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Abstract— We consider the problem of coloring a 3-colorable
graph in polynomial time using as few colors as possible. We
present a combinatorial algorithm getting down to �̃�(𝒏4/11)
colors. This is the first combinatorial improvement of Blum’s
�̃�(𝒏3/8) bound from FOCS’90. Like Blum’s algorithm, our
new algorithm composes nicely with recent semi-definite pro-
gramming approaches. The current best bound is 𝑶(𝒏0.2072)
colors by Chlamtac from FOCS’07. We now bring it down to
𝑶(𝒏0.2049) colors.
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I. INTRODUCTION

If ever you want to illustrate the difference between what
we consider hard and easy to someone not from computer
science, use the example of 2-coloring versus 3-coloring:
suppose there is too much fighting in a class, and you want
to split it so that no enemies end up in the same group. First
you try with a red and a blue group. Put someone in the red
group, and everyone he dislikes in the blue group, everyone
they dislike in the red group, and so forth. This is an easy
systematic approach. Digging a bit deeper, if something goes
wrong, you have an odd cycle, and it is easy to see that if
you have a necklace with an odd number of red and blue
beads, then the colors cannot alternate perfectly. Knowing
that red and blue do not suffice, we might try introducing
green, but this is already beyond what we believe computers
can do.

Formally a 𝑘-coloring of an undirected graph assigns 𝑘
colors to the vertices. The coloring is only valid if no two
neighbors get the same color. The validity of coloring is
trivially checked in linear time so the deciding if a graph is
𝑘-colorable is in NP.

Three-coloring is a classic NP-hard problem. It was
proved hard by Garey, Johnson, and Stockmeyer at STOC’74
[1], and was the prime example of NP-hardness mentioned
by Karp in 1975 [2]. It is an obvious target for any approach
to NP-hard problems. With the approximation approach,
given a 3-colorable graph, that is a graph with an unknown
3-coloring, we try to color it in polynomial time using as
few colors as possible. The algorithm is allowed to fail
or give up if the input graph was not 3-colorable. If a
coloring is produced, we can always check that it is valid
even if the input graph is not 3-colorable. This challenge
has engaged many researchers. At STOC’82, Wigderson [3]

got down to 𝑂(𝑛1/2) colors for a graph with 𝑛 vertices.
Berger and Rompel [4] improved this to 𝑂((𝑛/(log 𝑛))1/2).
Blum [5] came with the first polynomial improvements, first
to �̃�(𝑛2/5) colors at STOC’89, and then to �̃�(𝑛3/8) colors
at FOCS’90.

The next big step at FOCS’94 was by Karger, Motwani,
Sudan [6] using semi-definite programming (SDP). This
came in the wake of Goemans and Williamson’s seminal
use of SDP for max-cut at STOC’94 [7]. For a graph with
maximum degree Δmax, Karger et al. got down to 𝑂(Δ

1/3
max)

colors. Combining this with Wigderson’s algorithm, they
got down to 𝑂(𝑛1/4) colors. Later Blum and Karger [8]
combined the SDP from [6] with Blum’s [5] algorithm,
yielding an improved bound of �̃�(𝑛3/14) = �̃�(𝑛0.2142).
Later improvements in semi-definite programming have also
been combined with Blum’s algorithm. At STOC’06, Arora,
Chlamtac, and Charikar [9] got down to 𝑂(𝑛0.2111) colors.
The proof in [9] is based on the seminal result of Arora,
Rao and Vazirani [10] which gives an 𝑂(

√
log 𝑛) algorithm

for the sparsest cut problem. The last improvement was at
FOCS’07 by Chlamtac [11] who got down to 𝑂(𝑛0.2072)
colors.

Only a few lower bounds are known for the coloring of
3-colorable graphs. We know that it is NP-hard to get down
to 5 colors [12], [13]. Recently, Dinur, Mossel and Regev
[14] showed that it’s hard to color with any constant number
of colors (i.e., 𝑂(1) colors) based on a variant of the Unique
Games Conjecture.

Some integrality gap results [6], [15], [16] show that the
simple SDP relaxation has integrality gap at least 𝑛0.157. It
is therefore natural to go back and see if we can improve
things combinatorially.

In this paper, we present the first improvement on the
combinatorial side since Blum at FOCS’90 [5]. With a
purely combinatorial approach, we get down to �̃�(𝑛4/11)
colors. Combining it with Chlamtac’s SDP [11], we get
down to 𝑂(𝑛0.2049) colors..

Technique: In the details we reuse a lot of the tech-
niques pioneered by Blum [5], but our overall strategy is
more structural. The starting point is a 3-colorable graph
𝐺 = (𝑉,𝐸). We will be looking for sparse cuts that we can
recurse over. When no more sparse cuts can be found (and if
we are not done by other means), we will have crystallized a
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non-trivial vertex set 𝑋 that we guarantee is monochromatic
in every 3-coloring of 𝐺.

Below we focus on our combinatorial algorithm looking
for a monochromatic set. The integration with SDP is
essentially explained in [8] and is sketched in Section VIII.

II. PRELIMINARIES INCLUDING INGREDIENTS FROM

BLUM

We are given a 3-colorable graph 𝐺 = (𝑉,𝐸) with 𝑛 =
∣𝑉 ∣ vertices. The (unknown) 3-colorings are with red, green,
and blue. For a vertex 𝑣, we let 𝑁(𝑣) denote its set of
neighbors. For a vertex set 𝑋 ⊆ 𝑉 , let 𝑁(𝑋) =

∪
𝑣∈𝑋 𝑁(𝑣)

be the neighborhood of 𝑋 . If 𝑌 is a vertex set, we use
𝑁𝑌 to denote neighbors in 𝑌 , so 𝑁𝑌 (𝑣) = 𝑁(𝑣) ∩ 𝑌 and
𝑁𝑌 (𝑋) = 𝑁(𝑋)∩𝑌 . We let 𝐺∣𝑋 be the subgraph induced
by 𝑋 .

For some color target 𝑘 depending on 𝑛, we wish to
find a �̃�(𝑘) coloring of 𝐺 in polynomial time. We are
going to reuse several ideas and techniques from Blum’s
approach [5].

Progress: Blum has a general notion of progress to-
wards �̃�(𝑘) coloring (or progress for short if 𝑘 is under-
stood). The basic idea is that such progress eventually leads
to a full �̃�(𝑘) coloring of a graph. Blum presents three types
of progress towards �̃�(𝑘) coloring:
Type 0: Same color. Finding vertices 𝑢 and 𝑣 that have the
same color in every 3-coloring.
Type 1: Large independent set. Finding an independent
vertex set 𝑋 of size Ω̃(𝑛/𝑘).
Type 2: Small neighborhood. Finding a non-empty indepen-
dent vertex set 𝑋 such that ∣𝑁(𝑋)∣ = �̃�(𝑘∣𝑋∣).

In order to get from progress to actual coloring, we want
𝑘 to be bounded by a near-polynomial function 𝑓 of the
vertex number 𝑛 where near-polynomial means that 𝑓 is
non-decreasing and that there are constants 𝑐, 𝑐′ > 1 such
that 𝑐𝑓(𝑛) ≤ 𝑓(2𝑛) ≤ 𝑐′𝑓(𝑛) for all 𝑛. As described in [5],
this includes any function of the form 𝑓(𝑛) = 𝑛𝛼 log𝛽 𝑛 for
constants 𝛼 > 0 and 𝛽.

Lemma 1 ([5, Lemma 1]): Let 𝑓 be near-polynomial. If
we in time polynomial in 𝑛 can make progress towards
�̃�(𝑓(𝑛)) coloring of either Type 0, 1, or 2, on any 3-
colorable graph on 𝑛 vertices, then in time polynomial in 𝑛,
we can �̃�(𝑓(𝑛)) color any 3-colorable graph on 𝑛 vertices.

We shall review the proof of Lemma 1 in Section VIII
when we integrate the above types of progress with progress
via SDP. Until then, all progress is understood to be of Type
0, 1, or 2.

Our general strategy now is to identify a small parameter
𝑘 for which we can guarantee progress (to apply Lemma 1
and get a coloring, we also need to bound 𝑘 with a near-
polynomial function of 𝑛). As soon as we find progress of
one of the above types, we are done, so generally, whenever
we see a condition that implies progress, we assume that the
condition is not satisfied.

Our algorithm will focus on finding a set 𝑋 , ∣𝑋∣ > 1,
that is guaranteed to be monochromatic in every 3-coloring.
This will happen assuming that we do not get other progress
on the way. When we have the set 𝑋 , we get same-color
progress for any pair of vertices in 𝑋 . We shall refer to this
as monochromatic progress.

Below we review some of the basic results that we
need from Blum [5]. We include the simple proofs for
completeness.

Observation 2: Both for the large independent set
progress and for the small neighborhood progress, it suffices
with a 2-colorable set 𝑋 .

Proof: If 𝑋 is 2-colorable, we can find a 2-coloring in
linear time. Let 𝑋1 and 𝑋2 be the two color classes, each
being an independent set. Assume 𝑋1 is the larger set. It
is an independent set of size ∣𝑋1∣ ≥ ∣𝑋∣/2 = Ω̃(𝑛/𝑘).
For the small neighborhood, we note ∣𝑁(𝑋1)∣/∣𝑋1∣ ≤
∣𝑁(𝑋)∣/∣𝑋1∣ ≤ 2∣𝑁(𝑋)∣/∣𝑋∣ = �̃�(𝑘).

Observation 3: If the minimum degree in the graph is
Δmin, we can make progress towards �̃�(Δmin) coloring.

Proof: Consider a vertex 𝑣 of degree Δmin. The graph
is 3-colorable so 𝑁(𝑣) is 2-colorable. By Observation 2, we
can use 𝑁(𝑣) for large independent set progress.

Some of our progress will be made via results of Blum
presented below using a common parameter

Ψ = 𝑛/𝑘2. (1)

A very useful tool we get from Blum is the following
multichromatic test:

Lemma 4 ([5, Corollary 4]): Given a vertex set 𝑋 ⊆ 𝑉
of size at least Ψ = 𝑛/𝑘2, in polynomial time, we can
either make progress towards �̃�(𝑘)-coloring of 𝐺, or else
guarantee that under every legal 3-coloring of 𝐺, the set 𝑋
is multichromatic.

Proof: Note that if 𝑋 is monochromatic in some 3-
coloring, then 𝑋 is independent and 𝑁(𝑋) is 2-colored.
To prove the lemma, we check that 𝑋 is independent and
that 𝑁(𝑋) is 2-colorable. If either test fails, we know
that 𝑋 is multichromatic in every 3-coloring. Otherwise, if
∣𝑁(𝑋)∣ < 𝑛/𝑘 = 𝑘Ψ, we have a small neighborhood for
𝑋 , and if ∣𝑁(𝑋)∣ ≥ 𝑛/𝑘, by Observation 2, we have large
independent set from 𝑁(𝑋).
In fact Blum has a stronger lemma [5, Lemma 12] guaran-
teeing not only that 𝑋 is multichromatic, but that no single
color is used by more than a fraction (1 − 1/(4 log 𝑛)) of
the vertices in 𝑋 . This stronger version is not needed here.
Using Lemma 4 he proves:

Lemma 5 ([5, Theorem 3]): If two vertices have more
then Ψ common neighbors, we can make progress towards
�̃�(𝑘) coloring. Hence we can assume that no two vertices
have more than Ψ common neighbors.

Proof: Suppose 𝑣 and 𝑤 have two different colors in
a 3-coloring. Then 𝑀 = 𝑁(𝑣) ∩𝑁(𝑤) must be monochro-
matic with the third color. We apply Lemma 4 to 𝑀 . If no
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progress is made, we conclude that 𝑀 is multichromatic in
every 3-coloring, hence that 𝑣 and 𝑤 have the same color,
and then we can make same color progress.
Using this bound on joint neighborhoods, Blum proves the
following lemma (which he never states in this general
quotable form):

Lemma 6: If the vertices in a set 𝑍 on the average
have 𝑑 neighbors in 𝑈 , then the whole set 𝑍 has at least
min{𝑑/Ψ, ∣𝑍∣} 𝑑/2 distinct neighbors in 𝑈 .

Proof: If 𝑑/Ψ ≤ 2, the result is trivial, so 𝑑/Ψ ≥ 2.
It suffices to prove the lemma for ∣𝑍∣ ≤ 𝑑/Ψ, for if 𝑍
is larger, we restrict our attention to the 𝑑/Ψ vertices with
most neighbors in 𝑈 . Let the vertices in 𝑍 be ordered by
decreasing degree into 𝑈 . Let 𝑑𝑖 be the degree of vertex 𝑣𝑖
into 𝑈 . We now study how the neighborhood of 𝑍 in 𝑈
grows as we include the vertices 𝑣𝑖. When we add 𝑣𝑖, we
know from Lemma 5 that its joint neighborhood with any
(previous) vertex 𝑣ℎ, ℎ < 𝑖 is of size at most Ψ. It follows
that 𝑣𝑖 adds at least 𝑑𝑖 − (𝑖 − 1)Ψ new neighbors in 𝑈 , so
∣𝑁(𝑍) ∩ 𝑈 ∣ ≥∑∣𝑍∣−1

𝑖=0 (𝑑𝑖 − (𝑖− 1)Ψ) > ∣𝑍∣𝑑/2.
Two-level neighborhood structure: The most complex

ingredient we get from Blum [5] is a certain regular second
neighborhood structure. Let Δmin be the smallest degree
in the graph 𝐺. By Observation 3, we can make progress
towards �̃�(Δmin) coloring, so we can assume 𝑘 ≤ Δmin.

For some Δ0 = Ω̃(Δmin), Blum [5, Theorems 7 and 8
and the Proof of Theorem 5] identifies in polynomial time
a 2-level neighborhood structure 𝐻0 = (𝑟0, 𝑆0, 𝑇0) in 𝐺
consisting of:

∙ A root vertex 𝑟0. We assume 𝑟0 is colored red in any
3-coloring.

∙ A first neighborhood 𝑆0 ⊆ 𝑁(𝑟0) of size at least Δ0.
∙ A second neighborhood 𝑇0 ⊆ 𝑁(𝑆0) of size at most
𝑛/𝑘. The sets 𝑆0 and 𝑇0 may overlap.

∙ The edges between vertices in 𝐻0 are the same as those
in 𝐺.

∙ The vertices in 𝑆0 have average degree Δ0 into 𝑇0.
∙ The degrees from 𝑇0 to 𝑆0 are all within a factor (1±
𝑜(1)) around an average 𝛿0 ≥ Δ2

0 𝑘/𝑛.

Note that [5, Theorems 7 and 8] does not have the 𝑛/𝑘 size
bound on 𝑇0. Instead there is a large set 𝑅 of red vertices
leading to a large identifiable independent set constituting a
constant fraction of 𝑇0. If this set is of size Ω̃(𝑛/𝑘), then
Blum makes Type 1 progress towards a �̃�(𝑘) coloring as
described in [5, Proof of Theorem 5], and we are done.
Assuming that this did not happen, we have the size bound
𝑛/𝑘 on 𝑇0.

Blum seeks progress directly in the above structure, but
we are going to apply a series of reductions which either
make progress, find a good cut recursing on one side,
or identify a monochromatic set. This is why we already
now used the subscript 0 to indicate the original structure
provided by Blum [5].

III. OUR COLORING ALGORITHM

We will use Blum’s 2-level neighborhood structure 𝐻0 =
(𝑟0, 𝑆0, 𝑇0) with a color target

𝑘 = Θ̃((𝑛/Δmin)
4/7). (2)

We are going to work on induced subproblems (𝑆, 𝑇 ) ⊆
(𝑆0, 𝑇0) defined in terms of a subsets 𝑆 ⊆ 𝑆0 and 𝑇 ⊆ 𝑇0.
The edges considered in the subproblem are exactly those
between 𝑆 and 𝑇 in 𝐺. This edge set is denoted 𝐸(𝑆, 𝑇 ).

With 𝑟0 red in any 3-coloring, we know that all vertices
in 𝑆 ⊆ 𝑆0 ⊆ 𝑁(𝑟0) are blue or green. We say that a vertex
in 𝑇 has high 𝑆-degree if its degree to 𝑆 is bigger than
𝛿0/16 (almost a factor 16 below average degree 𝛿0 from 𝑇0

to 𝑆0), and we will make sure that any subproblem (𝑆, 𝑇 )
considered satisfies:

(i) We have more than Ψ vertices of high 𝑆-degree in 𝑇 .
Cut-or-color: We are going to implement a subroutine

cut-or-color(𝑡, 𝑆, 𝑇 ) which for a problem (𝑆, 𝑇 ) ⊆
(𝑆0, 𝑇0) takes starting point in an arbitrary high 𝑆-degree
vertex 𝑡 ∈ 𝑇 . It will have one of the following outcomes:
∙ Reporting a “sparse cut around a subproblem

(𝑆′, 𝑇 ′) ⊆ (𝑆, 𝑇 )” with no cut edges between 𝑆′

and 𝑇 ∖ 𝑇 ′ and only few cut edges between 𝑇 ′ and
𝑆 ∖ 𝑆′. The exact definition of a sparse cut is compli-
cated, but at this point, all we need to know is that
cut-or-color may declare a sparse cut.

∙ Some progress toward 𝑘-coloring. If that happens we
are done, so we typically assume that this does not
happen.

∙ A guarantee that if 𝑟 and 𝑡 have the different colors in
a 3-coloring 𝐶3 of 𝐺, then 𝑆 is monochromatic in 𝐶3.
Recursing towards a monochromatic set: Assuming an

implementation of cut-or-color, we now describe our
main recursive algorithm, monochromatic, which takes
as input a subproblem (𝑆, 𝑇 ). The pseudo-code is presented
in Algorithm 1.

Algorithm 1: monochromatic(𝑆, 𝑇 )

let 𝑈 be the set of high 𝑆-degree vertices in 𝑇 ;
check that 𝑈 is multichromatic in 𝐺 with Lemma 4;
if there is a 𝑡 ∈ 𝑈 such that cut-or-color(𝑆, 𝑇, 𝑡)
returns “sparse cut around (𝑋,𝑌 )” then

recursively call monochromatic(𝑋,𝑌 )

else
return “𝑆 is monochromatic in every 3-coloring”

Let 𝑈 be the set of high 𝑆-degree vertices in 𝑇 . By (i)
we have ∣𝑈 ∣ ≥ Ψ, so we can apply Blum’s multichromatic
test from Lemma 4 to 𝑈 in 𝐺. Assuming we did not make
progress, we know that 𝑈 is multichromatic in every valid
3-coloring. We now apply cut-or-color to each 𝑡 ∈ 𝑈 ,
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stopping only if a sparse cut is found or progress is made.
If we make progress, we are done, so assume that this does
not happen. If a sparse cut around a subproblem (𝑋,𝑌 ) is
found, we recurse on (𝑋,𝑌 ).

The most interesting case is if we get neither progress nor
a sparse cut.

Lemma 7: If cut-or-color does not find progress
or a sparse cut for any high 𝑆-degree 𝑡 ∈ 𝑈 , then 𝑆 is
monochromatic in every 3-coloring of 𝐺.

Proof: Consider any 3-coloring 𝐶3 of 𝐺. With Lemma 4
we checked that 𝑈 is multichromatic in every 3-coloring of
𝐺 including 𝐶3, so there is some 𝑡 ∈ 𝑈 that has a different
color than 𝑟0 in 𝐶3. With this 𝑡, cut-or-color(𝑆, 𝑇, 𝑡)
guarantees that 𝑆 is monochromatic in 𝐶3. Note that differ-
ent 3-colorings may use a different 𝑡 for the guarantee, and
our algorithm does not need to know which 𝑡 are used.
Thus, unless other progress is made, monochromatic
ends up with a set 𝑆 that is monochromatic in every 3-
coloring, and then monochromatic progress can be made.
However, the correctness demands that we respect (i) and
never apply monochromatic to a subproblem (𝑆, 𝑇 )
where 𝑇 has less than Ψ high 𝑆-degree vertices (otherwise
Lemma 4 cannot be applied to 𝑈 ). The proof that (i) is
respected will be based on a global analysis that can only
be described after all the details of our algorithm are in
place.

IV. IMPLEMENTING CUT-OR-COLOR

We will now implement cut-or-color(𝑆, 𝑇, 𝑡). The
pseudo-code is presented as Algorithm 2. When we present

Algorithm 2: cut-or-color(𝑆, 𝑇, 𝑡)

𝑋 = 𝑁𝑆(𝑡); 𝑌 = 𝑁𝑇 (𝑋);
loop

if 𝑋 = 𝑆 then
return “𝑆 is monochromatic in every
3-coloring where 𝑡 and 𝑟0 have different colors”

else if there is 𝑠 ∈ 𝑆 ∖𝑋 with ∣𝑁𝑌 (𝑠)∣ ≥ Ψ
then // 𝑋-extension

check that 𝑁𝑌 (𝑠) is multichromatic in 𝐺 with
Lemma 4;
add 𝑠 to 𝑋 and 𝑁𝑇 (𝑠) to 𝑌

else if there is 𝑡′ ∈ 𝑇 ∖ 𝑌 with ∣𝑁𝑌 (𝑁𝑆(𝑡
′))∣ ≥ Ψ

then // 𝑌 -extension
check that 𝑁𝑌 (𝑁𝑆(𝑡

′)) is multichromatic in 𝐺
with Lemma 4;
add 𝑡′ to 𝑌

else // 𝑋 ∕= 𝑆 and no 𝑋- or 𝑌 -extension possible
return “sparse cut around (𝑋,𝑌 )”

and motivate our implementation of cut-or-color, we
assume an arbitrary 3-coloring 𝐶3 of 𝐺. The coloring 𝐶3 is

not known to the algorithm, and in fact, it may not even exist.
However, if based on the assumption, the algorithm can
prove that 𝑆 is monochromatic in 𝐶3, then it can correctly
declare that “𝑆 is monochromatic in every 3-coloring where
𝑡 and 𝑟0 have different colors”. Below we assume that 𝑟0 is
red and 𝑡 is green in 𝐶3. The last color is blue. The pseudo-
code for cut-or-color in Algorithm 2 shows the raw
code that will be executed regardless of what 3-colorings of
𝐺 are possible.

The first part of cut-or-color is essentially the col-
oring that Blum [5, §5.2] uses for dense regions. We shall
describe how we bypass the limits of his approach as soon
as we have presented his part.

Let 𝑋 be the neighborhood of 𝑡 in 𝑆 and let 𝑌 be the
neighborhood of 𝑋 in 𝑇 . As in [5] we note that all of 𝑋
must be blue, and that no vertex in 𝑌 can be blue. We are
going to expand 𝑋 ⊆ 𝑆 and 𝑌 ⊆ 𝑇 preserving the following
invariant:

(ii) if 𝑟0 was red and 𝑡 was green in 𝐶3 then 𝑋 is all blue
and 𝑌 has no blue.

If we end up with 𝑋 = 𝑆, then (ii) implies that 𝑆 is
monochromatic in any 3-coloring where 𝑟0 and 𝑡 have
different colors.

𝑋-extension: Now consider any vertex 𝑠 ∈ 𝑆 whose
degree into 𝑌 is at least Ψ. Using Lemma 4 we can check
that 𝑁𝑌 (𝑠) is multichromatic in 𝐺. Since 𝑌 ⊇ 𝑁𝑌 (𝑠) has
no blue, we conclude that 𝑁𝑌 (𝑠) is red and green, hence
that 𝑠 is blue. Note conversely that if 𝑠 was green, then
all its neighbors in 𝑌 would have to be red, and then
the multichromatic test from Lemma 4 would have made
progress. Preserving (ii), we now add the blue 𝑠 to 𝑋 and
all neighbors of 𝑠 in 𝑇 to 𝑌 . We shall refer to this as an
𝑋-extension.

Relation to Blum’s algorithm: Before continuing, let
us briefly relate to Blum’s [5] algorithm. The above 𝑋-
extension is essentially the coloring Blum [5, §5.2] uses
for dense regions. He applies it directly to his structure
𝐻0 = (𝑟0, 𝑆0, 𝑇0) from Section II. He needs a larger degree
𝛿0 ≥ Δ2

0𝑘/𝑛 than we do, but then he proves that the set of
vertices 𝑠 with degree at least Ψ into 𝑌 is more than Ψ. This
means that either he finds progress with a green vertex 𝑠, or
he ends up with a blue set 𝑋 of size Ψ, and gets progress
applying Lemma 4 to 𝑋 .

Our algorithm works for a smaller 𝛿0 and thereby for a
smaller color target 𝑘. Our extended 𝑋 is typically too small
for Lemma 4. In fact, as we recurse, we will get sets 𝑆 that
themselves are much smaller than Ψ. Otherwise we would
be done with Lemma 4 if 𝑆 was monochromatic.

Below we introduce 𝑌 -extensions. They are similar in
spirit to 𝑋-extensions, and would not help us if we like
Blum worked directly with 𝐻0. The important point will
be that if we do not end up with 𝑋 = 𝑆, and if neither
extension is possible, then we have identified a sparse cut
that we can use for recursion. We are thus borrowing from
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Blum’s proof [5] in the technical details, but the overall
strategy, seeking sparse cuts for recursion to crystallize a
small monochromatic set 𝑆, is entirely different (and new).

𝑌 -extension: We now describe a 𝑌 -extension, which
is similar in spirit to the 𝑋-extension, but which will cause
more trouble in the analysis. Consider a vertex 𝑡′ from 𝑇 ∖
𝑌 . Let 𝑋 ′ = 𝑁𝑆(𝑡

′) be its neighborhood in 𝑆. Suppose
∣𝑁𝑌 (𝑋

′)∣ ≥ Ψ. Using Lemma 4 we check that 𝑁𝑌 (𝑋
′)

is multichromatic in 𝐺. We now claim that 𝑡′ cannot be
blue, for suppose it was. Then its neighborhood has no blue
and 𝑆 is only blue and green, so 𝑋 ′ = 𝑁𝑆(𝑡

′) must be all
green. Then the neighborhood of 𝑋 ′ has no green, but 𝑌
has no blue, so 𝑁𝑌 (𝑋

′) must be all red, contradicting that
𝑁𝑌 (𝑋

′) is multichromatic. We conclude that 𝑡′ is not blue.
Preserving (ii), we now add 𝑡′ to 𝑌 .

Closure: We are going to extend 𝑋 and 𝑌 as long
as possible or till 𝑋 = 𝑆. Suppose we end up with 𝑋 =
𝑆. By (ii) 𝑋 is blue, so cut-or-color declares that 𝑆
is monochromatic in any 3-coloring where 𝑟 and 𝑡 have
different colors.

Otherwise we are in a situation where no 𝑋-extension
nor 𝑌 -extension is possible, and then cut-or-color will
declare a sparse cut around (𝑋,𝑌 ). A sparse cut around
(𝑋,𝑌 ) is simply defined as being obtained this way. It has
the following properties:
(iii) The original high 𝑆-degree vertex 𝑡 has all its neigh-

bors from 𝑆 in 𝑋 , that is, 𝑁𝑆(𝑡) ⊆ 𝑋 .
(iv) All edges from 𝑋 to 𝑇 go to 𝑌 , so there are no edges

between 𝑋 and 𝑇 ∖𝑌 . To see this, recall that when an
𝑋-extension adds 𝑠′ to 𝑋 , it includes all its neighbors
in 𝑌 . The 𝑌 -extension does not change 𝑋 .

(v) Each vertex 𝑠′ ∈ 𝑆 ∖𝑋 has ∣𝑁𝑌 (𝑠
′)∣ < Ψ.

(vi) Each vertex 𝑡′ ∈ 𝑇 ∖ 𝑌 has ∣𝑁𝑌 (𝑁𝑆(𝑡
′))∣ < Ψ.

A most important point here is that this characterization of
a sparse cut does not depend on the assumption that 𝑡 and
𝑟 have different colors in some 3-coloring. It only assumes
that 𝑋 and 𝑌 cannot be extended further.

V. CORRECTNESS

It should be noted that the correctness of
cut-or-color follows from (ii) which is immediate
from the construction. The only issue that remains is to
ensure that we never end up considering a subproblem with
too few high 𝑆-degree vertices for (i), hence where we
cannot apply Lemma 4 to ensure that the high 𝑆-degree
vertices do not all have the same color as 𝑟0.

VI. DEGREE CONSTRAINTS

Before we can start our recursive algorithm, we need some
slightly different degree constraints from those provided by
Blum [5] described in Section II:
∙ The vertices in 𝑆0 have average degree Δ0 into 𝑇0.
∙ The degrees from 𝑇0 to 𝑆0 are all within a factor (1±
𝑜(1)) around the average 𝛿0 ≥ Δ2

0 𝑘/𝑛.

We need some initial degree lower bounds, which are
obtained simply by removing low degree vertices creating
our first induced subproblem (𝑆1, 𝑇1) ⊆ (𝑆0, 𝑇0). Starting
from (𝑆1, 𝑇1) = (𝑆0, 𝑇0), we repeatedly remove vertices
from 𝑆1 with degree to 𝑇1 below Δ0/4 and vertices from
𝑇1 with degree to 𝑆1 below 𝛿0/4 until there are no such
low-degree vertices left. The process eliminates less than
∣𝑆0∣Δ0/4 + ∣𝑇0∣𝛿0/4 = ∣𝐸(𝑆0, 𝑇0)∣/2 edges, so half the
edges of 𝐸(𝑆0, 𝑇0) remain in 𝐸(𝑆1, 𝑇1). We also note that
the average degree from 𝑇 to 𝑆 remains above 𝛿0/2 = 2𝛿1.
The point is that the average on the 𝑇 -side only goes down
when we remove low degree vertices from 𝑆0, and that can
take away at most 1/4 of the edges. With Δ1 = Δ0/4 and
𝛿1 = 𝛿0/4, we get

∙ The degrees from 𝑆1 to 𝑇1 are at least Δ1.
∙ The degrees from 𝑇1 to 𝑆1 are between 𝛿1 and (1 +
𝑜(1))𝛿0 < 5𝛿1, with an average above 2𝛿1. Note that
𝛿1 = 𝛿0/4 ≥ Δ2

0 𝑘/(4𝑛) = 4Δ2
1𝑘/𝑛.

Lemma 8: We may assume that 𝑘 < Δ1.
Proof: As noted earlier, by Observation 3, we can

make progress towards �̃�(Δmin) coloring. However, Δ0 =
Ω̃(Δmin) and Δ1 = Δ0/4, so �̃�(Δmin) = �̃�(Δ1). We are
therefore done if 𝑘 ≥ Δ1.
A high 𝑆-degree in 𝑇 can now be restated as a degree to 𝑆
above 𝛿1/4 = 𝛿0/16 = Δ2

1𝑘/𝑛.
Lemma 9: Δ1 = Ψ𝑛Ω(1).

Proof: Recall that Δ1 = Δ0/4 = Ω̃(Δmin), so
from (2) we get 𝑘 = �̃�((𝑛/Δ1)

4/7), or equivalently,
Δ1 = Ω̃(𝑛/𝑘7/4). Since Ψ = 𝑛/𝑘2, we conclude that
Δ1 = Ω̃(Ψ𝑘1/4) = Ψ𝑛Ω(1).

Recursion: Our recursion will start from (𝑆, 𝑇 ) =
(𝑆1, 𝑇1) ⊆ (𝑆0, 𝑇0), that is, the first call to Algorithm 1
is monochromatic(𝑆1, 𝑇1). We will prove that every
subproblems (𝑆, 𝑇 ) considered recursively satisfies the fol-
lowing degree invariants:

(vii) Each vertex 𝑣 ∈ 𝑆 has all its neighbors from 𝑇1

in 𝑇 , so the degrees from 𝑆 to 𝑇 remain at least
Δ1. Since the next subproblem is (𝑆′, 𝑇 ′) = (𝑋,𝑌 ),
this invariant follows inductively from the sparse cut
condition (iv).

(viii) The average degree in 𝑇 to 𝑆 is at least 𝛿1/2.

The following key lemma shows that the above degree
constraints imply invariant (i) which states that we Ψ high
𝑆-degree vertices in 𝑇 , as needed for the correctness of the
recursive call.

Lemma 10: (vii) and (viii) imply (i).
Proof: If ℎ is the fraction of high 𝑆-degree vertices in

𝑇 , the average degree in 𝑇 is at most ℎ 5𝛿1 + (1− ℎ)𝛿1/4
which by (viii) is at least 𝛿1/2. Hence ℎ = Ω(1). By (vii) we
have ∣𝑇 ∣ ≥ Δ1, so we have Ω(Δ1) high 𝑆-degree vertices
in 𝑇 . By Lemma 9 this is much more than Ψ high 𝑆-degree
vertices.
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VII. MAINTAINING DEGREES RECURSIVELY

All that remains is to prove that invariant (viii) is pre-
served, i.e., that the average degree from 𝑇 to 𝑆 does not
drop below half the original minimum degree 𝛿1 from 𝑇1 to
𝑆1. Inductively, when a sparse cut is declared around a new
subproblem (𝑆′, 𝑇 ′) = (𝑋,𝑌 ) ⊆ (𝑆, 𝑇 ), we can assume
that (vii) and (viii) are satisfied for (𝑆, 𝑇 ) and that (vii) is
satisfied for (𝑋,𝑌 ). It remains to prove (viii) for (𝑋,𝑌 ).

Below we first show that when a sparse cut is declared
around (𝑋,𝑌 ) ⊆ (𝑆, 𝑇 ), then 𝑋 cannot be too small. We
later complement this by showing that the total number of
edges cut in the recursion cannot be too large.

Lemma 11: ∣𝑌 ∣ ≥ Δ2
1𝑘

2/(2𝑛).
Proof: If 𝑡 is the high 𝑆-degree vertex we started with in

𝑇 , then by (iii), we have the whole neighborhood 𝑍 = 𝑁𝑆(𝑡)
of 𝑡 in 𝑆 preserved in 𝑋 . By definition of high 𝑆-degree,
∣𝑍∣ ≥ 𝛿1/4 = Δ2

1𝑘/𝑛. By (iv) and (vii) the degrees from 𝑍
to 𝑌 are at least Δ1 and by Lemma 8, 𝑘 < Δ1. It follows
that Δ1/Ψ = Δ1𝑘

2/𝑛 < ∣𝑍∣, so by Lemma 6, we have
∣𝑁𝑌 (𝑍)∣ ≥ Δ2

1/(2Ψ) = Δ2
1𝑘

2/(2𝑛).
In our original problem (𝑆1, 𝑇1), each vertex 𝑣 ∈ 𝑌 we had
𝛿1 edges to 𝑆1, so by Lemma 11, the original number of
edges from 𝑌 to 𝑆1 was at least

Δ1∣𝑌 ∣ ≥ 𝛿1Δ
2
1𝑘

2/(2𝑛). (3)

To prove (viii), we argue that at least half of these edges
are between 𝑌 and 𝑋 . This follows if we can prove that the
total number of edges cut is only half the number in (3).

The following main technical lemma relates the number
of new cut edges around the subproblem (𝑋,𝑌 ) to the
reduction ∣𝑇 ∖ 𝑌 ∣ in the size of the 𝑇 -side:

Lemma 12: The number of cut edges from 𝑌 to 𝑆 ∖𝑋 is
bounded by

∣𝑇 ∖ 𝑌 ∣ 40𝛿1𝑛
2

Δ2
1𝑘

4
. (4)

Proof: First we note that from (v) we get a trivial bound
of Ψ∣𝑆∖𝑋∣ on the number of new cut edges, but is not strong
enough for (4). Here we use (vi) we get∑

𝑦∈𝑌
∣𝑁𝑇 (𝑁𝑆(𝑦)) ∖ 𝑌 ∣ =

∑
𝑡′∈𝑇∖𝑌

∣𝑁𝑌 (𝑁𝑆(𝑡
′))∣

≤ ∣𝑇 ∖ 𝑌 ∣Ψ = ∣𝑇 ∖ 𝑌 ∣𝑛/𝑘2. (5)

We will now, for any 𝑦 ∈ 𝑌 , relate ∣𝑁𝑇 (𝑁𝑆(𝑦)) ∖ 𝑌 ∣ to
the number ∣𝑁𝑆(𝑦) ∖𝑋∣ of edges cut from 𝑦 to 𝑆 ∖𝑋 . Let
𝑍 = 𝑁𝑆(𝑦) ∖ 𝑋 . By (iv) we have that 𝑁𝑇 (𝑁𝑆(𝑦)) ∖ 𝑌 =
𝑁𝑇 (𝑍) ∖𝑌 . Consider any vertex 𝑣 ∈ 𝑍. By (vii) the degree
from 𝑣 to 𝑇 is at least Δ1. Since 𝑣 ∕∈ 𝑋 , by (v), the degree
from 𝑣 to 𝑌 is at most Ψ, and by Lemma 9, Ψ = 𝑜(Δ1). The
degree from 𝑣 to 𝑇 ∖𝑌 is therefore at least (1− 𝑜(1))Δ1 ≥
Δ1/2. This holds for every 𝑣 ∈ 𝑍. It follows by Lemma 6
that ∣𝑁𝑇 (𝑍)∖𝑌 ∣ ≥ min{(Δ1/2)/Ψ, ∣𝑍∣}Δ1/4. Relative to

∣𝑍∣, this is

∣𝑁𝑇 (𝑍) ∖ 𝑌 ∣
∣𝑍∣ ≥ min

{
Δ1/(2Ψ)

∣𝑍∣ , 1

}
Δ1/4

From our original configuration (𝑆1, 𝑇1), we know that all
degrees from 𝑇 to 𝑆 are bounded by 5𝛿1 and this bounds
the size of 𝑍 ⊆ 𝑁𝑆(𝑦). Therefore

Δ1/(2Ψ)

∣𝑍∣ ≥ Δ1𝑘
2/(2𝑛)

5𝛿1
=

Δ1𝑘
2

10𝛿1𝑛
.

Since 𝛿1 ≥ 4Δ2
1𝑘/𝑛, we have

Δ1𝑘
2

10𝛿1𝑛
≤ Δ1𝑘

2

10(4Δ2
1𝑘/𝑛)𝑛

=
𝑘

40Δ1
< 1.

Therefore

∣𝑁𝑇 (𝑍) ∖ 𝑌 ∣
∣𝑍∣ ≥ min

{
Δ1/(2Ψ)

∣𝑍∣ , 1

}
Δ1/4

≥ Δ1𝑘
2

10𝛿1𝑛
Δ1/4 =

Δ2
1𝑘

2

40𝛿1𝑛
.

Recalling 𝑍 = 𝑁𝑆(𝑦)∖𝑋 and 𝑁𝑇 (𝑍)∖𝑌 = 𝑁𝑇 (𝑁𝑆(𝑦))∖𝑌 ,
we rewrite the inequality as

∣𝑁𝑆(𝑦) ∖𝑋∣ ≤ 40𝛿1𝑛

Δ2
1𝑘

2
∣𝑁𝑇 (𝑁𝑆(𝑦)) ∖ 𝑌 ∣.

Using (5) we now get the desired bound on the number of
cut edges from 𝑌 to 𝑆 ∖𝑋:∑
𝑦∈𝑌

∣𝑁𝑆(𝑦) ∖𝑋∣ ≤ 40𝛿1𝑛

Δ2
1𝑘

2

∑
𝑦∈𝑌

∣𝑁𝑇 (𝑁𝑆(𝑦)) ∖ 𝑌 ∣

=
40𝛿1𝑛

Δ2
1𝑘

2
∣𝑇 ∖ 𝑌 ∣𝑛/𝑘2 = ∣𝑇 ∖ 𝑌 ∣ 40𝛿1𝑛

2

Δ2
1𝑘

4
.

From Lemma 12 it immediately follows that the total number
of edges cut in the whole recursion is at most

∣𝑇1∣ 40𝛿1𝑛
2

Δ2
1𝑘

4
≤ 40𝛿1𝑛

3

Δ2
1𝑘

5
. (6)

This should be at most half the original number of edges
from (3). Thus we maintain (vii) with an average degree of
𝛿1/2 from 𝑌 as long as

40𝛿1𝑛
3

Δ2
1𝑘

5
≤ 𝛿1Δ

2
1𝑘

2

4𝑛

or equivalently
𝑘7 ≥ 160 (𝑛/Δ1)

4. (7)

Thus, if 𝑘 satisfies (7), then all our degree constraints are
maintained, which means that we will keep recursing over
sparse cuts until we either make progress towards a �̃�(𝑘)
coloring, or end up with a provably monochromatic set 𝑆 on
which we can make monochromatic progress towards �̃�(𝑘)
coloring. Since Δ1 = Ω(Δ0) = Ω̃(Δmin), we can pick 𝑘 as
a function of Δmin and 𝑛 such that 𝑘 = Θ̃((𝑛/Δmin)

4/7)
and such that (7) will be satisfied. Thus we conclude

73



Theorem 13: If a 3-colorable graph has minimum degree
Δ𝑚𝑖𝑛, then we can make progress of Type 0, 1, or 2, towards
�̃�((𝑛/Δ𝑚𝑖𝑛)

4/7) coloring in polynomial time.
The corresponding result of Blum [5] was that we could
make progress towards �̃�((𝑛/Δmin)

3/5) coloring.
Corollary 14: A 3-colorable graph on 𝑛 vertices can be

colored with �̃�(𝑛4/11) colors in polynomial time.
Proof: Since 𝑛4/11 is a near-polynomial function in

𝑛, by Lemma 1, it suffices to prove progress towards
�̃�(𝑛4/11) coloring. By Observation 3, we get this progress
(Type 1) if Δmin = �̃�(𝑛4/11). Otherwise, Δmin =
Ω̃(𝑛4/11), and then by Theorem 13, we get progress towards
�̃�((𝑛/Δ𝑚𝑖𝑛)

4/7) = �̃�((𝑛/𝑛4/11)4/7) = Ω̃(𝑛4/11) coloring.

VIII. INTEGRATION WITH SDP

SDP coloring of 3-colorable graphs works best for graphs
of low maximum degree Δmax. The original result of Karger
et al. [6] was that we, in polynomial time, can find an
independent of size Ω̃(𝑛/Δ

1/3
max), and hence make progress

towards an �̃�(Δ
1/3
max) coloring. There has been substantial

improvements [9], [11], but the number of colors used is a
more complicated function of Δmax and 𝑛. The strongest
current bounds are due to Chlamtac [11, Theorem 15]. In
[11, Corollary 16] Chlamtac provided an instantiation of [11,
Theorem 15] which was optimized for combination with
Blum’s [5] coloring. Chlamtac [personal communication]
has provided us a corresponding instantiation of [11, Theo-
rem 15] optimized for combination with our Theorem 13:

Lemma 15 (Chlamtac [Personal Communication]): For
any 3-colorable graph 𝐺 on 𝑛 vertices with maximum
degree Δmax = 𝑂(𝑛0.6415), in polynomial time, we can
find an independent set of size Ω(𝑛0.7951), and hence make
progress towards 𝑂(𝑛0.2049) coloring.
Note that with minimum degree Δmin = Ω(𝑛0.6415)
in Theorem 13, we also make progress towards
�̃�((𝑛/Δ𝑚𝑖𝑛)

4/7) = �̃�(𝑛0.2049) coloring. Unfortunately it
is only for regular graphs that Δmin = Δmax.

To handle mixed degrees, we follow the approach of
Karger and Blum [8] who showed how to combine the
original SDP of Karger et al. [6] with Blum’s algorithm
[5]. To describe the combination in general, we first need
to elaborate a bit on Blum’s progress from Section II,
essentially reproving Lemma 1 from [5, Lemma 1].

We need to argue that if we in time polynomial in 𝑛 can
always make progress towards �̃�(𝑓(𝑛)) coloring of either
Type 0, 1, or 2, on any 3-colorable graph on 𝑛 vertices,
then in time polynomial in 𝑛, we can �̃�(𝑓(𝑛)) color any
3-colorable graph on 𝑛 vertices. Here 𝑘 is a non-decreasing
function that is near-polynomial which formally means that
there are constants 𝑐, 𝑐′ > 1 such that for all 𝑛, 𝑐𝑓(𝑛) ≤
𝑓(2𝑛) ≤ 𝑐′𝑓(𝑛).

The simplest case is that of same color progress in Type 0
where we identify two vertices 𝑢 and 𝑣 with the same color

in all 3-colorings of 𝐺. We can then identify 𝑢 and 𝑣 in a
new vertex 𝑤, removing 𝑢 and 𝑣 from the graph. Any edges
that ended in 𝑢 or 𝑣 now end in 𝑤. The 3-colorings of 𝐺 and
the new graph 𝐺′ are isomorphic, so 𝐺′ is still 3-colorable,
and when we have colored 𝐺′, we color 𝐺 transferring the
color of 𝑤 to 𝑢 and 𝑤. Working with 𝐺′ is an advantage
because 𝑓(𝑛) is non-decreasing in 𝑛.

When looking for other types of progress, we will be
working with subgraphs of 𝐺. We note here that if 𝑢 and 𝑣
have some color in all 3-colorings of a subgraph of 𝐺, then
they must also have the same color in all 3-colorings of 𝐺,
so Type 0 progress is made. When that happens, we simply
abandon any other progress we might be aiming for. Type 0
progress can happen at most 𝑛 times, so this strategy cannot
violate polynomial time.

The other simple type of progress is Type 1 with an
independent set 𝑋 of size Ω̃(𝑛/𝑓(𝑛)). The set 𝑋 gets its
own color (unless we find Type 0 progress and restart),
and then we recurse on 𝐺 ∖𝑋 using �̃�(𝑓(𝑛 − ∣𝑋∣)) other
colors. Because 𝑓 is near-polynomial, we end up with at
most �̃�(𝑓(𝑛)) colors.

We would now be done if all the progress was of Type
0 or 1, and in fact it is, for all other progress will lead
to Type 1 progress with a large independent set. This
includes both Type 2 progress with a small neighborhood,
and progress with SDP. However, we can no longer just
study each type of progress on its own, for we will work
iteratively, switching between different types of progress. To
get the right interaction, we define it as a game played on
a decreasing induced subgraph 𝐺′ = (𝑉 ′, 𝐸′), 𝑛′ = ∣𝑉 ′∣ of
a 3-colorable graph 𝐺 = (𝑉,𝐸), 𝑛 = ∣𝑉 ∣. We start with
𝐺′ = 𝐺 and while we play, 𝐺′ will always have at least
𝑛/2 vertices. Because 𝐺′ is induced, an independent set of
𝐺′ is also independent in 𝐺.

We have a constant number of players 𝑖 = 1, ..., ℓ = 𝑂(1)
that may make progress on 𝐺′. Each player 𝑖 starts with
an empty vertex set 𝑉𝑖. When player 𝑖 makes progress, he
removes some vertices from 𝐺′ and place them in his set
𝑉𝑖. The game stops when less than 𝑛/2 vertices remain. The
conditional guarantee of player 𝑖 is that if he ends up with
𝑛𝑖 = ∣𝑉𝑖∣ ≥ 𝑛/(2ℓ) = Ω(𝑛) vertices, then he can find an
independent set 𝐼𝑖 of size Ω̃(𝑛/𝑓(𝑛)) in the subgraph 𝐺∣𝑉𝑖
of 𝐺 induced by 𝑉𝑖.

When we play, we always need someone to make progress
on 𝐺′ as long as it has 𝑛′ ≥ 𝑛/2 vertices. When done,
combined the players removed more than 𝑛/2 vertices, so
some player 𝑖 ends up with 𝑛𝑖 ≥ 𝑛/(2ℓ) = Ω(𝑛) vertices.
The condition of player 𝑖 is satisfied so his independent set
𝐼𝑖 is of size Ω̃(𝑛/𝑓(𝑛)). This is the desired Type 1 progress
for 𝐺.

We will now first play the game with a Player 1 and 2
using progress on 𝐺′ of Type 1 and 2, respectively. If we
find Type 0 progress on 𝐺′, we restart as described above,
so we assume this does not happen.
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Player 1 looks directly for a Type 1 progress on 𝐺′, that is,
an independent set 𝑋 of size Ω̃(𝑛′/𝑓(𝑛′)) = Ω̃(𝑛/𝑓(𝑛)). If
he finds it, he just deletes the rest of the vertices, terminating
the game with 𝐼1 = 𝑋 and 𝑉1 = 𝑉 ′.

More interestingly, we have a Player 2 looking for Type 2
progress on 𝐺′ with a small neighborhood. Player 2 claims
progress when he finds a non-empty independent vertex set
𝑋 such that ∣𝑁(𝑋)∣ = �̃�(𝑓(𝑛′)∣𝑋∣) = �̃�(𝑓(𝑛)∣𝑋∣). He
adds 𝑋 to his independent set 𝐼𝑖 and removes 𝑋 ∪ 𝑁(𝑋)
from the graph adding them to his set 𝑉𝑖. Because all
neighbors of 𝑋 are removed, the successive independent
sets he gets are all independent of each other, so 𝐼2 remains
independent with ∣𝑉2∣ = �̃�(𝑓(𝑛)∣𝐼2∣). Thus, if Player 2 ends
up with ∣𝑉2∣ = Ω(𝑛), then ∣𝐼2∣ = Ω̃(𝑛/𝑓(𝑛)) as promised.

This completes our review of the proof of Lemma 1 which
assumes that we can find progress of Type 0, 1, or 2, on
every graph 𝐺′. However, we are free to add more players
𝑖 = 3, 4, .., ℓ = 𝑂(1) to the game as long as player 𝑖
guarantees that if he ends up with 𝑛𝑖 = ∣𝑉𝑖∣ = Ω(𝑛) vertices,
then he can find an independent set 𝐼𝑖 of size Ω̃(𝑛/𝑓(𝑛)) in
𝐺∣𝑉𝑖.

We now introduce Player 3 that for a parameter Δ looks
for the following type of progress.
Type 3: Small degree. Finding a vertex of degree at most Δ.

From Observation 3 we know that this gives Type 1
progress if Δ = Ω̃(𝑛/𝑓(𝑛)). However, using the SDP from
Lemma 15, we will get progress for a much smaller Δ.

When Player 3 finds a vertex 𝑣 of degree at most Δ, he
removes 𝑣 from 𝐺′ and places it in his set 𝑉3. Player 3
will have an induced subgraph 𝐺3 = 𝐺∣𝑉3 of 𝐺 where the
average degree is below 2Δ.

Suppose Player 3 ends up with 𝑛3 = ∣𝑉3∣ = Ω(𝑛). We
delete from 𝑉3 all vertices with degree at least 4Δ. The
resulting vertex set 𝑉 −3 is of size 𝑛−3 > 𝑛3/2 = Ω(𝑛), and
now the induced graph 𝐺−3 = 𝐺∣𝑉 −3 has maximum degree
Δmax < 4Δ.

In our case, we set Δ = 𝑛0.6415. If Player 3 ends up
with 𝑛3 = ∣𝑉3∣ = Ω(𝑛), he applies Lemma 15 to 𝐺−3 and
get an independent set of size Ω(𝑛0.7951) = Ω̃(𝑛/𝑓(𝑛)) for
𝑓(𝑛) = 𝑛0.2049.

To claim �̃�(𝑓(𝑛)) coloring for every 3-colorable graph,
we need to argue that we can always find progress of Type 0,
1, 2, or 3. We have Type 3 progress if there is any vertex of
degree below Δ = 𝑛0.6415. Otherwise we have a 3-colorable
graph with min-degree Δmin ≥ Δ. By Theorem 13, we can
find progress of Type 0, 1, or 2, towards �̃�((𝑛/Δmin)

4/7) =
�̃�(𝑛0.2049) = �̃�(𝑓(𝑛)) coloring. Thus we conclude:

Theorem 16: A 3-colorable graph on 𝑛 vertices can be
colored with 𝑂(𝑛0.2049) colors in polynomial time.
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