( 4

3 +ε)4k−1− 4
3 ).

In paricular, setting k = 	√log n
 and ε = 1, a hierarchical

(2O(
√

log n), 2O(
√

log n), 2O(
√

log n))-partition for any graph

can be constructed in polynomial time.

Algorithm. For notational convenience, we start building

the hierarchy at level −1 by defining P−1 as the trivial

partition where every vertex is in its own cluster. For

i = 0, 1, . . . , d = 	logγ
DIAM(G)

α 
, we build the ith level

of the hierarchy, Pi, after building the previous levels.

Assuming that Pi−1 has been constructed, we construct Pi,

as follows.

Construction of level i: Clusters of Pi are formed in

successive stages starting from stage 0. We assign a rank
to each cluster based on the stage in which it is created: a

cluster formed in stage j gets the rank j. (All the clusters

of level −1 are assigned the rank 0.) We will denote the

set of clusters of rank j in Pi by Si
j . At all times while

building Pi, we maintain a partitioning of the graph, i.e.,

we guarantee that each vertex of the graph is contained in

exactly one cluster of Pi. The partitioning, however, may

change as clusters of a higher ranks are formed by merging

clusters of lower ranks.

Stage 0: In stage 0, we simply add all the clusters of Pi−1

to Si
0.

Stage j > 0: For j > 0, stage j works in two phases, one

after another.

• First phase: In the first phase, we repeatedly look for a

vertex contained in a cluster of rank at most j−1 such

that the ball of radius γi around it, B(v, γi), intersects

more than n
1
k clusters of rank precisely j−1. If we find

such a vertex v, we merge the cluster containing v with

all the clusters of rank j − 1 that B(v, γi) intersects.

This newly created cluster is assigned the rank j and

added to Si
j while all the clusters that were merged to

form it are deleted from their respective Si
j′ ’s. The first

phase ends when we can no longer find any such vertex

v.

• Second phase: In the second phase, we repeat a simlar

procedure for vertices contained in clusters of rank j.

As long as we can find a vertex v in a cluster of rank j
such that B(v, γi) intersects more than n

1
k clusters of

rank j − 1, we merge the cluster containing v with all

the clusters of rank j−1 that B(v, γi) intersects to form

a new cluster of rank j. We include this new cluster in

Si
j and delete all the clusters that were merged to form

it from their respective Si
j′ ’s. The second phase, and

also the stage j, ends when we cannot find any such

vertex v, and the next stage begins.

If no new cluster gets formed in the first phase of a stage,

the construction of level i of the hierarchy finishes and Pi

is defined as simply the union of all the non empty Si
j’s.

Remark. Although the two phases of a stage are quite

similar and one might be tempted to do away with this

particular ordering of mergings, the naive approach without

the ordering does not work. Having a careful order in which

mergings are carried out enables us to control the growth

of the strong diameter of the clusters. To see this, consider

a cluster formed in the second phase of some stage j. It

contains a unique cluster that was formed in the first phase

of stage j. Call it the core. Our ordering ensures that only

the vertices in the core can lead to mergings in the second

phase of stage j. This is because for any vertex v outside the

core, B(v, γi) intersects at most n
1
k clusters of rank j − 1,

otherwise the first phase would not have ended. Thus the

mergings of the second phase cannot increase the diameter

by too much as the new vertices are always “close” to the

core.

Using Theorem 14 and Theorem 13, we get our

USTconstruction for general graphs.

Corollary 15: A 2O(
√

log n)-stretch universal Steiner tree

can be computed in polynomial time for any undirected

graph.

V. THE CLUSTER AGGREGATION PROBLEM

In this section, we define the Cluster Aggregation problem

which arises when building partition hierarchies for minor-

free graphs (see Section VI). Our problem formulation

and algorithm, however, apply to arbitrary graphs and may

be of independent interest. Indeed, our cluster aggregation

algorithm is useful for building other strong-diameter based

hierarchical partitions with applications to distributed com-

puting [28].
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Definition 16 (Cluster Aggregation): Given a graph G =
(V,E), partition P of G, set S ⊆ V of portals, a cluster
aggregation is a function DEST : P → S. The function DEST

naturally induces a new partition Q = {⋃C:DEST(C)=s C |
s ∈ S} that coarsens P . For each vertex v in V , we

define the detour DTRDEST(v) for v under DEST to be the

difference between the distance from v to S in G and the

distance from v to DEST(P(v)) in subgraph of G induced

by the cluster in Q that contains v; i.e., DTRDEST(v) =
(dG[Qv](v, DEST(C)) − d(v, S)). We define the detour of

DEST to be maxv∈V DTRQ(v). The goal of the cluster merg-

ing problem is to find a cluster aggregation with minimum

detour.

Our algorithm for the Cluster Aggregation problem pro-

ceeds in O(log n) phases. Each phase has a number of

iterations. Each iteration aggregates a subset of the clusters

in P and assigns the same DEST value for each of them. The

selection of clusters in a particular iteration is based on how

shortest paths from these clusters to S proceed through the

graph. The interaction of these shortest paths is captured by

means of auxiliary directed graph. In the full paper, we give

the complete algorithm and show that it solves the Cluster

Aggregation problem for a given partition P with a detour

of O(log2(|P|)MAXDIAM(P)).
Theorem 17: The detour for any vertex v in G in

the cluster merger returned by the algorithm is at most

log2(|P|)MAXDIAM(P).

VI. PARTITION HIERARCHY FOR MINOR-FREE GRAPHS

A weighted graph G is H-minor free if zero or more

edge contractions on G does not give a graph isomorphic

H . Minor-free graphs are special cases of k-path separable

graphs. A graph G is k-path separable [16] if there exists

a subgraph S, called the k-path separator, such that: (i)

S = S1 ∪S2 ∪ · · · ∪Sl, where for each 1 ≤ i ≤ l, subgraph

Si is the union of ki paths where each path is shortest in

G\⋃1≤j<i Sj with respect to its end points; (ii)
∑

i ki ≤ k;

(iii) either G \S is empty, or each connected component of

G \ S is k-path separable and has at most n/2 nodes.

Thorup [15] shows that any planar graph G is 3-path

separable, where all paths in the separator S belong in

S1, that is, they are shortest paths in G. Abraham and

Gavoille [16] generalize the result to any H-minor free

graph, where they show for fixed size H the graph is k-path

separable, for some k = k(H), and the k-path separator

can be computed in polynomial time. Interesting classes of

H-minor free graphs are: planar graphs, which exclude K5

and K3,3; outerplanar graphs, which exclude K4 and K2,3;

series-parallel graphs, which exclude K4; and trees, which

exclude K3. Busch et al. [29] introduced the technique of

using path separators to build clusters for sparse covers

in minor-free graphs. Here, we extend that technique to

hierarchical partitions.

A. The minor-free clustering algorithm
Consider now an arbitrary weighted H-minor free graph

G, for fixed size H . (You may also take G to be an arbitrary

k-path separable graph.) We build the partition hierarchy

bottom up by coarsening clusters. Suppose we are given

a (α, β, γi−1)-partition Pi−1, where i > 0. We describe

how to build a (α, β, γi)-partition Pi, such that Pi−1 is a

refinement of Pi.

Algorithm HIERARCHICAL-PARTITION:MINOR-FREE

Require: Connected component Φ of minor-free graph G,

strong (α, β, γi−1)-partition Pi−1 of G, set N with

coarsen clusters of Pi−1.

Ensure: Coarsening the Pi−1 clusters in Φ; the resulting

clusters are inserted into N .

1: Let S = S1 ∪ S2 ∪ · · · ∪ Sl be a k-path separator of Φ.

2: for χ from 1 to l do
3: for each path p ∈ Sχ do
4: Let Ψ be the connected component of Φ \⋃

1≤j<χ Sj in which p resides.

5: Invoke Subroutine PATH-CLUSTERING to updateN
by appropriately merging clusters of Ψ around p.

6: end for
7: end for
8: for each connected component Υ ∈ Φ \ S do
9: Invoke (recursively) Algorithm HIERARCHICAL-

PARTITION:MINOR-FREE with parameters Υ, Pi−1,

and N .

10: Update N to be the result of the recursive invocation.

11: end for
12: Return N .

High-level recursive structure. The first clusters of par-

tition Pi are formed around a k-path separator of G by

appropriately merging clusters of Pi−1 close to the separator

paths. We then remove the k-path separator. This may

result in the formation of one or more disjoint connected

components, each of which is still a H-minor free graph.

We repeat the clustering process recursively on each residual

connected component, until no nodes remain.

Clustering a connected component. Algorithm

HIERARCHICAL-PARTITION:MINOR-FREE implements

the recursive decomposition of G. The algorithm actually

receives as input an arbitrary connected component Φ of

G, which it then decomposes into possibly one or more

connected components that are processed recursively. The

initial invocation is with Φ = G. The resulting clusters

of the Pi partition of G will appear in a set N which is

initially empty. New clusters formed around path separators

are inserted and maintained into N . The new clusters may

merge with existing clusters in N created form previously

processed paths. The partition Pi is the final N that we

obtain after we recursively process all the path separators

in each component in G. Let S = S1 ∪ S2 ∪ · · · ∪ Sl be the

path separator of Φ. We process the paths of S in sequence
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starting from the paths in S1, then the paths in S2, and so

on. The root node r can be treated as an artificial single

node path of the first path separator of G.

Processing a path. Subroutine PATH-CLUSTERING is the

central part of the minor-free clustering algorithm. Consider

a path p ∈ Sχ, where Sχ is path set of S in Φ. Let Ψ
be the connected component of Φ \ ⋃

1≤j<χ Sj in which

p resides. Subroutine PATH-CLUSTERING merges clusters

of Pi−1 which are within distance 2γi from p using the

cluster aggregation algorithm of Section V. The choice of

this particular aggregation distance is to control the diameter

of the new clusters and the amount of intersections in any

ball of diameter γi.

The subroutine merges only integral clusters of Pi−1

which are completely within Ψ, and which we denote PΨ
i−1.

Non-integral clusters of Pi−1 have already been included in

N from previously processed separator paths. Let A ⊆ PΨ
i−1

be the clusters within distance 2γi from p which are can-

didates for merging. We do not include in A any cluster

of PΨ
i−1 which has already been used in N . Of particular

interest are the clusters B ⊆ A which are neighbours with

N or next to non-integral clusters of Pi−1, and these will

be handled as special cases.

Let Ψ′ be the sub-graph induced by A (note that Ψ′ may

not be connected). The clusters in A are merged by invoking

the cluster aggregation algorithm of Section V. We define

two sets of nodes L and U in Ψ′ which serve as destination

portals for the merged clusters. Set L contains the leaders
of path p, which is a maximal set of nodes in p ∩ Ψ′ such

that for any pair u, v ∈ L, dp(u, v) ≥ γi, and u and v
cannot belong to the same cluster of A. Set U contains one

arbitrary node from each cluster in B (from each cluster in

B that does not already contain a node in L).

Let R contain all resulting merged (coarsen) clusters. We

can write R = Ip ∪ Kp where Ip consists of clusters that

contain a portal node of L, and Kp consists of clusters that

contain a portal node of U . Each cluster X ∈ Kp may further

merge with at most one arbitrary adjacent cluster Y ∈ N ,

for which there is an edge (u, v) ∈ E(Ψ) such that u ∈ X ,

v ∈ Y , and v /∈ Ψ′. We insert the merged cluster from

X and Y back to N . After processing all the clusters in

Kp, N is updated to N ′ which includes the new merged

clusters from Kp. It can be shown that all the clusters of

Kp will merge with existing clusters of N . Therefore, the

new set of coarsen clusters from processing path p will be

N ′ ∪ Ip. Thus, Subroutine PATH-CLUSTERING will return

the resulting set N = N ′ ∪ Ip.

B. The analysis of minor-free clustering

Consider a minor-free graph G with n nodes. The recur-

sive process of removing path separators defines a decompo-

sition tree T of G, such that each node t ∈ T corresponds to

a connected component of G, which we will denote G(t).
The root π of T corresponds to G, namely, G(π) = G.

Denote S(t) the path separator for the respective graph G(t).
If G(t)\S(t) = ∅, then t is a leaf of T . Otherwise, for each

connected component Φ ∈ G(t)\S(t) there is a node w ∈ T
such that w is a child of t and G(w) = Φ.

According to Algorithm HIERARCHICAL-

PARTITION:MINOR-FREE, a newly created cluster which is

formed after a path is processed, may grow larger when

new clusters merge into it when subsequent paths are

processed. Consider a path p ∈ S(t), for some t ∈ T .

We say that a cluster belongs to p if it contains a leader

of p, where the leaders of p are chosen in Subroutine

PATH-CLUSTERING. It can be shown that a cluster in Pi

belongs to exactly one path. A key point of the analysis

is that clusters of a path p are far from clusters in sibling

nodes of T (any pair of nodes in two sibling clusters are

at distance more than 2γi apart). Thus, when we bound

intersections in balls of radius γi, we only need to consider

clusters on the same branch from the root to a leaf of T .

Hence, the amount of intersections can be bounded using

the depth of T which is O(log n), and the number of paths

k in a separator. Similarly, clusters can only grow along

such a branch, which also helps to control the diameter.

The following statements can be proven:

Lemma 18: Pi is a (α′, c2α
′k log n, γi)-partition, where

α′ = c1k log3 n, for constants c1 and c2.

Theorem 19: We can obtain a hierarchical

(O(log3 n), O(log4 n), O(log3 n))-partition for any minor-

free graph G in polynomial time.

From Theorems 13 and 19 we obtain the following

corollary.

Corollary 20: A polylog(n)-stretch universal Steiner tree

can be computed in polynomial time for any minor-free

graph with n nodes.

VII. CONCLUDING REMARKS

In this paper, we have presented a polynomial-time

2O(
√

log n)-stretch UST construction for general graphs,

which is the first known subpolynomial-stretch (o(nε) for

any ε > 0) solution for general graphs. We have also

presented a polylog(n)-stretch UST algorithm for minor-

free graphs, for which Ω(log n) is a known lower bound.‘

Both UST algorithms are based on a framework that draws

close connections between a certain class of strong graph

partitions and low-stretch USTs. Our modular framework

leads us to designing new strong-diameter partitions for

both general and minor-free graphs, and solving a new

cluster aggregation problem, all of which are of independent

interest.

Our work leaves several important open problems. The

most compelling one is that of deriving tight bounds on the

best stretch achievable for general graphs (specifically, is

polylog(n)-stretch achievable?). For minor-free graphs, the

exponent in the polylog(n) factor we achieve for stretch is

high. Our current analysis follows the modular algorithmic
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framework; we believe that an improved bound can be

achieved by a more careful “flatter” analysis. Furthermore,

any improved approximation for the cluster aggregation

problem will yield significant improvements in the UST

stretch factors.
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