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Abstract—We propose the first black-box construction of
non-malleable commitments according to the standard no-
tion of non-malleability with respect to commitment. Our
construction additionally only requires a constant number
of rounds and is based only on (black-box use of) one-way
functions. Prior to our work, no black-box construction of non-
malleable commitments was known (except for relaxed notions
of security) in any (polynomial) number of rounds based on any
cryptographic assumption. This closes the wide gap existent
between black-box and non-black-box constructions for the
problem of non-malleable commitments.

Our construction relies on (and can be seen as a generaliza-
tion of) the recent non-malleable commitment scheme of Goyal
(STOC 2011). We also show how to get black-box constructions
for a host of other cryptographic primitives. We extend our
construction to get constant-round concurrent non-malleable
commitments, constant-round multi-party coin tossing, and
non-malleable statistically hiding commitments (satisfying the
notion of non-malleability with respect to opening). All of
the mentioned results make only a black-box use of one-way
functions.

Our primary technical contribution is a novel way of
implementing the proof of consistency typically required in the
constructions of non-malleable commitments (and other related
primitives). We do this by relying on ideas from the “zero-
knowledge from secure multi-party computation” paradigm
of Ishai, Kushilevitz, Ostrovsky, and Sahai (STOC 2007). We
extend in a novel way this “computation in the head” paradigm
(which can be though of as bringing powerful error-correcting
codes into purely computational setting). To construct a non-
malleable commitment scheme, we apply our computation in
the head techniques to the recent (constant-round) construction
of Goyal. Along the way, we also present a simplification
of the construction of Goyal where a part of the protocol
is implemented in an information theoretic manner. Such a
simplification is crucial for getting a black-box construction.
This is done by making use of pairwise-independent hash
functions and strong randomness extractors.

We show that our techniques have multiple applications,
as elaborated in the paper. Hence, we believe our techniques
might be useful in other settings in future.

Keywords-non-malleable commitments; black-box use of
cryptographic primitives; computation in the head paradigm;

I. INTRODUCTION

The notion of non-malleable commitments was introduced

in the seminal work of Dolev, Dwork and Naor [1] and has

been widely studied since then. Non-malleable commitments

(and related primitives like non-malleable zero-knowledge)

form the foundations of modern techniques for dealing with

man-in-the-middle attacks in cryptographic protocols. Man-

in-the-middle attacks could be of concern either if there is a

single protocol execution with multiple parties (e.g., non-

malleable commitments have been useful in constructing

round-efficient multi-party computation protocols [2], [3],

[4], [5], [6], [7]), or, when there are several executions.

There has been a large body of literature on constructing

protocols in the concurrent setting (c.f., the lines of works on

getting concurrent security in the plain model [8], [9], [10],

[11], [12], [13], [14], [15], [16] and on getting universally

composable protocols in various settings [17], [18], [19],

[20]). Many of these works use non-malleable protocols in

some form as a crucial technical tool.

After the initial feasibility results by Dolev et. al., a

fruitful line of research has focused on efficiency. Round

complexity, a natural measure of efficiency has been stud-

ied in several works. Barak, in a breakthrough work [2]

gave the first constant-round construction of non-malleable

commitments using the so called non-black-box simulation

techniques [21]. Since then, a number of works have in-

vestigated the round complexity of non-malleable protocols.

There have been super-constant-round protocols based on

one-way functions [5], [6]. Constant-round protocols using

non-standard or sub-exponential hardness assumptions were

proposed in [22], [23]. Constant-round protocols using non-
black-box simulation techniques can be found in [2], [24],

[25], [26], [27]. Very recently, constant-round constructions

based only on one-way functions (OWF) (with black-box

simulation techniques) were proposed independently by

Goyal [7] and Lin and Pass [28]. In all of these works,

constructions according the the traditional security notion

(of non-malleability with respect to commitment) make a

non-black-box use of underlying cryptographic primitives.

While round complexity is an important measure of

efficiency, a fundamental step in obtaining efficient protocols

is to obtain a black-box construction (i.e., one where the

underlying cryptographic primitives is used only as an

oracle). Construction making use of the underlying primitive

in a non-black-box way can typically only be seen as a

feasibility result (regardless of the round complexity).

Obtaining black-box constructions for various crypto-

graphic primitives has been an active line of research in
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recent years (c.f., [29], [30], [6]). However the state of art on

constructing non-malleable commitments making a black-

box use of cryptographic primitives is far from satisfactory.

There have only been results according to new and relaxed

notions of security [30], [6], [7] (see the end of this section

for a more detailed discussion). To summarize, there is sharp

contrast in what is known using non-black-box construction

(constant-round protocols using only one-way functions)

and black-box constructions (no construction known as per

the traditional definition) for the problem of non-malleable

commitments. This raises the following natural question:

Does there exist a black-box construction of non-
malleable commitments following the traditional security
notion [1], [25], [31] from any cryptographic assumption
with any round complexity?

The main difficult in resolving the above question seems

to be in developing a cut and choose technique having the

appropriate coding theoretic properties [30], [6].

A. Our Results

We solve the above question in the affirmative by provid-

ing a black-box construction of non-malleable commitments.

Our construction follows the traditional notion of non-

malleability with respect to commitment [1], [25], [31]. Our

construction uses only a constant number of rounds and is

based only on (a black-box use of) one-way functions. This

completely closes the wide gap between the state of knowl-

edge between black-box and non-black-box constructions for

non-malleable commitments. Our construction relies on (and

can be seen as an instantiation of) the recent non-malleable

commitment scheme of Goyal [7]. Our key technical contri-

bution relates to the construction of a commitment scheme

which allows one to prove any arbitrary relation over the

committed values in zero-knowledge in a black-box manner

(which we use in the commitment scheme of Goyal [7]).

Once we obtain such a construction, black-box construc-

tions for several other primitives can be obtained in a

natural way. We generalize our construction to get con-
current non-malleable commitments. This construction is

constant-round as well and is based on one-way functions.

We obtain constant-round multi-party coin tossing (with a

broadcast channel) based only on a black-box use of one-

way functions. This is a direct improvement over the work

of Pass and Wee [30] which provided such a construction

only for the two-party case (indeed, for the case of two

parties, one does not run into issues of man-in-the-middle

attacks). We also provide a black-box construction of non-

malleable statistically hiding commitments (satisfying the

notion of non-malleability with respect to opening [24]1).

Our construction builds on a stand-alone statistically hiding

1For statistically hiding commitments, the notion of non-malleability with
respect to commitment is meaningless as the committed value is not well
defined. To analyze security in such a setting, the standard notion of non-
malleability is with respect to opening as studied for instance in [24].

commitment and converts it into a non-malleable statistically

hiding commitment. This allows us to get a non-malleable

statistically hiding commitment in constant rounds based

on (a black-box use of) collision resistant hash functions.

Furthermore, one can also have a construction based only on

one-way functions in O(n/ log(n))-rounds. To our knowl-

edge, this is the first black-box construction of non-malleable

statistically hiding commitments.

Along the way we also give several results of independent

interest most notably a black-box non-malleability amplifica-

tion preserving security against general (non-synchronizing)

adversaries. This is an improvement over the analogous

result of Wee [6] which required non-black-box access to

a one-way function.

B. Technical Overview

Traditionally, constructions of non-malleable commitment

schemes have relied on executing a basic protocol block

somehow several times and then proving consistency among

all of them. The proof of consistency typically makes use of

underlying cryptographic primitives in a non-black-box way.

The question of constructing non-malleable commitments in

a black-box way has been raised in a number of previous

works [5], [30], [6], [7]. The main difficulty encountered

in previous works is in coming up with a cut-and-choose

technique having the right properties to replace the zero-

knowledge proof of consistency.

Our main technical construction of this work is a novel

way of implementing the zero-knowledge proof of consis-

tency that is typically required in non-malleable commitment

protocols. Our technique is based on ideas from the “zero-

knowledge from secure multi-party computation” paradigm

of Ishai, Kushilevitz, Ostrovsky, and Sahai [32]. In this

paradigm, we have a prover who runs a multi-party computa-

tion protocol “in his head” and proves the correctness of the

result to the verifier. This form of computation in the head

approach was proposed in [32] in the context of improving

the communication complexity of zero-knowledge protocols.

Our goal and the way we use these ideas are somewhat

different. Our basic idea will be as follows.

Suppose one needs to commit to a set of strings S =
(s1, . . . , sn) (and prove a statement about these strings later

on). The committer starts to emulate k virtual players “in his

head”. Each player is given as input a share of S. Secret shar-

ing is done using a verifiable secret sharing scheme (see, e.g.,

[33]). Let the view of the players so far be view0
1, . . . , view

0
k

respectively. The committer commits to these views using a

regular computationally secure commitment scheme.

At a later point in the interaction, suppose the committer

needs to perform some computation f on the committed

strings, reveal the result f(S) to the verifier and prove its

correctness. This can now be done as follows.

• The committer continues to emulate the k virtual player

in his head. The players will now compute the following
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functionality: the functionality will take the share of

each player, reconstruct the set S and output f(S) to

each player.

• The players jointly run a secure computation protocol

(starting with the views already committed to) to com-

pute this functionality. The secure computation protocol

being used is information theoretically secure tolerating

up to a constant fraction of corrupted parties such

as [34].

• Let the new views of the players up to this point be

view1
1, . . . , view

1
k. The committer now reveals f(S)

and commits to these new views.

• The receiver chooses a constant fraction of the players

at random. The prover decommits to both the views

for the selected players. This includes the initial views

view0
i as well as the new views view1

1 .

• The receiver checks if the players behaved honestly

during the entire computation and that their views

are “consistent” with each other (see Section II for

the precise notion of consistency). If this check is

successful, “most” of the virtual players were correctly

emulated by the committer. Hence the output of the

computation must be correct (since the protocol anyway

tolerates a constant fraction of corrupted players).

• The security of the committer is also preserved since

revealing views for a constant fraction of players does

not reveal anything about the set of strings S that he

started with (other than of course the output f(S)).

The key difference from [32] is that in our setting, the

statement we are proving actually inherently involve a non-

black-box use of the commitment scheme: “the evaluation

of f on the set of committed values results in f(S)”. We

are able to resolve this issue by using an extension of the

computation in the head paradigm to multiple “consistent”

execution [35]. Our technique can also be seen as a way

of proving a secret but committed statement (in a way that

does not involve the circuit of the commitment scheme in a

non-black-box way).
We believe our technique to be of independent interest.

The above technique might allow us to obtain black-box

constructions by eliminating zero-knowledge proofs of con-

sistency in other settings as well. Notice that we use a non-

constant-round multi-party computation protocol such as

[34] in our construction. Indeed, obtaining constant-round

information theoretically secure multi-party computation is

currently a major open problem connected to the existence

of short locally decodable codes [36]. However our final

protocol is still constant-round since this computation needs

to be only done “in the head” of the committer.
To construct non-malleable commitments in a black-box

manner, our starting point is the recent constant-round pro-

tocol of Goyal [7] (which makes use of one-way functions

in a non-black-box manner). Goyal’s protocol has a zero-

knowledge proof of consistency (on committed strings)

which we implement using the above secure computation

in the head approach. However we note that the protocol

of Goyal, very informally, is still too “non-black-box” to

admit a simple application of this idea. The protocol of

Goyal uses a proof of complex statements involving the

randomness with which a commitment is constructed. We

present a simplification of the non-malleable commitment

scheme of Goyal. Our simplification involves making a part

of the protocol purely information theoretic using pairwise-

independent hash functions and strong randomness extrac-

tors. This is done in a way such that the proof of non-

malleability (with respect to commitment) still goes through.

We are finally left with a protocol where the only com-

putational part is an initial commitment to a set of random

strings such that the consistency proof only needs to prove

a statement above the committed strings. Our MPC in the

head technique discussed about is powerful enough to handle

such a scenario.

C. Related Work

Di Crescenzo, Ishai and Ostrovsky presented in [39] the

first non-interactive non-malleable commitment scheme in

the common reference string model. Pass and Wee [30]

gave a construction of a non-malleable commitment scheme

with respect to commitment in O(log(n)) rounds (and in

O(n) rounds for concurrent non-malleable commitments)

making a black-box use of one-way functions in the standard

model. Their construction is according to a relaxed security

notion called non-malleability with respect to extraction

(which they introduce). Wee [6] gave a O(log∗(n)) round

construction following the same notion of security. A limited

black-box constant-round construction was given by Goyal

[7] for an even weaker notion called non-malleability with

respect to replacement. The construction of Goyal was

restricted to providing security only against synchronizing

adversaries2 (as opposed to general adversary). This makes

it useful in stand-alone settings only. However in settings

where there are more than one (uncoordinated) executions,

the construction of Goyal does not provide any security.

Both these weaker notions of security have been useful

in constructing secure protocols for (stand-alone) multi-party

computation in a black-box manner. In both of these notions,

the adversary can indeed correlate (in a limited way) the

value it commits to in the right execution to the one in

the left execution: in particular, if the value on left is 0,

adversary may be able to commit to 0, while if the value

on left is 1, adversary commits to ⊥. Such a situation raises

the possibility of selective abort attacks. Even in settings

where these notions have been useful, the analysis is more

complex than if one were using the standard notion of non-

malleability with respect to commitment. Using the standard

2Roughly, this means that the man-in-the-middle M sends the i-th round
message on the right immediately after getting the i-th round message in
the left interaction.
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security notion allows us to construct commitment scheme

which can be useful in a wider range of settings as well as

obtain simpler and cleaner proofs of security.

II. DEFINITIONS AND TOOLS

For lack of space, we will not include the detailed back-

ground of each of all the cryptographic primitives that are

used in our constructions and of some facts from information

theory.

Basic notation: Throughout this paper, we let N de-

note the set of all natural numbers and [m] be the set

{1, 2, . . . ,m} for any m ∈ N. Unless stated otherwise, we

denote by k ∈ N the security parameter and all quantities

that are polynomial in k will be denoted by poly(k).
For any x ∈ {0, 1}∗, we denote the length of x (in bits)

by |x|. We denote by (A,B) a pair of interactive Turing

machines A and B, and denote by 〈A,B〉 the random

variable that represents the interaction between two interac-

tive Turing machines A and B. More precisely, we denote

by τ = 〈A(x), B(y)〉 the interactive execution of (A,B)
invoked with inputs x for A, y for B, and producing τ
as the transcript of the execution. We now give the formal

definition of a commitment scheme.

A. Commitment Schemes

We will use Naor’s statistically binding commitment

scheme [37] in our construction. Naor’s scheme only re-

quires a black-box use of a pseudo-random generator (which

can be based on the black-box use of any one-way function

[38]), and we will use Naor’s commitment scheme in a

black-box manner. We denote by CS = (Com,Rec), Naor’s

commitment scheme executed by a sender Com and a

receiver Rec with the following notation: c = Comσ(b;ω)
denotes a commitment to a bit b computed using randomness

ω, where σ is the first message generated by Rec to construct

the commitment. To decommit and verify the commitment,

Com sends (b, ω) and Rec verifies that c = Comσ(b;ω).
We stress that Naor’s commitment scheme can be used to

commit to strings by iterating it for each bit of the string.

Moreover, we will use it with non-interactive opening.

Extractable commitment schemes: Informally, a com-

mitment scheme is said to be extractable if there exists an

efficient extractor that having black-box access to any effi-

cient malicious sender ExCom∗ that successfully performs

the commitment phase, is able to efficiently extract the com-

mitted string. One can construct an extractable commitment

scheme ExCS = (ExCom,ExRec) with non-interactive

opening from any commitment scheme CS = (Com,Rec)
with non-interactive opening in a black-box as described

in [30]. The extractor described in [30] produces over

extraction, which means that the extractor can output a value

different from ⊥ when the transcript has no valid opening. In

our constructions, we will also need an extractable commit

scheme without over extraction, but tolerating extraction

failure.

Definition 1: A weakly extractable commitment scheme

WExCS = (WExCom,WExRec) is a commitment scheme

such that given oracle access to any PPT malicious sender

WExCom∗, committing to a string, there exists an expected

PPT extractor Ext that outputs a pair (τ, σ∗) such that the

following properties hold:

• Simulatability: the simulated view τ is identically

distributed to the view of WExCom∗ (when interacting

with an honest WExRec) in the commitment phase.

• Extractability: the probability that τ is accepting and

σ∗ correspond to ⊥ is at most 1/2. Moreover if σ∗ �= ⊥
then the probability that ExCom∗ opens τ to a value

different than σ∗ is negligible.

A construction that satisfies our definition on top of any

commitment scheme CS = (Com,Rec) is as follows:

Commitment phase:
1) WExCom on input a message σ, generates a random

strings r0 of the same length as σ, and computes

r1 = σ ⊕ r0. That is, WExCom sets σ = r0 ⊕ r1.

Then WExCom uses CS to commit to a pair of values

(r0, r1). That is, WExCom and WExRec produce

c0 =
〈
Com(r0, ω0),Rec

〉
, c1 =

〈
Com(r1, ω1),Rec

〉
.

2) WExRec responses to WExCom by sending a ran-

dom bit challenge string b.
3) WExCom decommits cb (i.e., non-interactively opens

one of previous commitments).

4) WExRec verifies that cb has been opened correctly.

Decommitment phase:
1) WExCom sends σ and non-interactively decommits

the other commitment cb̄, where b̄ = 1− b.
2) WExRec checks that σ = r0 ⊕ r1. If so, WExRec

takes the value committed to be σ and ⊥ otherwise.

The proof of binding and hiding of WExCS are even

simpler than the one given in [30]. Moreover, there is no

issue of over-extraction, rather there is an issue of under-

extraction. Since the malicious sender might refuse to open

another commitment during rewinds, with probability 1/2, a

cheating sender commits successfully but the extractor fails.

We will show later that this weak notion of extractability

suffices to prove the security of our main theorem.

Non-malleable commitment schemes: For the non-

malleability of commitments, we follow the definition in-

troduced by Pass and Rosen and by Lin et al. [25], [31]. Let

M be the man-in-the-middle adversary running on auxiliary

input z, and NMCS = (C,R) denote a non-malleable

commitment scheme executed by a sender C and a receiver

R. We use the notion of non-malleability with respect to

commitment from [1] for statistically binding non-malleable

commitment schemes. In this setting, the adversary M is

said to succeed in the experiment if M can commit to a

message σ̃ that is related to the message σ committed by the
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honest committer. Formally, let mimMNMCS(σ, z, tag) denote

a random variable that describes the value σ thatM commits

to in the right execution and the view of M in the full exper-

iment. In the simulated experiment, a simulator S directly

interacts with R. Let simSNMCS(z, tag) denote the random

variable describing the value σ′ committed to by S and the

output of S . Notice that both in mimMNMCS(σ, z, tag) and

in simSNMCS(z, tag) the values σ and σ′ are well defined

since the commitment scheme is statistically binding.

We will consider tag-based commitments, where an addi-

tional string referred to as tag is received in input by both

sender and receiver. The goal of M receiving a commitment

of σ in an execution with tag tag , consists in committing to a

related σ′ in an execution with a tag ˜tag such that tag �= ˜tag .

Therefore in mimMNMCS(σ, z, tag) we will assume that when

the tag used in the right-hand execution is equal to the one

used in left-hand execution, then the message committed

in mimMNMCS(σ, z, tag) is always defined as ⊥. It is well

known that tag-based non-malleable commitments imply

plain non-malleable commitments since one can use any

signature scheme for this implication. Since it is known

how to construct signature schemes by using a one-way

function in a black-box manner, we have that the sole notion

to care about in this work is that of tag-based non-malleable

commitments.

Definition 2: A tag-based commitment scheme

NMCS is said to be non-malleable if for every

PPT man-in-the-middle adversary M, there exists a

(expected) PPT simulator S such that the following

ensembles are computationally indistinguishable:

{mimMNMCS(σ, z, tag)}tag∈{0,1}k,σ∈{0,1}k,k∈N,z∈{0,1}∗ ,

{simSNMCS(z, tag)}tag∈{0,1}k,k∈N,z∈{0,1}∗ .

Similarly, one can define the one-many (resp., many-

many) variant of the above definition where the view of

M along with the tuple of values it commits to is required

to be indistinguishable regardless of the value (resp., values)

committed to in the left interaction (resp., interactions) by

the honest sender. We refer the reader to [31] for more

details. We also define the notion of one-sided non-malleable

commitment scheme where we only consider interactions

where the players of the left execution use a common value

tag that is smaller than any value ˜tag used in any right

interaction3.

In the statistically hiding case, the previous definition

of non-malleability (with respect to commitment) does not

make sense, because the committed value is not necessary

well defined. To analyze the non-malleability in such a

setting, the standard notion of non-malleability is with

respect to opening and was studied in [39], [24]. Briefly, in

the notion of non-malleability with respect to opening, the

adversary is considered successful if after the commitment

3If there exists a right interaction with ˜tag < tag , the value b committed
to in that right interaction is defined to be ⊥.

phase (where M commits to a message σ), and after

observing the decommitment to σ from a honest committer,

M can decommit a message σ̃ that is related to σ.

B. Statistically Secure Multi-Party Computation (MPC)

Informally, a secure multi-party computation (MPC) [34]

scheme allows n players to jointly and correctly compute

an n-ary function based on their private inputs, even in

the presence of t corrupted players. More precisely, let n
be the number of players and t denotes the number of

corrupted players. Under the assumption that there exists

a synchronous network over secure point-to-point chan-

nels, in [34] it is shown that for every n-ary function

f : ({0, 1}∗)n → ({0, 1}∗)n, there exists a t-secure MPC

protocol πf that securely computes f in the semi-honest

model for any t < n/2, and in the malicious model for

any t < n/3, with perfect completeness and security. That

is, given the private input wi of player i, after running the

protocol πf , each honest player i receives in output the i-
th component of the result of the function f applied to the

inputs of the players, as long as the adversary corrupts less

than t players. In addition, nothing is learnt by the adversary

from the execution of πf other than the output. We will later

use MPC protocols with perfect completeness and statistical

security. We will refer to such a protocol πf mentioned in the

above theorem as an (n, t)-perfectly secure MPC protocol

for f . Notice that all the above communication requirements

to run the MPC protocol will not result in communication

requirements for our commitment scheme, since we will use

virtual executions of MPC that will be run only locally by

players.

C. Consistency of Views

In an MPC protocol, the view of a player includes all

messages received by that player during the execution of

the protocol, the private inputs given to the player and the

randomness used by the player. We further denote by viewi

the view of player Pi. For a honest player Pi, the final

output and all messages sent by that player can be inferred

from viewi by running a virtual execution of the protocol.

Next, we recall the following definition of view consistency

adapted from [40].

Definition 3: A viewi of an honest player during an

MPC computation π contains input and randomness used

in the computation, and all messages received/sent from/to

the communication tapes. We have that a pair of views

(viewi, viewj) are consistent with each other if, (a) both

the players Pi and Pj individually computed each outgoing

message honestly by using the random tapes, inputs and in-

coming messages specified in viewi and viewj respectively,

and, (b) all output messages of Pi to Pj appearing in viewi

are consistent with incoming messages of Pj received from

Pi appearing in viewj , and vice versa.
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D. Verifiable Secret Sharing (VSS)

Informally, a verifiable secret sharing (VSS) [33] scheme

is a two-stage secret sharing protocol for implementing the

following functionality. In the first stage, a special player

referred to as dealer shares a secret among the other players

referred to as shareholders in the presence of at most t
corrupted players. In the second stage, players reconstruct

the secret shared by the dealer. The functionality ensures

that when the dealer is honest, before the second stage

begins, all corrupted players have no information about the

secret. Moreover, when the dealer is dishonest, at the end

of the share phase the honest players would have realized it

through an accusation mechanism that disqualifies the dealer.

In contrast to Shamir’s Secret Sharing scheme [41], a VSS

scheme can tolerate errors on malicious dealer and players

on distributing inconsistent or incorrect shares, indeed the

critical property is that even in case the dealer is dishonest

but has not been disqualified, still the second stage always

reconstruct the same bit among the honest players.

Direct implementations of (n + 1, 	n/3
)-perfectly se-

cure VSS schemes can be found in [34], [42]. However

since we are interested in a deterministic reconstruction

procedure, we will use the scheme of [43]that implements

an (n + 1, 	n/4
)-perfectly secure VSS scheme.We will

denote by ΠV SSshare the execution of an (n + 1, 	n/4
)-
perfectly secure protocol that implements the Share stage

of the above VSS functionality. We will denote by Πrecon

the corresponding protocol executed by shareholders to

implement the deterministic Recon stage.

III. CONSTRUCTION OF NON-MALLEABLE

COMMITMENTS

We now describe a simplified version of our proto-

col, which considers “short” tags with one-sided no n-

malleability. Moreover security is guaranteed against syn-

chronized adversaries only. A synchronized adversary is a

restricted adversary that plays the main-in-the-middle attack

by playing exactly one message on the right execution

after a message is received from the left execution, and

playing exactly one message on the left execution after a

message is received from the right execution. In our scheme

we will use an extractable commitment scheme ExCS as

already used in previous work [30]. Such a commitment

scheme suffers of “over ex traction”, which means that the

extractor can output a value different than ⊥ even when

the committed message is not well formed (therefore the

committed message is undefined and can not be opened

anymore). In addition, we use the commitment scheme

WExCS which instead suffers from “under extraction” as

described in Section II. We assume that each execution has

a session identifier tag ∈ [2n], where n is the length of

party identity in bits. Let k be the security parameter and

� = �(k) = k·tag . The commitment scheme NMCS = (C,R)
between a committer C and a receiver R proceeds as follows

to commit to a k-bit string σ. We assume that λ = 	k/4
.
In the description below, we have included some intuition

in italics.

Commitment phase:
0. Initial setup. R picks λ out of k players (which will

be later emulated by the committer) at random. That is,

it randomly selects λ distinct indices Λ = {r1, . . . , rλ}
where ri ∈ [k] for any i ∈ [λ]. For each ri, R sends

an extractable commitment ci of ri using ExCS.

1) Primary slot. Let ΠV SSshare be a protocol imple-

menting the Share phase of a (k + 1, λ)-perfectly

secure VSS scheme. We require the VSS protocol to

have a deterministic reconstruction phase. The com-

mitter C is given a k-bit string σ to commit.

1.1. Commit: C first generates � pairs of random

strings {α0
i , α

1
i }i∈[�] of length 4k each, and a

k-bit random string s. Here the strings are such
that the knowledge of both strings {α0

i , α
1
i } for

any pair will allow an extractor to extract the
committed value. The string s is meant to serve
as a seed of a strong extractor used later on in
the protocol. The purpose of the next two stages
(1.2 and 1.3) is simply to produce a specialized
commitment to the strings {α0

i , α
1
i }i∈[�], s and σ.

1.2. The committer C now starts emulating k + 1
(virtual) players locally “in his head”. C sets the

input of Pk+1 (i.e., the Dealer) to the concatena-

tion of σ, s, and {α0
i , α

1
i }i∈[�], while each other

player has no input. Then C runs ΠV SSshare and

each player Pi obtains shares wi, for any i ∈ [k].
1.3. Let view1

1, . . . , view
1
k+1 be the views of the k+1

players describing the execution of ΠV SSshare.

C uses WExCS to send a commitment V 1
i of

view1
i to R, in parallel for any i ∈ [k]. At this

stage, the committer is now committed to σ, s and
{α0

i , α
1
i }i∈[�].

1.4. Challenge: R sends a random �-bit challenge

string ch = (ch1, . . . , ch�).
1.5. Response: C sends {αchi

i }i∈[�] to R. The goal of
the extractor would be to rewind and learn a pair
{α0

i , α
1
i }. To ensure non-malleability, this would

be done without rewinding the (interleaved) left
interaction.

2) Verification message. Let H be a family of pairwise-

independent hash functions with domain {0, 1}4k and

range {0, 1}k, and Ext : {0, 1}4k×{0, 1}k → {0, 1}k
be a strong randomness (3k, 2−k)-extractor.

2.1. R picks a function h at random from H and

sends it to C.

2.2. C sends s, {h(α0
i ), h(α

1
i ), Bi = σ⊕Ext(α0

i , s)⊕
Ext(α1

i , s)}i∈[�] to R.

Say that in the primary slot phase, the extractor
rewinds the adversary and receives a value αj

i . This
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phase enables checking such a received value for
correctness (and for subsequent recovery of the string
σ). This phase is purely information theoretic but still
provides for the right binding properties. The corre-
sponding mechanism in the construction of Goyal was
implemented using complex computations involving
random tapes used to generate various commitments.

3) Consistency proof. Now the sender needs to prove the
correctness of the values revealed in stage 1.5 and 2.2.

3.1. Let Πch be a (k, λ)-perfectly secure MPC proto-

col such that given ch as a public input and wi

as the private input of Pi for any i ∈ [k], at the

end of the computation {αchi
i }i∈[�] is received in

output by Pi for any i ∈ [k]. C runs internally

Πch and sends a commitment V 2
i of the view

view2
i of Pi when executing Πch using WExCS

in parallel for any i ∈ [k] to R.

3.2. Let Πh be a (k, λ)-perfectly secure MPC pro-

tocol such that given a hash function h as a

public input and wi as the private input of Pi

for any i ∈ [k], at the end of the computation

(s, {h(α0
i ), h(α

1
i )}i∈[�], {Bi = σ⊕Ext(α0

i , s)⊕
Ext(α1

i , s)}i∈[�]) is received in output by Pi for

any i ∈ [k]. C runs internally Πh and sends a

commitment V 3
i of the view view3

i of Pi when

executing Πh using WExCS in parallel for any

i ∈ [k].
3.3. R decommits {ci}i∈[λ].
3.4. C decommits {V 1

ri , V
2
ri , V

3
ri}i∈[λ] (i.e.,

it decommits the subset of views

{view1
ri , view

2
ri , view

3
ri}i∈[λ].)

3.5. for j = 1, 2, 3, R verifies that all pairs of

views in {viewj
ri}i∈[λ] are consistent (according

to Definition 3) and that the dealer Pk+1 has

not been disqualified by any player, otherwise R
aborts; moreover for j = 1, 2 and i = 1, . . . , λ,

R checks that viewj
ri is a prefix of viewj+1

ri ,

otherwise R aborts.

Decommitment phase:

1) C decommits {V 1
i }i∈[k] as {view1

i }i∈[k].
2) R checks that all commitments to the views are

opened correctly in the previous step. If a commit-

ment is opened incorrectly, R sets the corresponding

revealed view to 0k (instead of just aborting).

3) Let ΠV SSrecon be a protocol implementing the Recon

phase corresponding to the (k+1, λ)-perfectly secure

VSS Share phase (which includes the string σ) used

in the commitment phase. R runs ΠV SSrecon using

view1
1, . . . , view

1
k+1 as input to reconstruct and output

the first substring of the value that the majority of the

players would output in the reconstruction. If there

is no majority, then consider the committer to have

aborted during the commitment phase (and output ⊥).

We stress that the receiver does not perform any
additional checks. In particular, even if it detects that
some of the views are not correctly constructed (and
hence the committer behaved in a dishonest way),
it still accepts the decommitment phase as long as
a majority of the players agree on a value during
reconstruction. This is crucial for getting security as
per the non-malleability with respect to commitment
notion.

Theorem 1: The scheme NMCS is a one-sided non-

malleable commitment scheme with short tags secure against

synchronized adversaries.

Hiding: To prove the hiding property, we claim that any

adversary A that breaks the hiding property of NMCS can

be used to break the hiding property of WExCS. The proof

goes through hybrid arguments starting with S that runs C
on input m0. In the next hybrid S retrieves all the indices

ri selected by A. In the next hybrid for all commitments

of the views that will not be opened to A, S will gradually

replace the committed values (corresponding to views that

are consistent with the computations) by commitments to

random strings. In the next hybrid S uses simulators Sch
and Sh of underlying MPC protocols Πch and Πh and

for every player i ∈ Λ, our S will commit the views

being generated by Sch and Sh. In the next experiment the

simulator assumes that all honest players play with shares

of m1. In the next experiment for all commitments that will

not be opened to A, S will gradually changes back the

committed values from the random strings to views that are

consistent with committed value m1. Finally, the simulator

honestly executes the protocol by committing to the value

m1 and outputs the corresponding views.

Binding: The statistical binding property follows in

a straightforward manner from the statistical binding of

WExCS. Indeed the only step performed by the unbounded

adversarial sender in the decommitment phase, consists

in decommitting all the statistically binding commitments

{V 1
i }i∈[k+1] sent in the commitment phase through the

extractable commitment scheme. The decommitted string

is then derived from running the reconstruction phase of

the VSS using these views. Then since the reconstruction

is deterministic, regardless of how these views are con-

structed, there is a unique string which will be reconstructed.

Therefore to violate the binding of our scheme one has to

violate the statistical binding of the extractable commitment

scheme.

Non-malleability: As one could expect, we borrow

several ideas from the analysis of Goyal [7]4 with some

crucial modifications. First of all, we simplified part of his

construction by using pairwise-independent hash functions

and strong randomness extractors. Therefore these tools

will be used in the proof when showing an extractor that

4Parts of the text in this section is borrowed verbatim from [7].
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breaks the hiding as a consequence of a successful M.

Secondly, the protocol of [7] uses a zero-knowledge proof

of consistency for (at least) two different crucial purposes:

1) in the proof of non-malleability, the soundness of the

zero-knowledge proof guarantees that when the commit-

ment phase is completed successfully, there exists a unique

committed string not equal to ⊥; 2) in the proof of hiding

the zero-knowledge property of the zero-knowledge proof

guarantees that no information on the committed string is

leaked. Since we replaced the zero-knowledge proof with

our extensions of the computation in the head paradigm, we

will use some of the arguments of [40] to prove that the

same holds also in our scheme.

A. Getting Non-Malleable Commitments for Small Tags

We construct a non-malleable commitment scheme for

small tags (i.e., tag ∈ [2n]) against a synchronizing ad-

versary. This can be done very similar to the construction

by Goyal (which is based on ideas from Pass and Rosen

[24]). Denote by �[a] the value k · tag and by �[b] the value

k·(2n−tag). The idea is to have two slots (each representing

a rewinding opportunity) such that for exactly one of these

slots, the “tag being used on the right” is larger than the

one on the left. The extractor will now rewind this slot and

extract the value ν. To prove many-many security of the

above scheme, we first prove one-many security by simply

applying the extractor one by one on all sessions on the right

and then resort to a general result of Lin et al [31] (as in

Goyal’s construction).

B. Security Against Non-Synchronizing Adversaries

Given a one-many non-malleable commitment scheme

sNM = (sCom, sRec) for tags of length log(n) + 1, we

presents a general and black-box transformation to obtain

a one-many non-malleable commitment scheme for tags of

length n. This transformation can be sees as a generalization

of a previous transformation of [6].

The idea of our construction is similar in spirit to the

technique used in [1] to obtain logarithmic round complex-

ity. Each execution of the commitment scheme is associated

to an n-bit tag Tag. The committer C runs a (k+1, 	k/4
)-
perfectly secure VSS scheme with deterministic reconstruc-

tion. That is, C shares the committed value σ and the

randomness to the i-th player Pi for i ∈ [k]. Then C commits

to the views of n VSS shareholders using n times the scheme

sCom and n different short tags that are derived by Tag.

The key idea is that by applying again the cut and

choose techniques on the VSS computation, the adversary is

essentially forced in committing to correct views almost in

all commitments computed with sCom . Then, by noticing

that in each commitment of the adversary there are always

views of the VSS players that are committed with a tag

that has not been used in the commitment received by the

adversary, it holds that such views are independent (this

comes from non-malleability). Therefore we will be able

in the hybrid experiments to change the message committed

in the left session while the adversary will still commit to

the same message on the right sessions.

Another crucial idea is the fact that the above com-

mitments of the views of the VSS computation must be

repeated 3 times. The reason we need this extra technique

is that during the hybrid games, we will need to compute

commitments of inconsistent views that however will not

be detected by the adversary since we will extract first the

indexes of the views that the adversary wants to see later.

This extraction will require to rewind the adversary, and thus

the need of 3 repetitions of the sub-commitment protocol

comes from the need of having the guarantee that at least

one of such sub-commitments is not disturbed by the above

rewind.

IV. APPLICATIONS

Here we discuss two applications of our constant-round

concurrent non-malleable commitment scheme based only

on the black-box use of one-way functions.

A. Constant-Round Multi-Party Coin-Tossing

Informally, a coin-tossing protocol allows parties to gener-

ate a common unbiased random string. We show a constant-

round protocol based on the black-box use of any one-way

function. In our protocol the adversary can control up to

n− 1 players and computations are performed in parallel.

Each party Pi selects a random k-bit string σi and runs in

parallel a sub-protocol 〈S(σi), R〉 with each other party, in

order to transfer σi to the other players. The final outcome

of the protocol is σ = σ1 ⊕ · · · ⊕ σn. The main technical

challenge is the design of the above sub-protocol 〈S(σi), R〉
by only using one-way functions in a black-box way, still

allowing a simulator to bias at its wish the outcome of the

coin tossing. In the sub-protocol that we design, each party

plays as sender to send its contribution to the coin-tossing

protocol, by running a perfectly secure (k+1, λ)-party VSS

protocol where λ = 	k/4
. More precisely, player S will use

NMExCS to commit to the views of the above VSS players.

The above VSS computations and commitments are repeated

twice. Then, a (k, λ)-statistically secure MPC protocol is

invoked to ensure that the same string σi has been shared

in the two above VSS executions. Commitments of such

resulting views are sent to R and the cut and choose is

performed to ensure R that the same string has been shared

by S in both above executions. Finally, the views used in the

second execution of VSS are revealed and the receiver can

apply the reconstruction to obtain the string of the sender.

The reason why we will be able to show a simulator that

can bias the outcome of the scheme, is that the simulator

when playing as receiver can extract from the commitments

of the views of the first VSS sharing phase, the string that

the sender will open later. The simulator can then adjust in
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the second commitment its string so that the output of the

protocol will be the desired string. Obviously the simulator

will have to cheat in the MPC protocol since it committed

to different strings. This will be again possible by extracting

in the first phase of the protocol the set of indexes that the

adversary wants to see opened later.

B. Non-Malleable Statistically Hiding Commitments

We also apply our techniques and our concurrent non-

malleable commitment scheme to construct the first non-

malleable (with respect to opening) statistically hiding com-

mitment scheme NM-SHCS from any extractable statistically

hiding commitment scheme in a fully black-box way. The

idea of the construction is that the message σ to be commit-

ted is first shared with a VSS computation and the views of

the players are committed through an extractable statistically

hiding commitment scheme. In the opening σ is simply

revealed and then the VSS reconstruction is performed and

the resulting views are committed through our concurrent

non-malleable commitment scheme. Then the cut and choose

technique certifies that σ was indeed the value shared in the

views committed in the commitment phase.
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