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Abstract—A randomized polynomial time algorithm is pre-
sented which, for every simple, connected, k-regular graph
on n vertices, finds a tour that visits every vertex and has
length at most

“
1 +

p
64/ln k

”
n with high probability. The

proof follows simply from results developed in the context
of permanents; Egorychev’s and Falikman’s theorem which
lower bounds the permanent of a doubly stochastic matrix
and the polynomial time algorithm of Jerrum, Sinclair and
Vigoda which samples a near-random, perfect matching from
a bipartite graph. The techniques in this paper suggest new
permanent-based approaches for TSP which could be useful in
attacking other interesting cases of TSP.
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I. INTRODUCTION

The Traveling Salesman Problem (TSP) is the following:

Given an undirected graph G = (V,E) and a cost function

c : E �→ R≥0, find a subset of edges of minimum cost

which connects all the vertices such that every vertex has

degree 2. The most interesting case of TSP, referred to as

METRICTSP, occurs when the cost function c satisfies the

triangle inequality. In this case, one may assume that E =
V × V. METRICTSP is a central problem in optimization

and computer science and has been one of the most intensely

studied problems for over half a century. The problem is

NP-hard and Christofides [9] provided a 3/2 approximation

to METRICTSP. Further, it was shown in [27] that it is NP-

hard to approximate METRICTSP to a factor better than
220/219. Thus remains the status of the general problem in

spite of a remarkable amount of structural and algorithmic

results. Further, a lot of work has been done to understand

for which cost functions the factor of 3/2 can be improved.

Two important sequences of work deserve mention in this

direction.

The first is the work that gives a PTAS for the case when

the metric is Euclidean [5], [24]. Subsequent work includes

a PTAS on planar instances [6], [16], [21] and a PTAS for

low-genus metrics [10].

The second sequence of work is for instances where the

cost function is the shortest path metric on an unweighted

input graph. This problem, referred to as GRAPHTSP,

seems to capture the difficulty associated to METRICTSP.

Indeed, until recently, there was no better algorithm known

for GRAPHTSP than Christofides’. The best lower bound

example, achieving 4/3, for the Held-Karp LP-relaxation [17]

for METRICTSP is in fact an instance of GRAPHTSP, and

this problem is known to be APX-hard [16]. In another series

of work, initiated by [15], [25] and improved by [26], [30],

the approximation factor for GRAPHTSP was brought down

to 7/5. This progress was preceded and perhaps inspired by

work on cubic graphs [14], [1], [7].

It is believed that the limit to these approaches is 4/3

since there exists a sub-cubic integrality gap GRAPHTSP

instance achieving a lower bound of 4/3 − δ for any δ > 0
for the Held-Karp LP. On the other hand, it is plausible that

the Held-Karp relaxation for GRAPHTSP gets better as the

number of edges in the graph increases. One evidence for

this is a theorem by Dirac [11] which asserts that every

graph with minimum degree n/2 has a Hamiltonian cycle.

Another series of results, starting with Karp [20] (see also

[4], [22], [2], [8], [28]), show that many reasonable models

of random graphs (including random regular graphs) contain

a Hamiltonian cycle which can be found efficiently.

In this paper we establish that, indeed, the worst case

instances for GRAPHTSP might have low degree by showing

that, when the graph is k-regular, arbitrarily good tours exist

and can be found in polynomial time. The following is the

main result of this paper.

Theorem I.1 (Main Theorem). There is a randomized,
polynomial-time algorithm which, for every k and n ≥
n0(k), given a simple, connected, k-regular graph G on
n vertices, finds a tour of length at most

(
1 +

√
64/ln k

)
n

with probability at least 1− 1/n.

The proof relies on two celebrated results on permanents.

1) The results of Egorychev [12] and Falikman [13] that

lower bound the permanent of a doubly stochastic matrix.

2) The result of Jerrum, Sinclair and Vigoda [19] that gives

a polynomial time algorithm to sample, a nearly-random

perfect matching from a bipartite graph.

Importantly, our techniques suggest new permanent-based

approaches for TSP. The proof is short and we proceed

directly to it. Subsequently we discuss possible extensions

in Section III.
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II. ALGORITHM AND PROOF

Overview: Consider the following algorithm: Pick a

random cycle cover1 C in G, find a minimum spanning tree

T in the graph obtained from contracting all the cycles in

C, and output the Eulerian tour consisting of C and two

copies of each edge in T. In the GRAPHTSP case, the cost

of the tree is one less than the number of cycles in C.
Hence, the length of the tour, in excess of n, is at most

two times the number of cycles in C. Thus, the smaller the

number of cycles in a typical cycle cover in G, the better the

algorithm performs provided we can sample a random cycle

cover from G efficiently. This is where the Jerrum, Sinclair

and Vigoda result comes in. It allows us to sample from a

closely related distribution; the distribution on cycle covers

that is obtained by picking a perfect matching in a natural

bipartite graph associated to G. In essence, C is obtained by

picking two perfect matchings in G in a correlated manner.

While in general a graph may not have any cycle cover, a k-

regular graph has plenty. This follows from the lower bound

of (k/e)n on the permanent of the adjacency matrix of G due

to [12], [13], [29]. Moreover, by a straightforward counting

argument, we can show that only a small fraction of these

cycle covers can have a large number of vertices that are

a part of a small cycle. Roughly, this happens because, for

any vertex, the number of cycles in G of length at most l
that contain it is upper bounded by kl−1. We now formalize

this argument to show that, in any k regular graph, a typical

cycle cover has ok(n) cycles to prove Theorem I.1.

Permanents: Let A denote the adjacency matrix of G.

The permanent of A is per(A) def=
∑

σ∈Sn

∏n
i=1 Ai,σ(i).

While our graph is simple, the following theorem lower

bounds the permanent of a k-regular multi-graph.

Theorem II.1. [12], [13], [29], If A is the adjacency matrix
of a k-regular graph on n vertices, then per(A) ≥ (k/e)n

.

We state a slightly weaker version of the Jerrum, Sinclair,

Vigoda result [19] which suffices for our purpose.

Theorem II.2. There is an algorithm which, given a bipar-
tite graph G′, with D being the uniform distribution on its
perfect matchings, outputs a sample from a distribution D̃
such that ‖D−D̃‖TV ≤ ε.2 The running time is polynomial
in the size of the graph and log 1/ε.

Matchings and cycle covers: For a graph G = (V,E),
consider the (natural) bipartite graph G′ = (VL, VR, E′)
where VL

def= {vL : v ∈ V }, VR
def= {vR : v ∈ V }

and E′ def= {(uL, vR), (vL, uR) : uv ∈ E}. For a perfect

matching M ′ in G′ let C(M ′) be the multi-subset {uv ∈
1A cycle cover in G is a collection of vertex-disjoint cycles, possibly

containing length 2 cycles obtained by picking an edge twice, which cover
all the vertices.

2The total variation distance is defined for distributions over a finite set

X to be ‖F − eF‖TV
def
= 1/2

P
x∈X |F (x)− eF (x)|.

E : (uL, vR) ∈ M ′}. Any C = C(M ′) is a cycle cover of

G since it is precisely a collection of vertex-disjoint cycles

that cover V . Note that an edge uv in C(M ′) is repeated

twice, and hence gives rise to a cycle of length 2, if and

only if both (uL, vR), (vL, uR) ∈ M ′. In general, however,

the mapping is many-to-one since each cycle in C of length

at least 3 corresponds to exactly two matchings in G′. For

a cycle cover C, let Ni(C) denote the number of cycles of

length i in C. Then, the number of perfect matchings in

G′ that are mapped to C is exactly 2
Pn

i=3 Ni(C). Since the

total number of perfect matchings in G′ is easily seen to be

per(A), if we pick a perfect matching in G′ uniformly at

random, this induces a probability of picking a cycle cover

C in G, namely μ(C) def= 2
Pn

i=3 Ni(C)

per(A) .

The algorithm: Given a graph G = (V,E), construct

the bipartite graph G′ as above. Pick a near-random perfect

matching M ′ in G′ using the Jerrum, Sinclair and Vigoda

algorithm with ε
def= 1/(2n2). Compute C(M ′). Collapse all

vertices belonging to the same cycle in C(M ′) to obtain a

minor H of G. Find a minimum-cost, spanning tree T in

H. Output the multi-graph (V,C(M ′) ∪ T ∪ T ), which is

Eulerian and connected. A tour is derived from this Eulerian

tour by short-cutting.

Remark II.3. Instead of a uniform distribution on the
perfect matchings in G′, our algorithm uses a near-uniform
distribution on perfect matchings D̃, which in turn induces
a probability μ̃ of obtaining a cycle cover C in G. However,
the mapping from perfect matchings in G′ to cycle covers
in G will not increase the total variation distance since
‖μ − μ̃‖TV = 1/2

∑
C |μ(C) − μ̃(C)| which, by the trian-

gle inequality, is at most 1/2
∑

C

∑
M ′:C(M ′)=C |D(M ′) −

D̃(M ′)| = ‖D − D̃‖TV.

Counting subgraphs with small cycles: For a simple

graph of degree at most k we will need an upper bound on

the number of cycle covers that only use cycles of length

less than l.

Lemma II.4. For every l, k ≥ ll, and a simple graph F of
degree at most k, there are at most k(1−1/l)|V (F )| spanning
subgraphs F̃ of F that satisfy the following properties:

1) V (F̃ ) = V (F ).
2) F̃ can be decomposed into vertex-disjoint edges and

cycles.
3) Each cycle in F̃ is of length at most l − 1.

Proof: The proof is by strong induction on |V (F )|.
Let f(r) be an upper bound on the number of subgraphs

F̃ as defined above in a simple graph on r vertices with

maximum degree at most k. Note that f(0) = 1 and, for the

induction hypothesis, assume that f(r′) ≤ k(1−1/l)r′ for all

r′ < r. Consider the number of cycles (or edges) of length

less than l that contain vertex 1; remove these cycles and

recurse. If vertex 1 belongs to a cycle of length t, then the
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number of choices is at most kt−1. Then,

f(r) ≤ kf(r − 2) + k2f(r − 3) + · · ·+ kl−2f(r − l + 1).

Then, by the induction hypothesis f(r) is at most

≤ k · k(1−1/l)(r−2) + · · ·+ kl−2 · k(1−1/l)(r−l+1)

≤ k(1−1/l)r · k−(1−1/l)
(
k

1/l + · · ·+ k
(l−2)/l

)
≤ k(1−1/l)r · k−(1−1/l) · l · k(l−2)/l

= k(1−1/l)r · l · k−1/l.

The last inequality follows from the assumption that ll ≤ k.

Proof of Theorem I.1: When G is connected and k-

regular, G′ always has a perfect matching. In fact, from

Theorem II.1 per(A) ≥ (k/e)n
. Let C = C(M ′) be the cy-

cle cover obtained from an M ′ sampled as in our algorithm

using the distribution D̃ on near-random perfect matchings

in G′. Recall that the induced distribution on cycle covers in

G is μ̃. The cost of the Eulerian tour generated from C is at

most
∑n

i=2 iNi(C)+2[(
∑n

i=2 Ni(C))−1] since the number

of vertices in the contracted graph H is
∑n

i=2 Ni(C). For

every cycle cover C we know that
∑n

i=2 iNi(C) = n, hence,

the cost is n− 2 + 2
∑n

i=2 Ni(C).
Let 2 ≤ l ≤ n be an integer (depending on, but much less

than, k) which will be fixed later. Start by noticing that, triv-

ially, any cycle cover C satisfies
∑n

i=l Ni(C) ≤ n/l. Thus,

it suffices to upper bound the probability that
∑l−1

i=2 Ni(C)
is large. Let 0 < γ ≤ 1 be a constant which will be fixed

later. We will upper bound Peμ [
∑n

i=2 Ni(C) ≥ γn] by 1/n

for large enough n. This will imply that with probability

at least 1 − 1/n, the cost of the Eulerian tour is at most

n(1 + 2/l + 2γ).
Towards this end, for an integer 0 ≤ t ≤

n, let Ct be the set of cycle covers of G for

which exactly t vertices are covered by cycles of

length at most l − 1. Then, Peμ
[∑l−1

i=2 Ni(C) ≥ γn
]

=∑n
t=0 Peμ

[∑l−1
i=2 Ni(C) ≥ γn|C ∈ Ct

]
Peμ [C ∈ Ct] .

By definition, if C ∈ Ct, then
∑l−1

i=2 Ni(C) ≤
t/2 since each cycle is of length at least 2. Hence,

Peμ
[∑l−1

i=2 Ni(C) ≥ γn|C ∈ Ct

]
= 0 if t < 2γn.

Hence, the only terms that survive are those for

which t ≥ 2γn. Thus, Peμ
[∑l−1

i=2 Ni(C) ≥ γn
]

=∑n
t=2γn Peμ

[∑l−1
i=2 Ni(C) ≥ γn|C ∈ Ct

]
Peμ [C ∈ Ct] . The

latter is at most
n∑

t=2γn

Peμ [C ∈ Ct] ≤
n∑

t=2γn

(Pμ [C ∈ Ct] + 1/(2n2))

where we have moved from μ̃ to μ and paid in the distance

between them, see Remark II.3. Thus,
n∑

t=2γn

Peμ [C ∈ Ct] ≤ 1/(2n) +
n∑

t=2γn

Pμ [C ∈ Ct] .

We proceed to calculate Pμ [C ∈ Ct] for t ≥ 2γn.
Using Lemma II.4, if k > ll, Pμ [C ∈ Ct] can be upper

bounded by
(
n
t

)
k(1−1/l)tkn−t maxC∈Ct

μ(C) by first fixing

a subset of t vertices, then using the bound of k(1−1/l)t on

the number of ways to cover the t vertices by vertex-disjoint

cycles of length less than l and, finally, using the trivial upper

bound of kn−t on the number of ways to cover the rest of the

vertices. Note that maxC∈Ct μ(C) is at most 2
n/3

per(A) . Since

per(A) ≥ (k/e)n
, we obtain that

Pμ [C ∈ Ct] ≤ exp(n + t ln(ne/t)− t(ln k)/l + (n ln 2)/3).

Thus, if t ≥ 2γn then, provided (ln k)/l > ln(e/γ),
Pμ [C ∈ Ct] ≤ exp(n(1 + γ ln(e/γ(−γ(ln k)/l + (ln 2)/3)) ≤
exp(−nγ[(ln k)/l− 4/γ]). Here we have used the fact that

1/γ · (2 + (ln 2)/3) + ln 1/γ ≤ 4/γ

which holds since γ ≤ 1. Thus, if (ln k)/l − 4/γ > 0 for

fixed k, l and γ, the r.h.s. goes down exponentially with

n. Consequently, for a fixed k, l, γ, for all large enough n,
Pμ [C ∈ Ct] can be made to be smaller than γ/(2n2). Hence,

n∑
t=2γn

Pμ [C ∈ Ct] ≤ (γ/(2n2)) · n ≤ γ/(2n) ≤ 1/(2n).

Thus,
∑n

t=2γn Peμ [C ∈ Ct] ≤ 1/(2n) + 1/(2n) = 1/n. Hence,

then with probability at least 1−1/n, the cost of the Eulerian

tour derived from C is at most n+2γn+ 2n/l ≤ n(1+2γ +
2/l).

The constraints on k, l, γ are k ≥ ll, (ln k)/l > ln(e/γ)
and (ln k)/l > 4/γ. The second constraint is strictly weaker

than the third. The choice of γ
def= δ/4, and l

def= 4/δ and

k ≥ exp(64/δ2) satisfies these constraints and gives a tour of

length at most (1+ δ)n with high probability. As a function

of k, δ can be chosen as
√

64/ln k. This concludes the proof.

We have made no attempt to optimize the dependence of

δ on k. The fact that our bipartite graphs are symmetric, i.e.,

there is an ordering of the vertices on both sides such that

(vL
i , vR

j ) is an edge if and only if (vL
j , vR

i ) is an edge, may

also be useful in order to tighten our estimates.

How critical is regularity?: The lower bounds used

on the permanent hold only in the doubly stochastic case

and, hence, the graph must be regular, perhaps with multiple

edges and self loops allowed, if one intends to use these

bounds. However, regularity can be mildly relaxed. There

are at least two ways to do this: (1) Consider a graph

with minimum degree k (which can be made large), but no

upper bound on the degree. Consider the degree reduction

operation which takes a high degree vertex v and replaces it

with vertices v1, . . . , vt, distributes the edges adjacent to v
among v1, . . . , vt and puts edges among them so as to make

them k-regular. An example of such an operation was used,

for instance, by [25] to reduce a graph to a cubic graph. Note
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that regularizing the graph in this manner may increase the

number of vertices significantly. The good news is that an

Eulerian tour on this bigger, but regular, graph has the same

cost as in the original irregular graph. Hence, if the input

graph is such that it can be made regular by adding a small

number of vertices, our results will hold. (2) If the graph is

nearly regular and very small sets in G expand, then it can

be shown via a max-flow/min-cut technique (see [23], [3])

that there is a regular subgraph in G and, hence, our results

also hold. We omit the details. As a first step, it would be

interesting to extend our results to graphs where all degrees

are between k/2 and k.

III. EXTENSIONS AND DISCUSSION

Before we discuss our approach and its extensions to

METRICTSP, it may be helpful to first review Christofides’

algorithm and the recent approach in [15]. Henceforth, the

graph will not be assumed to be k-regular unless stated

explicitly.

Matchings and trees are central to algorithm design for

TSP. Indeed, two efficiently computable lower bounds on

the cost of the best tour are: (1) the minimum cost spanning

tree in G and (2) two times the minimum cost maximum

matching in G. Christofides’ algorithm uses both to obtain

his 3/2 approximation algorithm: He starts with a minimum

spanning tree and adds a minimum cost perfect matching on

the vertices in the tree which have odd degree to make the

union of the two Eulerian. Further, the cost of this Eulerian

tour is no more than 3/2 times that of the optimal tour. Once

the graph is Eulerian, the metric property allows one to short

circuit and obtain a tour without increasing the cost.

The algorithm in [15] brought the approximation ratio

below 3/2 for GRAPHTSP for the first time. Roughly, the

key new idea in [15] was to start with a random spanning

tree instead of a minimum spanning tree. The distribution

on spanning trees is chosen such that it maximizes entropy

while maintaining that an edge is present with probability

x�
e, where x�

e is obtained by solving the following Held-Karp

LP relaxation to TSP: Minimize
∑

e∈E cexe subject to

x(δ(v)) = 2 ∀v ∈ V , x(δ(S)) ≥ 2 ∀ ∅ �= S � V

with x ≥ 0. Here δ(S) denotes the set of edges crossing

(S, S̄) and x(F ) def=
∑

e∈F xe for any F ⊆ E. A significant

amount of effort goes into proving that this, or rather a mod-

ification of this algorithm, gives a factor strictly less than 3/2.
Notably, since random spanning trees are intimately related

to the combinatorial Laplacian and the probability that an

edge is present is proportional to its effective resistance,

there is an intrinsic connection between their approach and

determinants.

We now describe two approaches that arise from our work

which may provide extended results. First, given a graph

G, solve the Held-Karp LP mentioned above and obtain an

optimal solution x�. Notice that for every vertex v in G,

x�(δ(v)) = 2. Hence, if we consider the n × n matrix A
where the entry for the edge e = uv is set to x�

e/2, then

A is doubly stochastic. The algorithm then constructs the

bipartite version of G, G′ as before, albeit with the weight

of an edge uv being x�
uv/2 and samples a random perfect

matching from G′. The difference is that now a matching

is picked with probability proportional to the product of the

weight of its edges. This latter task can be handled by the

algorithm in [19]. Now, one can pick a minimum cost tree

to connect all the cycles and double it. The challenge in

analyzing this approach is to handle edges which are close

to 1 in the Held-Karp solution. Another issue is to relate

the probability that an edge appears in a perfect matching

according to the distribution above to x�
e.

3

The second approach can be interpreted as a dual to the

approach in [15]; the role of matching and trees is reversed.

Here, starting with a graph G and its Held-Karp solution x�,
compute non-negative weights λe for edges such that the

probability that an edge e is contained in a random perfect

matching of the bipartite graph G′ is x�
e. In this case, the

expected cost of the cycles produced is exactly the cost of

the Held-Karp solution. Here, the difficulty seems to be to

analyze the cost of connecting the cycles. Finally, it should

be of interest to evaluate these permanent-based heuristics

on data-sets arising in practice.

In conclusion, in this paper we show that the shortest

path metrics obtained from simple k-regular graphs become

easier instances of GRAPHTSP as k increases. This substan-

tially extends the recent results on cubic graphs and suggests

that the hard instances for GRAPHTSP may occur when the

average degree is low.
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