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Abstract—Minimizing the discrepancy of a set system
is a fundamental problem in combinatorics. One of the
cornerstones in this area is the celebrated six standard
deviations result of Spencer (AMS 1985): In any system
of n sets in a universe of size n, there always exists a
coloring which achieves discrepancy 6

√
n. The original

proof of Spencer was existential in nature, and did not give
an efficient algorithm to find such a coloring. Recently, a
breakthrough work of Bansal (FOCS 2010) gave an efficient
algorithm which finds such a coloring. His algorithm was
based on an SDP relaxation of the discrepancy problem and
a clever rounding procedure. In this work we give a new
randomized algorithm to find a coloring as in Spencer’s
result based on a restricted random walk we call Edge-Walk.
Our algorithm and its analysis use only basic linear algebra
and is “truly” constructive in that it does not appeal to
the existential arguments, giving a new proof of Spencer’s
theorem and the partial coloring lemma.

I. INTRODUCTION

Minimizing the discrepancy of a set system is a

fundamental problem in combinatorics with many ap-

plications in computer science (see [1], [2]). Here,

we are given a collection of sets S from a universe

V = {1, . . . , n} and the goal is to find a coloring
χ : V → {1,−1} that minimizes the maximum dis-

crepancy χ(S) = maxS∈S |
∑

i∈S χ(i)|. We denote the

minimum discrepancy of S by disc(S).
There is by now a rich body of literature on discrep-

ancy minimization with special focus on the ‘discrete’

formulation described above. One of the cornerstones in

this area is the celebrated six standard deviations result

of Spencer [3].

Theorem 1. For any set system (V,S) with |V | = n,
|S| = m, there exists a coloring χ : V → {1,−1} such
that χ(S) < K

√
n · log2(m/n), where K is a universal

constant (K can be 6 if m = n).

The above bound is in fact the best possible upto

constant factors (cf. [1]). One remarkable aspect of the

above theorem is that for m = O(n), the discrepancy

is just O(
√
n), whereas a random coloring has discrep-

ancy O(
√
n log n). Spencer’s original proof relied on

an ingenious pigeon-hole principle argument based on

Beck’s partial coloring approach [4]. However, due to

the use of the pigeon-hole principle, the proof was non-

constructive: Spencer’s proof does not give an efficient

(short of enumerating all possible colorings) way to find

a good coloring χ as in the theorem. This was a long-

standing open problem in discrepancy minimization and

it was even conjectured that such an algorithm cannot

exist [5]. In a recent breakthrough work, Bansal [6]

disproved this conjecture and gave the first randomized

polynomial time algorithm to find a coloring with dis-

crepancy O(
√
n · log(m/n)), thus matching Spencer’s

bound up to constant factors for the important case of

m = O(n). Note that as shown recently by Charikar et

al. [7], Bansal’s result is algorithmically tight as it is NP-

hard to distinguish between set systems with discrepancy

zero and those with discrepancy Ω(
√
n).

In this work we give a new elementary constructive

proof of Spencer’s result. Our algorithm and its anal-

ysis use only basic linear algebra and perhaps more

importantly is “truly” constructive. Bansal’s algorithm

while giving a constructive solution, still implicitly uses

Spencer’s original non-constructive proof to argue the

correctness of the algorithm. Our algorithm on the other

hand also gives a new (constructive) proof of Spencer’s

original result.

Theorem 2. For any set system (V,S) with |V | = n,
|S| = m, there exists a randomized algorithm running
in time Õ((n+m)3) 1 that with probability at least 1/2,
computes a coloring χ : V → {1,−1} such that χ(S) <
K
√

n · log2(m/n), where K is a universal constant.

The constant K above can be taken as 13 for the case

of m = n. Observe that our bound matches Spencer’s

result for all ranges of m,n, whereas Bansal’s result

loses an additional factor of Ω(
√
log(m/n)).

The above discrepancy bound is in fact tight up to

1Throughout, Õ( ) hides polylogarithmic factors.
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constant factors: there exist systems with

We also get a similar constructive proof of Srini-

vasan’s result [8] for minimizing discrepancy in the

“Beck-Fiala Setting” where each variable is constrained

to occur in a bounded number of sets. Bansal was able to

use his SDP based approach to give a constructive proof

of Srinivasan’s result. Our techniques for Theorem 2

also extend to this setting matching the best known

constructive bounds.

Theorem 3. Let (V,S) be a set-system with |V | = n,
|S| = m and each element of V contained in at most t
sets from S. Then, there exists a randomized algorithm
running in time Õ((n + m)5) that with probability at
least 1/2 computes a coloring χ : V → {1,−1} such
that χ(S) < K

√
t · log n, where K is a universal

constant.

We remark that non-constructively, a better bound of

O(
√
t · log n) was obtained by Banaszczsyk [9] using

techniques from convex geometry. Beck and Fiala [10]

proved that disc(S) < 2t and conjectured that disc(S) =
O(
√
t) (which if true would be tight, cf. [1]) and this

remains a major open problem in discrepancy minimiza-

tion.

II. OUTLINE OF ALGORITHM

To describe the algorithm we first set up some no-

tation. Fix a set system (V,S) with V = {1, . . . , n}
and |S| = m. As is usually done, we shall assume

that m ≥ n – the general case can be easily reduced

to this situation. Similar to Spencer’s original proof our

algorithm also works by first finding a “partial coloring”:

χ : V → [−1, 1] such that

• For all S ∈ S , |χ(S)| = O(
√
n log(m/n)).

• |{i : |χ(i)| = 1}| ≥ cn, for a fixed constant c > 0.

Given such a partial coloring, we can then recurse (as

in Spencer’s original proof) by running the algorithm on

the set of variables assigned values in (−1, 1) without

changing the colors of variables assigned values in

{1,−1}. Eventually, we will converge to a full coloring

and the total discrepancy (a geometrically decreasing

series with ratio roughly
√
1− c) can be bounded by

O(
√
n log(m/n)). Henceforth, we will focus on obtain-

ing such a partial coloring.

Let v1, . . . , vm ∈ R
n be the indicator vectors of the

sets in S. Then, the discrepancy of χ on S is χ(S) =
maxi∈[m] | 〈χ, vi〉 |. Our partial coloring algorithm (as

does Spencer’s approach) works in the more general

context of arbitrary vectors, and we will work in this

general context.

Theorem 4 (Main Partial Coloring Lemma). Let
v1, . . . , vm ∈ R

n be vectors, and x0 ∈ [−1, 1]n be a
“starting” point. Let c1, . . . , cm ≥ 0 be thresholds such
that

∑m
j=1 exp(−c2j/16) ≤ n/16. Let δ > 0 be a small

approximation parameter. Then there exists an efficient
randomized algorithm which with probability at least 0.1
finds a point x ∈ [−1, 1]n such that

(i) | 〈x− x0, vj〉 | ≤ cj‖vj‖2.
(ii) |xi| ≥ 1− δ for at least n/2 indices i ∈ [n].

Moreover, the algorithm runs in time O((m+n)3 · δ−2 ·
log(nm/δ)).

Note that the probability of success 0.1 can be boosted

by simply running the algorithm multiple times. Given

the above result, we can get the desired partial coloring

needed for minimizing set discrepancy by applying the

theorem to the indicator vectors of the sets S ∈ S with

δ = 1/n, and x0 = 0n. Combining the above with the

recursive analysis gives Theorem 2 with a running time

of Õ((n+m)5). It was pointed to us by Spencer that we

can in fact take δ = 1/ log n and then use randomized

rounding to get the running time stated in Theorem 2.

We stress that Spencer’s original approach shows the

existence of a true partial coloring (the colors take values

in {−1, 0, 1}), whereas our approach gives a fractional

coloring—the colors take values in [−1, 1] though many

of the colors are close to {−1, 1}.
The constructive proof of Srinivasan’s result, Theo-

rem 3, follows a similar outline starting from our partial

coloring lemma. We defer the details to Section VI.

We now describe the proof of the partial coloring

lemma.

A. Partial Coloring by Walking on The Edge

We will find the desired vector x by performing a

constrained random walk that we refer to as Edge-Walk
for reasons that will become clear later.

We first describe the algorithm conceptually, ignoring

the approximation parameter δ. We will assume through-

out that ‖v1‖2 = . . . = ‖vm‖2 = 1 as this normalization

does not change the problem. Consider the following

polytope P which describes the legal values for x ∈ R
n,

P := {x ∈ R
n : |xi| ≤ 1 ∀i ∈ [n],

| 〈x− x0, vj〉 | ≤ cj ∀j ∈ [m]}.
We will refer to the constraints |xi| ≤ 1 as variable
constraints and to the constraints | 〈x− x0, vj〉 | ≤ cj
as discrepancy constraints. The partial coloring lemma

can be rephrased in terms of the polytope P as follows:

there exists a point x ∈ P that satisfies at least n/2
variable constraints without any slack. Intuitively, this
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corresponds to finding a point x in P that is as far away

from origin as possible; the hope being that if ‖x‖2 is

large, then in fact many of the coordinates of x will

be close to 1 in absolute value. We find such a point

(and show it’s existence) by simulating a constrained

Brownian motion in P . (If uncomfortable with Brownian

motion, the reader can view the walk as taking very small

discrete Gaussian steps, which is what we will do in the

actual analysis.)

Consider a random walk in P corresponding to the

Brownian motion starting at x = x0. Whenever the

random walk reaches a face of the polytope, it continues

inside this face. We continue the walk until we reach

a vertex x ∈ P . The idea being that we want to get

away from origin, but do not want to cross the polytope

– so whenever a constraint (variable or discrepancy)

becomes tight we do not want to change the constraint

and continue in the subspace orthogonal to the defining

constraint. We call this random walk the “Edge-Walk”

in P .

By definition, the random walk is constrained to P ,

and | 〈x− x0, vj〉 | ≤ cj for all j ∈ [m]. We show that

as long as
∑

exp(−c2j ) � n, the random walk hits

many variable constraints with good probability. That

is, the end vertex x has xi ∈ {−1, 1} for many indices.

This step relies on a martingale tail bound for Gaussian

variables and an implicit use of the �2-norm as a potential

function for gauging the number of coordinates close to

1 in absolute value.

The actual algorithm differs slightly from the above

description. First, we will not run the walk until we reach

a vertex of P , but after a certain ‘time’ has passed, which

will still guarantee the above conditions. Second, we will

approximate the continuous random walk by many small

discrete steps.

III. COMPARISON WITH ENTROPY METHOD

Here we contrast our result with Beck’s partial color-

ing lemma [4] based on the Entropy method which has

many applications in discrepancy theory. While similar

in spirit, our partial coloring lemma is incomparable and

in particular, even the existence of the vector x as in

Theorem 4 does not follow from Beck’s partial coloring

lemma.

We first state Beck’s partial coloring lemma as formu-

lated in [11].

Theorem 5 (Entropy Method). Let (V,S) be a set-
system with V = {1, . . . , n}. Let Δ : S → R+ be such
that

∑
S∈S g(ΔS/

√|S|) ≤ n/5, where g : R+ → R+

is defined by,

g(λ) =

{
Ke−λ2/9, λ > 0.1

K ln(1/λ), λ ≤ 0.1
,

where K is an absolute constant. Then, there exists
χ ∈ {−1, 0, 1}n with |{i : χi �= 0}| ≥ n/2 such that
|∑i∈S χi| ≤ ΔS for every S ∈ S .

By applying our Theorem 4 to the indicator vectors

of the sets in S and δ = 1/poly(n) sufficiently small

we get the following corollary.

Corollary 6. Let (V,S) be a set-system with V =
{1, . . . , n}. Let Δ : S → R+ be such that∑

S∈S
exp(−Δ2

S/16|S|) ≤ n/16.

Then, there exists χ ∈ [−1, 1]n with |{i : |χi| =
1}| ≥ n/2, such that |∑i∈S χi| ≤ ΔS + 1/poly(n),
for every S ∈ S . Moreover, there exists a randomized
poly(|S|, n)-time algorithm to find χ.

The above result strengthens the Entropy method in

two important aspects. Firstly, our method is construc-

tive. In contrast, the entropy method is non-constructive

and the constructive discrepancy minimization algo-

rithms of Bansal do not yield the full partial coloring

lemma as in Theorem 5. Secondly, the above result can

tolerate many more stringent constraints than the En-

tropy method. For instance, the entropy method can only

allow O(n/ log n) of the sets in S to have discrepancy

1/n, whereas our result can allow Ω(n) of the sets to

have such small discrepancy. We believe that this added

flexibility in achieving much smaller discrepancy for a

constant fraction of sets could be useful elsewhere.

One weakness of Theorem 4 is that we do not strictly

speaking get a proper partial coloring: the non {1,−1}
variables in our coloring χ can take any value in (−1, 1).
This however does not appear to be a significant draw-

back, as Corollary 6 can also be made to work from an

arbitrary starting point x0 as in the statement of Theorem

4.

IV. PRELIMINARIES

We start with some notation and few elementary

properties of the Gaussian distributions.

A. Notation

Let [n] = {1, . . . , n}. Let e1, . . . , en denote the

standard basis for R
n. We denote random variables by

capital letters and distributions by calligraphic letters.

We write X ∼ D for a random variable X distributed

according to a distribution D.
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B. Gaussian distribution

Let N (μ, σ2) denote the Gaussian distribution with

mean μ and variance σ2. A Gaussian distribution is

called standard if μ = 0 and σ2 = 1. If G1 ∼ N (μ1, σ
2
1)

and G2 ∼ N (μ2, σ
2
2) then for t1, t2 ∈ R we have

t1G1 + t2G2 ∼ N (t1μ1 + t2μ2, t
2
1σ

2
1 + t22σ

2
2).

Let V ⊆ R
n be a linear subspace. We denote by

G ∼ N (V ) the standard multi-dimensional Gaussian

distribution supported on V : G = G1v1 + . . . + Gdvd,

where {v1, . . . , vd} is an orthonormal basis for V and

G1, . . . , Gd ∼ N (0, 1) are independent standard Gaus-

sian variables. It is easy to check that this definition is

invariant of the choice of the basis {v1, . . . , vd}. We will

need the following simple claims.

Claim 7. Let V ⊆ R
n be a linear subspace and let

G ∼ N (V ). Then, for all u ∈ R
n, 〈G, u〉 ∼ N (0, σ2),

where σ2 ≤ ‖u‖22.

Proof: Let G = G1v1 + . . . + Gdvd where

{v1, . . . , vd} is an orthonormal basis for V and

G1, . . . , Gd ∼ N (0, 1) are independent. Then 〈G, u〉 =∑d
i=1 〈u, vi〉 ·Gi is Gaussian with mean zero and vari-

ance
∑d

i=1 〈u, vi〉2 ≤ ‖u‖22.

Claim 8. Let V ⊆ R
n be a linear subspace and let

G ∼ N (V ). Let 〈G, ei〉 ∼ N (0, σ2
i ). Then

∑n
i=1 σ

2
i =

dim(V ).

Proof: Let G = G1v1 + . . . + Gdvd where

v1, . . . , vd are an orthonormal basis for V and

G1, . . . , Gd ∼ N (0, 1) are independent. Then,∑n
i=1 σ

2
i =

∑n
i=1 E[| 〈G, ei〉 |2] = E[‖G‖22] =∑d

i=1 ‖vi‖22 · E[G2
i ] = d = dim(V ).

The following is a standard tail bound for Gaussian

variables.

Claim 9. Let G ∼ N(0, 1). Then, for any λ > 0,
Pr[|G| ≥ λ] ≤ 2 exp(−λ2/2).

We will also need the following tail bound on martin-

gales with Gaussian steps. It is a mild generalization of

Lemma 2.2 in [6] and we omit the proof.

Lemma 10 ([6]). Let X1, . . . , XT be random variables.
Let Y1, . . . , YT be random variables where each Yi is
a function of Xi. Suppose that for all 1 ≤ i ≤ T ,
x1, . . . , xi−1 ∈ R, Yi|(X1 = x1, X2 = x2, . . . , Xi−1 =
xi−1) is Gaussian with mean zero and variance at most
one (possibly different for each setting of x1, . . . , xi−1).
Then for any λ > 0,

Pr[|Y1 + . . .+ YT | ≥ λ
√
T ] ≤ 2 exp(−λ2/2).

V. MAIN PARTIAL COLORING LEMMA

We are now ready to present our main partial color-
ing algorithm and prove Theorem 4. We shall use the

notation from the theorem statement and Section II-A.

Let γ > 0 be a small step size so that δ =
O(γ

√
log(nm/γ)). We note that the correctness of the

algorithm is not affected by the choice of γ, as long as

it is small enough; only the running time is affected.

Let T = K1/γ
2, where K1 = 16/3. We assume that

δ < 0.1. The algorithm will produce intermediate steps

X0 = x0, X1, . . . , XT ∈ R
n according to the following

update process2

a) Edge-Walk:: For t = 1, . . . , T do

• Let Cvar
t := Cvar

t (Xt−1) = {i ∈ [n] : |(Xt−1)i| ≥
1− δ} be the set of variable constraints ‘nearly hit’

so far.

• Let Cdisc
t := Cdisc

t (Xt−1) = {j ∈ [m] :
| 〈Xt−1 − x0, vj〉 | ≥ cj − δ} be the set of discrep-

ancy constraints ‘nearly hit’ so far.

• Let Vt := V(Xt−1) = {u ∈ R
n : ui = 0 ∀i ∈

Cvar
t , 〈u, vj〉 = 0 ∀j ∈ Cdisc

t } be the linear

subspace orthogonal to the ‘nearly hit’ variable and

discrepancy constraints.

• Set Xt := Xt−1 + γUt, where Ut ∼ N (Vt).
The following lemma captures the essential properties

of the random walk.

Lemma 11. Consider the random walk described above.
Assume that

∑m
j=1 exp(−c2j/16) ≤ n/16. Then, with

probability at least 0.1,
1) X0, . . . , XT ∈ P .
2) |(XT )i| ≥ 1− δ for at least n/2 indices i ∈ [n].

Theorem 4 follows immediately from Lemma 11 by

setting x = XT . Note that computing Cvar
t , Cdisc

t , given

Xt−1 takes time O(nm). Further, once we know the set

of constraints defining Vt, we can sample from N (Vt)
in time O((n+m)3) by first constructing an orthogonal

basis U for Vt and setting Ut =
∑

u∈U Guu, where

Gu ∼ N are chosen independently.

We prove Lemma 11 in the remainder of this section.

We start with a simple observation that Cvar
t , Cdisc

t can

only increase during the random walk.

Claim 12. For all t < T we have Cvar
t ⊆ Cvar

t+1 and
Cdisc
t ⊆ Cdisc

t+1. In particular, for 1 ≤ t < T , dim(Vt) ≥
dim(Vt+1).

Proof: Let i ∈ Cvar
t . That is, |(Xt−1)i| ≥ 1 − δ.

Then by definition of the random walk, Ut ∈ Vt and

2We call the random walk “Edge-Walk” because geometrically, once
the walk (almost) hits an edge (face) of the polytope P , it stays on
the edge.
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(Ut)i = 0. Thus, (Xt)i = (Xt−1)i and i ∈ Cvar
t+1. The

argument for discrepancy constraints is analogous.

We next show that the walk stays inside P with high

probability.

Claim 13. For γ ≤ δ/
√

C log(mn/γ) and C a suf-
ficiently large constant, with probability at least 1 −
1/(mn)C−2, X0, . . . , XT ∈ P .

Proof: If one of the points X0, .., XT is not in P ,

then it is necessary that at least once the random walk

makes a jump of size at least δ in the direction of one of

the vectors in W := {e1, . . . , en, v1, . . . , vm}. Consider

a single step t, 1 ≤ t ≤ T and a vector w ∈ W and

condition on any subspace Vt. Since Ut ∼ N (Vt) we

have by Claim 7 that 〈Ut, w〉 is Gaussian with mean 0
and variance at most 1. Hence by Claim 9,

Pr[| 〈Ut, w〉 | ≥ δ/γ] ≤ 2 exp(−(δ/γ)2/2).
Hence, by a union bound,

Pr[∃t, Xt /∈ P] ≤ T · (m+n) · 2 exp(−(δ/γ)2/2) <
1/(mn)C−2,

for C large enough.

We are now ready to prove Lemma 11. The intuition

behind the proof is as follows. We first use the hypothesis

on the thresholds cj , j ∈ [m], to argue that E[ |Cdisc
T | ]�

n. This follows from the definition of the walk and

a simple application of the martingale tail bound of

Lemma 10. Note that to prove the lemma it essentially

suffices to argue that E[|Cvar
T |] = Ω(n) (we can then use

Markov’s inequality). Roughly speaking, we do so by

a “win-win” analysis. Consider an intermediate update

step t ≤ T . Then, either |Cvar
t | is large, in which case

we are done, or |Cvar
t | is small in which case dim(Vt−1)

is large so that E[‖Xt‖2] increases significantly (with

noticeable probability) due to Claim 8. On the other

hand, ‖Xt‖2 ≤ n as all steps stay within the polytope

P (with high probability). Hence, |Cvar
t | cannot be small

for many steps and in particular |Cvar
T | will be large with

noticeable probability.

We first argue that E[ |Cdisc
T | ] is small. That is, on

average only a few discrepancy constraints are ever

nearly hit.

Claim 14. E[|Cdisc
T |] < n/4.

Proof: Let J := {j : cj ≤ 10δ}. To bound the size

of J , we have

n/16 ≥
∑
j∈J

exp(−c2j/16) ≥ |J | · exp(−100δ2/16) ≥

|J | · exp(−1/16) > 9|J |/10,

and hence |J | ≤ 1.2n/16. Now, for j /∈ J , if j ∈ Cdisc
T ,

then | 〈XT − x0, vj〉 | ≥ cj − δ ≥ 0.9cj . We will bound

the probability that this occurs. Recall that XT = x0 +
γ(U1 + . . . + UT ) and define Yi = 〈Ui, vj〉. Then, for

j /∈ J , we have

Pr[j ∈ Cdisc
T ] ≤ Pr[ |Y1 + . . .+ YT | ≥ 0.9cj/γ ].

We next apply Lemma 10. Note that the conditions of the

lemma apply, since U1, . . . , UT is a sequence of random

variables, Yi is a function of Ui and Yi|(U1, . . . , Ui−1)
is Gaussian with mean zero and variance at most one

(by Claim 7). Hence,

Pr[j ∈ Cdisc
T ] ≤ 2 exp(−(0.9cj)2/2γ2T ) =

2 exp(−(0.9cj)2/2K1T ) < 2 exp(−c2j/16).

So

E[|Cdisc
T |] ≤ |J |+

∑
j /∈J

Pr[j ∈ Cdisc
T ] ≤ 1.2n

16
+

2n

16
<

n

4
.

Claim 15. E[‖XT ‖22] ≤ n.

Proof: We will show that E[(XT )
2
i ] ≤ 1 for all

i ∈ [n]. Conditioning on the first t for which i ∈ Cvar
t

(or that no such t exists), we get

E[(XT )
2
i ] = Pr[i /∈ Cvar

T ]E[(XT )
2
i |i /∈ Cvar

T ]+
T∑

t=1

Pr[i ∈ Cvar
t \ Cvar

t−1]E[(XT )
2
i |i ∈ Cvar

t \ Cvar
t−1].

Clearly E[(XT )
2
i |i /∈ Cvar

T ] ≤ 1. For t ≤ T , we have

E[(XT )
2
i |i ∈ Cvar

t \Cvar
t−1] = E[(Xt)

2
i |i ∈ Cvar

t \Cvar
t−1] ≤

1− δ + γE[|(Ut)i|22] ≤ 1,

where we used the fact that (Ut)i is a Gaussian variable

with mean zero and variance at most one (by Claim 7).

Finally, we show that E[|Cvar
T |] is large. That is, on

average we will nearly hit a constant fraction of the

variable constraints.

Claim 16. E[ |Cvar
T | ] ≥ 0.56n.

Proof: We start by computing the average norm of

Xt.

E[‖Xt‖22] = E[‖Xt−1 + γUt‖22] =
E[‖Xt−1‖22]+γ2

E[‖Ut‖22] = E[‖Xt−1‖22]+γ2
E[dim(Vt)],
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where we used that fact that given Xt−1, E[Ut|Xt−1] =
0 and E[‖Ut‖22|Xt−1] = dim(Vt), by Claim 8. Hence,

by Claim 15,

n ≥ E[‖XT ‖22] ≥ γ2
T∑

t=1

E[dim(Vt)] ≥

γ2|T | · E[dim(VT )] = K1 · E[dim(VT )] =
K1E[(n− |Cvar

T | − |Cdisc
T |)].

Therefore, E[|Cvar
T |] ≥ n(1 − 1/K1) − E[|Cdisc

T |] ≥
n(1 − 1/K1 − 1/4) > (0.56)n, where the second

inequality follows from Claim 14.

Lemma 11 now follows immediately from Claim 13

and Claim 16.

Proof of Lemma 11: From Claim 16 and the fact

that |Cvar
T | ≤ n, it follows that P[|Cvar

T | ≥ n/2] ≥ 0.12.

Combining with Claim 13, with probability at least

0.12 − 1/poly(m,n) > 0.1, |Cvar
T | ≥ n/2 and XT ∈ P

which shows the lemma.

VI. DISCREPANCY MINIMIZATION FROM PARTIAL

COLORING

We now derive Theorem 2 and Theorem 3 from our

partial coloring lemma.

Proof of Theorem 2: Let (V,S) be a system

with |V | = n and |S| = m. Let v1, . . . , vm ∈ R
n

be the indicator vectors of the sets in S. We set

δ = 1/(8 logm). Let α(m,n) = 8
√

log(m/n). Then,

m·exp(−α(m,n)2/16) < n/16. Therefore, by Theorem

4 applied to v1, . . . , vm and starting point x0 = 0n, with

probability at least 0.1 we find a vector x1 ∈ [−1, 1]n
such that | 〈vj , x1〉 | <

√
n · α(m,n) for all j ∈ m

and |{i : |(x1)i| ≥ 1 − δ}| ≥ n/2. We can boost this

probability further by repeating the algorithm O(log n)
times; from now on we will ignore the probability that

the algorithm does not find such a vector.

Let I1 = {i : |(x1)i| < 1− δ} be the coordinates not

‘fixed’ in the first step and set n1 = |I1|. We now itera-

tively apply Theorem 4 to the restricted system described

by the vectors v11 = (v1)I1 , . . . , v
1
m = (vm)I1 ∈ R

n1 and

starting point (x1)I1 to get another vector x2 ∈ [−1, 1]n1

such that |〈v1j , x2〉| < √
n1 · α(m,n1) for all j ∈ [m]

and |{i : |(x2)i| ≥ 1−δ}| ≥ n1/2. By iterating this pro-

cedure for at most t = 2 log n times and concatenating

the resulting vectors appropriately we get x ∈ R
n such

that |xi| ≥ 1− δ for all i ∈ [n] and for every j ∈ [m],

| 〈vj , x〉 | <
√
n · α(m,n) + · · ·+√nt · α(m,nt)

<
√
n

∞∑
r=0

8
√
log(m · 2r/n)

2r/2

< C
√
n · log(m/n),

for C a universal constant.

We now round x to get a proper coloring χ ∈
{1,−1}n. Let χ ∈ {1,−1}n be obtained from x as

follows: for i ∈ [n], χi = sign(xi) with probability

(1+|xi|)/2 and −sign(xi) with probability (1−|xi|)/2,

so that E[χi] = xi. Let Y = χ − x. Fix some j ∈ [m].
Then, the discrepancy of χ with vj is

| 〈χ, vj〉 | ≤ | 〈x, vj〉 |+ | 〈Y, vj〉 | ≤
C
√

n log(m/n) + | 〈Y, vj〉 |.
We will show that with high probability, | 〈Y, vj〉 | ≤√
n for all 1 ≤ j ≤ m. Fix some j ∈ [m] and consider

〈Y, vj〉. We have that |Yi| ≤ 2, E[Yi] = 0 and Var(Yi) ≤
δ. We also have ‖vj‖2 ≤

√
n and ‖vj‖∞ ≤ 1. Thus, by a

standard Chernoff bound (see e.g., Theorem 2.3 in [12]),

P

[
| 〈Y, vj〉 | > 2

√
2 logm ·

√
nδ

]
≤

2 exp(−2 logm) < 1/2m.

Therefore, by the union bound and our choice of δ,

with probability at least 1/2 we have that | 〈Y, vj〉 | ≤√
n for all 1 ≤ j ≤ m. Therefore, | 〈χ, vj〉 | ≤

C
√
n log(m/n) +

√
n for all 1 ≤ j ≤ m.

The running time is dominated by the O(log2 n) uses

of Theorem 4. Thus, the total running time is O((n +
m)3 log5(mn)) = Õ((n+m)3).

The constant in the theorem can be sharpened to be

13 by fine tuning the parameters. We do not dwell on

this here. We next prove Theorem 3.

Proof of Theorem 3: The proof is similar to the

above argument and we only sketch the full proof. Set

δ = 1/n. Let (V,S) be the set system. Let v1, . . . , vm
be the indicator vectors of the sets in S and let cj =
C
√
t/‖vj‖2 for C to be chosen later. Observe that∑

j ‖vj‖22 ≤ nt as each element appears in at most t

sets. In particular, the number of vectors vj with ‖vj‖22
in [2rt, 2r+1t] is at most n/2r. Therefore,

∑
j

exp(−c2j/16) <
∞∑
r=0

n · exp(−C2/16 · 2r+1)

2r
<

n

16
,

for C a sufficiently large constant. Thus, by applying

Theorem 4 to the vectors vj and thresholds cj for j ∈
[m], with probability at least 0.1 we get a vector x1 ∈
[−1, 1]n such that | 〈vj , x1〉 | < C

√
t for all j ∈ [m] and

|{i : |(x1)i| ≥ 1− δ}| > n/2.

By iteratively applying the same argument as in the

proof of Theorem 4 for 2 logn steps, we get a vector

x ∈ [−1, 1]n with |xi| ≥ 1− δ for all i and | 〈vj , x〉 | <
2C
√
t log n for all j ∈ [m]. The theorem now follows by

rounding the x to the nearest integer coloring χ: χi =
sign(xi) for all i ∈ [m].
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