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Abstract—We consider the question of designing concur-
rently self-composable protocols in the plain model. We first
focus on the minimal setting where there is a party P1 which
might interact with several other parties in any unbounded
(polynomial) number of concurrent sessions. P1 holds a single
input x which it uses in all the concurrent sessions. An analogy
is a server interacting with various clients at the same time. In
this “single input” setting, we show that many (or even most)
functionalities can be securely realized in the plain model. More
precisely, we are able to realize all ideal functionalities except
ones which are a (weak form of) cryptographic pseudorandom
functions. We complement our positive result by showing an
impossibility result in this setting for a functionality which
evaluates a pseudorandom function.

Our security definition follows the standard ideal/real world
simulation paradigm (with no super polynomial simulation
etc). There is no apriori bound on the number of concurrent
executions.

We also show interesting extensions of our positive results to
the more general setting where the honest parties may choose
different inputs in different session (even adaptively), the roles
that the parties assume in the protocol may be interchangeable,
etc.

Prior to our work, the only positive results known in the
plain model in the fully concurrent setting were for zero-
knowledge.

I. INTRODUCTION

General positive results for secure computation were

obtained more than two decades ago [Yao86], [GMW87].

These results were for the setting where each protocol

execution is done in isolation. With the proliferation of the

network setting (and especially internet), an ambitious effort

to generalize these results was started. The study of con-

current zero-knowledge (ZK) was initiated by Dwork, Naor

and Sahai [DNS98] with a protocol soon proposed in the

plain model by Richardson and Kilian [RK99]. A sequence

of works studied the round complexity of concurrent ZK

[CKPR01], [KP01], [PRS02] (see also [Bar01]). In addition,

a protocol for the “interchangeable role” setting (where the

same party might play prover in one session and verifier

in another) was proposed by Barak, Prabhakaran and Sahai

[BPS06] (see also [LPTV10]).

However other than the above encouraging results for the

zero-knowledge functionality, there are no known positive

results in the setting where there could be any unbounded

polynomial number of concurrent sessions (referred to as the

fully concurrent setting). In fact, far reaching impossibility

results were shown in a series of works [CKL06], [Lin03b],

[Lin08], [BPS06]. These results refer to the “plain model”

where the participating parties are not required to trust any

external entity, they have no prior communication among

themselves, etc.

To circumvent these results and obtain protocols secure

in the setting of concurrent executions, one line of work

has studied various “setup assumptions” where, for example,

a trusted party publishes a uniformly chosen string or the

participating parties may exchange physical tamper proof

hardware tokens etc (see for example [CLOS02], [BCNP04],

[Kat]). Another interesting line of works has studied weaker

security definitions while still remaining in the plain model

[Pas03], [PS04], [BS05], [MPR06], [CLP10], [GGJS12],

[GM00].

In this paper, we focus on obtaining standard security

guarantees in the plain model. Relevant to our paper is the

line of works on obtaining concurrent self-composition in

the so called bounded concurrent setting [Lin03a], [PR03],

[Pas04]. In this setting, there is an apriori fixed bound on

the total number of concurrent sessions in the system (and

the protocol in turn might be dependent on this bound). This

state of affairs raises the following natural question: “Can
we obtain interesting positive results for functionalities other
than zero-knowledge in the fully concurrent setting?”

Our Results: We first discuss our results for what we

call the “single input setting” and then discuss a generaliza-

tion.

Concurrently Secure Computation with a
Single Input. We consider the setting where there

is a single party P1 which might interact with several

other parties in any unbounded (polynomial) number of

concurrent sessions. The party P1 holds a single input x
which it uses in all the concurrent sessions (if honest).

However if P1 is dishonest, there are no restrictions on

how it behaves (except that it has to be PPT). An example

is a server (e.g., holding a password file) interacting with

several clients concurrently (to authenticate them). We

refer to this as the “single input” setting (a more precise

definition is given in section II-B).

In this setting, we show that many (or even most) func-

tionalities can be securely realized in the plain model. More

precisely, we are able to realize all functionalities except

which are what we call a worst-case hard pseudoentropy

function (WC-PEF). Very roughly, a WC-PEF is capable of

generating an output with pseudoentropy much larger than
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allowed information theoretically on at least some inputs

(see section II-A for a more formal definition).1

We complement this positive result by showing an (uncon-

ditional) impossibility result in our setting for a functionality

which evaluates a pseudorandom function on a committed

key. In more detail, let COM be a non-interactive statisti-

cally binding commitment scheme and f be a (keyed) pseu-

dorandom function. Our functionality is parameterized by a

string σ. It takes as input k, r from P1 and x from P2. It first

checks if σ = COM(k, r), if not, it outputs ⊥ to P2. Else,

it outputs f(k, x) to P2. In fact, it suffices to use a notion

of worst case hard pseudorandom function (thus matching

our positive results more closely). The impossibility holds

both w.r.t. black-box as well as non-black-box simulation

and represents the first negative result for an arguably natural

functionality in the setting of fixed inputs. The only previous

negative result known [BPS06] was for a rather contrived

functionality (which allowed two modes; one for execution

of zero-knowledge and another for oblivious transfer).

To prove our main negative result, the key technical tool

is a new garbled circuit construction where the garbled

circuit is executed by the receiver by a single k-out-of-2k OT

(as opposed to k execution of 1-out-of-2 OT). We believe

our construction is of independent interest since, to our

knowledge, all previous constructions of protocols based

on garbled circuit involved parties executing k (1-out-of-2)

OTs. To be more precise, we actually provide a construction

of one time programs [GKR08] based on a single k-time-
memory hardware token (as opposed to requiring several

one-time-memory hardware tokens per program). Using a

single k-time-memory hardware token may be more compact

and efficient than using k separate one-time hardware tokens.

Generalization of our Positive Result. We

show that the positive results discussed above can be signif-

icantly generalized. Our construction only requires that the

ideal world satisfy what we call the key technical property.

The rough intuition behind the key technical property is

as follows. In the ideal world execution, we require the

existence of a predictor which, given information about

(adversary’s) input/output tuples for sufficiently many (ideal

world) sessions, starts to be able to “predict” the output of

the ideal functionality in some sessions with a noticeable

probability (the exact definition is slightly technical and is

discussed in Section II-C).2 The positive results for the sin-

gle input setting were then obtained by simply showing that

this ideal world condition is satisfied for all functionalities

1Jumping ahead, the reason why we refer to worst case hard primitives
(rather than average case) stems from the fact that the standard definition
of secure computation requires the ideal world simulator to work for every
honest party input (as opposed to just a random one).

2Note that being able to predict the output of a function is very different
from requiring that the function is learnable. A simple example is a point
function for which it is easy to predict the output on almost every input.
Also, note that the existence of such a predictor does not mean that the
output has to come from a polynomial-size domain; see section II-C.

except for those that behave as a WC-PEF.

However, the key technical property (KTP) is quite gen-

eral and is naturally satisfied in many other settings. We

consider the very general setting where the the honest parties

may have different (possibly adaptively chosen) inputs in

different sessions, there may be multiple parties in a pro-

tocol session with all of them getting different outputs, the

adversary may choose to corrupt parties with different roles

in different sessions (i.e., the interchangeable role setting

[Lin08]), etc. We prove that the ideal world would still

satisfy KTP as long the size of the total “state” of the honest

parties in the ideal world is bounded and the ideal world is

“hardness-free”. In more detail, first we require the existence

of an apriori bounded length string S which describes the

state of all the honest parties at the beginning of the

ideal world execution. This condition is naturally satisfied

when, e.g., the total number of honest parties (with each

party participating in any unbounded polynomial number of

sessions) is apriori bounded. Secondly, a hardness-free ideal

world requires that the code “consisting” of the ideal world

functionality and the (ideal world) honest parties does not

behave as a WC-PEF (see the full version [Goy11b] for

more formal details). Thus, this gives us a general positive
result for all bounded-size hardness-free ideal worlds. We

conjecture that, in fact, a more general and cleaner statement

is true (see the bounded pseudoentropy conjecture in the full

version).

Interpretations and Applications of Our Positive Re-
sults: A simple example of a setting where KTP is satisfied

is the well studied setting of concurrent self-composition in

the bounded concurrent setting [Lin03a], [PR03], [Pas04]. In

fact our techniques only make use of black-box simulation

while all previously reported protocols in the bounded

concurrent setting use non-black-box simulation techniques

introduced by [Bar01]. On the flip side we note that the

protocols in [PR03], [Pas04] are constant round while ours

might require a large polynomial number of rounds. An-

other well studied setting where KTP is satisfied is that of

concurrent zero-knowledge.

We believe the conceptual insight in this paper improves

our basic understanding of when concurrently secure com-

putation is possible. Our results not only subsume the known

positive results on fully concurrent zero-knowledge and

bounded concurrent secure computation, but rather present
a unified explanation of why it might be possible to obtain

such results. Prior to our work, the intuition behind why

these two tasks are possible might have looked very differ-

ent.

The above is, of course, in addition to our main con-

tribution which is obtaining a host of new positive results

in the fully concurrent setting. To start with, we remark

that our results imply the first construction of a concurrent

password based key exchange (PAKE) protocol in the plain

model with standard ideal/real world security guarantees.
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The only previous construction of (fully) concurrent PAKE

in the plain model was given recently by Goyal, Jain and

Ostrovsky [GJO10]. However the construction in [GJO10]

was according to the original definition of Goldreich and

Lindell [GL01] which is a weaker definition (in comparison

to the standard ideal/real world definition). Prior to the work

of [GJO10], obtaining a fully concurrently secure protocol

in the plain model according to any reasonable definition

was an open problem (despite a number of works studying

PAKE in the concurrent setting, c.f., [KOY01], [CHK+05],

[BCL+05], [GL03]). We note that the setting in ours as well

as in [GJO10] is that of a single fixed input.

We also get positive results for a number of other func-

tionalities studied previously. One example is that of private
database search where a party holds a database and another

party wants to search and get the matching entries without

revealing its search criteria (such as a keyword). Problems

such as private information retrieval [CGKS95], [KO97],

pattern matching [HL08b], oblivious document and database

search [HL08a], etc are special instances of the general

problem of private database search. Other examples of well

studied problems are secure set intersection [FNP04], private

matching [FNP04], securely computing the k-th ranked

element [AMP04], etc. For all of these functionalities, we

get concurrently secure protocols in the single input setting.

We refer the reader to section II-C for an understanding of

why these functionalities might satisfy the KTP.

In general, in the (large) body of published literature

studying specific functionalities of interest, we found that

almost all of them indeed have hardness-free ideal worlds

(i.e., in the ideal world, the trusted party is not required

to perform any cryptographic operations, etc). Some func-

tionalities are naturally seen as an interaction between a

client and a server where only the server accepts concurrent

sessions. For such functionalities, the single input setting is

already very realistic. For example, we get positive results

for concurrent private database search where there is a server

holding the database interacting with multiple clients each

of which is holding a search criteria (in particular, this

also implies a similar positive result for concurrent private

information retrieval, concurrent pattern matching, etc).

Some functionalities however are more symmetric (such

as secure set intersection). Hence, there is motivation to also

study the setting where there may be multiple honest parties

holding different inputs and accepting concurrent sessions.

Towards that end, we remark that a positive result may

be obtained even in this setting if the bounded-size ideal

world requirement is satisfied (it would be, e.g., if the total

number of honest parties and the size of their initial states

is bounded).

Overview of our Construction: A well established

approach to constructing secure computation protocols in

the standalone setting is to use the GMW compiler: take

a semi-honest secure computation protocol and “compile”

it with zero-knowledge arguments. The natural start point

of our construction is to follow the same principles in the

concurrent setting: somehow compile a semi-honest secure

computation protocol with a concurrent zero-knowledge

protocol (for security in more demanding settings, compila-

tion with concurrent non-malleable zero-knowledge [BPS06]

may be required). Does such an approach (or minor variants)

already give us protocols secure according to the standard

ideal/real world definition in the plain model?

The fundamental problem with this approach is the fol-

lowing. We note that the known concurrent zero-knowledge

simulators (in the fully concurrent setting) work by rewind-

ing the adversarial parties. In the concurrent setting, the ad-

versary is allowed to control the scheduling of the messages

of different sessions. Then the following scenario might

occur:

• Between two messages of a session s1, there might

exist another entire session s2
• When the simulator rewinds the session s1, it may

rewind past the beginning of session s2
• Hence throughout the simulation, the session s2 may

be executed multiple times from the beginning

• Every time the session s2 is executed, the adversary

may choose a different input (e.g., the adversary may

choose his input in session s2 based on the entire

transcript of interaction so far).

• In such a case, the simulator would have to query

the ideal functionality for session s2 more than once.

However note that for every session, simulator gets to

query the ideal functionality only once!

Indeed, some such problem is rather inherent as indicated

by various impossibility results [Lin08], [BPS06]. This is

where the fact that our ideal world satisfies the key technical

property comes in. Very roughly, KTP requires the existence

of a predictor which is successful in predicting the output of

the ideal functionality with a noticeable probability (under

certain conditions). The basic idea is as follows. The rewind-

ing strategy of the simulator would lead to a “main thread”

and several “look ahead threads” (following the terminology

of [PRS02]). Whenever the simulator needs to make a call

to the ideal functionality in a look-ahead thread, it uses the

predictor instead. This would help the simulator achieve

the goal of querying the ideal functionality only once per

session.3

Note that the output of the predictor is not guaranteed

to be correct in all cases. Furthermore, the adversary might

have complete auxiliary information about the input of the

honest parties (and hence may distinguish the incorrect

output from correct ones). In such a scenario, adversary

might change its behavior in the look-ahead thread (or might

3Such an approach of giving a “made-up possibly incorrect answer” in
look-ahead threads has also proven to be important in constructing non-
malleable commitments [Goy11a], [GLOV12].
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simply abort). Hence, several look-ahead threads might now

fail. In general, the property of indistinguishability between

the main thread and the look-ahead threads (which all pre-

vious rewinding strategies rely on) does not hold any more.

To solve this problem, we rely on and analyze a specific

rewinding strategy by Deng, Goyal and Sahai [DGS09]. We

choose the number of rewinding opportunities based on the

key parameters of the predictor (guaranteed by KTP).

Our initial protocol is based on compilation with con-

current zero-knowledge. However it only satisfies a weaker

notion of security which provides concurrent security for

first party while only guaranteeing security for the other

party in the standalone setting. Our final protocol is based on

compilation with concurrent non-malleable zero-knowledge

[BPS06]. There are several problems that arise with such a

compilation. First, the security of the BPS construction is

analyzed only for the setting where all the statements being

proven by honest parties are fixed in advance. Secondly, the

extractor of BPS-CNMZK is unsuitable for extracting inputs

of the adversary since it works after the entire execution is

complete on a session-by-session basis. Fortunately, these

challenges were tackled in a recent work on password based

key exchange by Goyal, Jain and Ostrovsky [GJO10]. Goyal

et. al. presented an approach which can be viewed as a

technique to correctly compile a semi-honest secure protocol

with BPS-CNMZK. In our final protocol, we borrow a

significant part of the construction presented in [GJO10].

Open Problem: The number of rounds in our protocol

depend on the parameters of the predictor associated with

the functionality and may be quite large (although still

polynomial). We leave it as an open problem to construct

more round efficient protocols. Known lower bounds on the

round complexity of protocols proven secure using black-

box simulation [Lin08] imply that to get round efficient

protocol (e.g., to get a protocol with round complexity

dependent only on the security parameter), advancements in

our understanding of non-black-box simulation techniques

[Bar01] will be required. In particular, it seems that we need

a construction for zero-knowledge with a non-rewinding

simulator in the fully concurrent setting. However obtaining
such a construction is currently an important open problem.

Organization of the Paper: What follows is a warmup

construction which is meant to highlight the new ideas

behind our positive result. This construction satisfies a

weaker notion of security where the first party is guaranteed

concurrent security (while interacting with multiple adver-

sarial parties) while the other one is guaranteed security

only in the standalone setting. This construction illustrates

the main ideas in our work and is kept at an informal

level. Our final construction is an extension of the warmup

construction using known techniques [GJO10], [BPS06]. A

complete description of the final construction along with a

full self-contained proof can be found in the full version of

this paper [Goy11b]. The details of our negative result can

also be found in the full version.

II. MODEL AND DEFINITIONS

A. Preliminaries

In this section, we first define a very minimal crypto-

graphic primitive called worst-case hard one-way functions

(WC-OWF). The existence of WC-OWF is implied by the

assumption NP � BPP.

Definition 1 (Worst-Case Hard One Way Functions):
A function f : {0, 1}n → {0, 1}∗ is a worst-case hard

one-way function if it is polynomial time computable

but for all uniform probabilistic polynomial time

algorithms A, there exists x ∈ {0, 1}n such that

Pr[f(A(f(x))) = f(x)] = negl(n).
We also define worst case hard pseudoentropy functions

(WC-PEF) which imply the existence of WC-OWF. Very

roughly, WC-PEF are functions which are capable of gen-

erating an output with “much higher pseudo-entropy” than

the size of the input.

Definition 2 (Worst-Case Hard Pseudoentropy Function):
A function g : {0, 1}n × {0, 1}∗ → {0, 1}∗ is a worst-case

hard pseudoentropy function if for all uniform probabilistic

polynomial time algorithms A, there exists x, t and at least

100nt inputs r1, . . . , r100nt such that for all i ∈ [100nt],
Pr

[
A(r1, . . . , ri, g(x, r1), . . . , g(x, ri−1)) �= g(x, ri)

] ≥ 1
t

That is, there exists at least 100nt input strings for which

the probability of failing to predict the correct output is at

least 1
t given all previous outputs in the input set (at least for

one secret key x). Thus, observe that the expected number of

incorrectly predicted output bits is at least 100n, while, the

entropy of the input is at most n. Then, it can be shown using

standard techniques that WC-PEGs imply the existence of

WC-OWFs. The basic idea would be to use the output strings

seen so far to “sample” the secret key x and use that to

predict the next output [IR89], [BGP00]. Similarly, one can

also define a worst-case hard pseudorandom function (WC-

PRF) where we require the output to be indistinguishable

from random as opposed to just “slightly unpredictable”.

Please see the full version for details.

B. Concurrently Secure Computation with a Single Input

We now discuss the model for concurrently secure com-

putation a single input. For simplicity, we keep the model

to be a minimal (yet natural and fundamental) model of

concurrently secure computation and discuss generalizations

later on. For lack of space, what follows is a sketch and the

details are given in the full version (building upon the model

in [Lin08]). In the ideal world, there are two parties P1 and

P2. In addition, we have a deterministic and non-reactive

trusted functionality F : {0, 1}r × {0, 1}s → ⊥ × {0, 1}∗
(i.e., only the second party gets an output). There could be

any unbounded (polynomial) number sessions between P1

and P2. The party P1 holds a fixed input x1 ∈ {0, 1}r and

(if honest) sends it to F in every session. Party P2 may
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choose an input x2 adaptively depending upon its view in

the ideal world so far. The adversary may (statically) corrupt

either P1 or P2. If a party is corrupted, it is free to behave

in any way it wants (in particular, by starting any number of

sessions and adaptively choosing an input in each session

depending upon the entire view of the adversary so far).

Each session in the ideal world is assigned a session index

in the order of execution (i.e., session � is completed before

session �+ 1 completes).

We note that our model and results can be significantly

generalized to consider different (adaptively chosen) in-

puts in different sessions, interchangeable roles, multi-party

protocols with multiple parties getting output etc. These

generalizations are considered in the full version.

Relaxed Security Notion: Our warm up construction

(based on compilation with concurrent zero-knowledge) only

satisfies a weaker security notion where P1 is guaranteed

concurrent security while security for the party P2 is guar-

anteed only in the standalone setting. We very informally

outline the security notion in the following. The ideal and

the real world remain as discussed above. However we place

conditions on when we require the existence of an ideal

world simulator. We wish to provide concurrent security for

the party P1. In particular, consider the case when P1 is

honest and the party P2 is corrupt (and interacts with P1

in several concurrent session). We require the existence of

a simulator in the ideal world such that the ideal and the

real world distribution are indistinguishable. Furthermore,

consider the case where there is only a single session be-

tween P1 and P2 such that P2 is honest but P1 is corrupted.

We again require the existence of a simulator in the ideal

world such that the ideal and the real world distribution

are indistinguishable. In all other cases (in particular when

P1 is corrupt and interacts with P2 concurrently in several

sessions), we do not require any guarantees.

C. Key Technical Property

In this section, we will define a property of the ideal

world experiment (as defined in section II-B) called the key

technical property (KTP). We first introduce some notation.

Recall that the adversary may corrupt any subset of parties

(or any one party in the two-party setting). Let M denote

the subset of corrupted parties. Let there be k sessions. The

input of the adversarial party in session � is denoted by I[�]
while the corresponding output is denoted by O[�]. We first

describe a warmup version of the key technical property

(which is easier to understand) and then generalize it later.

Definition 3 (Warmup Key Technical Property): The

warmup key technical property of an ideal world experiment

requires the existence of a PPT predictor P satisfying the

following conditions. For all sufficiently large n, there

exists a bound D such that for all adversaries and honest

party inputs,

∣∣∣
{
j : P({I[�]}�≤j , {O[�]}�<j

) �= O[j]
}∣∣∣ < D

In other words, the number of adversary inputs for which

the predictor fails to predict the correct output (given all

previous inputs/outputs) is at most D− 1. And hence given

D adversary inputs, the predictor is guaranteed to succeed

for at least one.

We now give some examples to illustrate this property.

These examples provide important intuition about why the

key technical property is so general.

Password based key exchange: Consider the following

password checking functionality. Say there is a single honest

party which might interact with several adversarial parties in

an unbounded (polynomial) number of concurrent sessions.

The honest party holds a password p and the ideal function-

ality is such that if both parties input the same password,

it outputs 1 to the adversarial party (and ⊥ otherwise). We

note that in this case, the ideal world satisfies the KTP in

fact for even D = 2. The predictor works as follows. It

needs to guess the output in a session given the (actual)

inputs/outputs in all previous sessions.

• If the output in a previous session is 1, then by

looking at the input of the adversary in that session,

the predictor can find out the actual password p. This is

because the input of the adversary in that session must

be p itself. Hence it uses that to correctly compute the

output in the next session.

• However, if the output in all previous sessions is ⊥, the

predictor sets the output in the next session to be ⊥ as

well. It is easy to see that the predictor makes an error

in at most a single session. (This is because as soon as

it makes an error in a session, it can learns the correct

password by looking at the input of the adversary in

that session as explained in the previous bullet point).

A variant of this functionality is the password based

key exchange functionality where, if the passwords match,

the ideal functionality outputs a secret key to both parties

(and ⊥ otherwise). This functionality similarly satisfies the

generalized KTP (see full version) for D = 2. Similar

argument can be shown to hold for more general access

control functionalities. For example, say that the first party

has a list of k valid passwords (or say a list of k valid

user-ID and password tuples). If the password supplied by

the second party is in the list, both the parties get a shared

secret key and ⊥ otherwise. In this case, setting D = k+1
would allow the construction of a predictor using similar

ideas.

Private database search: In this scenario, the first

(honest) party holds a database consisting of k entries. The

second (adversarial) party has a predicate g(·) as input and

gets as output all database entries on which this predicate

evaluates to 1. In this case, the ideal world satisfies the KTP
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for D = k+ 1. The predicator is supplied with all previous

inputs and outputs and has to produce an answer for a new

input g. The predictor looks at the previous outputs (each

of which would consist of some entries of the database). It

now constructs a partial database consisting of these entries

and then answers g according to this database. Indeed, the

output of the predictor maybe incorrect since it might be

missing an entry which is in the real database but not in

the partial one. However every time the predictor makes a

mistake, it learns a new database entry (to be added to the

partial database) by looking at the correct output having that

missing entry. Hence, the predictor can produce an incorrect

output at most k times.

Several problems of interest (such as private information

retrieval, pattern matching, etc) are instances of the general

problem of private database search discussed above. Argu-

ments similar to those used for private database search can

be used to construct predictors for other problems such as

secure set intersection, computing k-th ranked element, etc

(see the introduction for more details).

Bounded concurrent multi-party computation: We now

consider the setting where there is an apriori fixed bound k
on the total number of concurrent sessions in the ideal world

(see, e.g., [Lin03b], [PR03], [Pas04]). If we set D > k, then

there is at least one set Si which will not have any sessions

(by the pigeonhole principle). Hence, the predictor trivially

succeeds for this set with probability 1.

The final version of our key technical property is weaker

(and thus more general) than the warmup version. Details

regarding that can be found in the full version.

III. A WARMUP CONSTRUCTION

A. KTP and Concurrently Secure Computation with a Single
Input

Consider an ideal world in the model of concurrently

secure computation with a single input (defined in Section

II-B). We now show that the ideal world for all “non-

cryptographic” functionalities F satisfies the key technical

property. To be more precise, we claim the following (see

the full version for the proof).

Lemma 1: Consider an ideal world for a functionality F
in the single input setting (section II-B). If the ideal world

does not satisfy the key technical property (definition 3),

then the functionality F must be a WC-PEF (definition 2).

B. Overview of Our Construction and Simulator

In this section, we describe our protocol Σ for a given

two-party functionality F (extension to the case of multi-

party is discussed later). Let P1 and P2 be two parties with

private inputs x1 and x2 respectively. Let COM denote a

non-interactive statistically binding commitment scheme. By

WIAOK, we will refer to a witness indistinguishable argu-

ment of knowledge. Let ΠSH be any semi-honest secure two

party computation protocol that emulates the functionality

F in question in the stand-alone setting (as per the standard

Ideal/Real world definition of secure computation). Let Uη

denote the uniform distribution over {0, 1}η , where η is a

function of the security parameter.

We shall make use of the DGS preamble [DGS09]. The

DGS preamble allows a party to commit to the desired value

in a way the simulator can extract that value by rewinding

in the concurrent setting (similar PRS [PRS02] and RK

[RK99] preambles). The total number of “slots” in the DGS

preamble will be m = 2n3D2

p (where D and p come from

definition 3). We now describe our protocol Σ.

I. Input Commitment Phase:

1) P2 ↔ P1 : Party P2 does the following. Generate a

string r2
$← Uη and let X2 = {x2, r2}. Here r2 is

the randomness to be used (after coin-flipping with

P1) by P2 in the execution of the protocol ΠSH. Using

the commitment scheme COM, P2 commits to the

string X2. Denote the commitment by B2 and the

decommitment information by β2 (β2 consists of the

string X2 and the randomness used to create B2). Now

P2 additionally prepares mn pairs of secret shares

{α0
i,j , α

1
i,j}i∈[n],j∈[m] such that α0

i,j ⊕ α1
i,j = β2 for

all i, j. Using the commitment scheme COM, P2

also commits to all its secret shares. Denote these

commitments by {A0
i,j , A

1
i,j}i∈[n],j∈[m]. Note that the

string β2 will also be called the “preamble secret”.

The party P2 now engages in the execution of a

(standalone) computational zero-knowledge argument

with P1 in order to prove that the above commit phase

is “consistent” (i.e., all pairs of the secret shares sum

up to the same value which is the preamble secret).

P2 and P1 now execute a challenge-response phase.

For j ∈ [m]:

a) P1 → P2 : Send challenge bits z1,j , . . . , zn,j
$←

{0, 1}n.

b) P2 → P1 : Send α
z1,j
1,j , . . . , α

zn,j

n,j along with the

relevant decommitment information.

At the end of this step, party P2 is committed to

its input and randomness. Informally speaking, the

purpose of this phase is aid the simulator in extracting

the adversary’s input and randomness in the concurrent

setting by rewinding the DGS preamble.

2) P1 ↔ P2 : Party P1 does the following. Generate a

string r1
$← Uη and let X1 = {x1, r1}. Here r1 is

the randomness to be used (after coin-flipping with

P2) by P1 in the execution of the protocol ΠSH. Using

the commitment scheme COM, P1 commits to X1;

denote this commitments by B1.

In addition, P1 now engages in the execution of a

WIAOK with P2 in order to prove that it knows either:

(a) a decommitment to the commitment B1, or, (b) a

decommitment to the commitment B2.
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II. Secure Computation Phase: In this phase, the parties

run an execution of the semi-honest two party protocol ΠSH.

Since ΠSH is secure only against semi-honest adversaries,

parties first run a coin-flipping protocol to force the coins

of each party to be unbiased and then “compile” ΠSH to

enforce honest behavior. More details follow.

Coin Flipping. P1 and P2 first engage in a coin-flipping

protocol. More specifically,

1) P1 → P2 : P1 generates r′2
$← Uη and sends it to P2.

Define r′′2 = r2 ⊕ r′2.

2) P2 → P1 : Similarly, P2 generates r′1
$← Uη and sends

it to P1. Define r′′1 = r1 ⊕ r′1.

Now r′′1 and r′′2 are the random coins that P1 and P2 will

use in the execution of protocol ΠSH.

Protocol ΠSH. The parties P1 and P2 now execute the

protocol ΠSH. Along with each outgoing message of ΠSH,

(a) The party P1 proves using WIAOK that either it

has behaved honestly in ΠSH so far (based on the input

x1 and randomness r′′1 as defined earlier) or it knows a

decommitment to the commitment B2.

(b) The party P2 proves using a (standalone) computa-

tional zero-knowledge argument that it behaved honestly

(based on the input x2 and randomness r′′2 as defined earlier).

: The above protocol satisfies the relaxed security

notion for the single input setting as outlined in section

II-B. To prove security, we need to consider the following

two arguments. In the standalone setting, we need to exhibit

security against a corrupt P1. Secondly, we need to exhibit

concurrent security for an honest P1 (who may interact with

various parties P2’s all of whom may be corrupted). This is

the more interesting case and we first give a proof of security

for this case.

The Simulator: First we provide only a high level

overview of the simulator S. The first task of S is to

rewind the DGS preambles (in all concurrent sessions) and

extract the preamble secret for each from the adversary. Such

rewinding gives rise to a “main thread” and as well as several

“look-ahead” threads of execution.

• In the input commitment phase, S can extract

the decommitment of B2 which includes the in-

put/randomness of the adversary (to be used in the

protocol ΠSH) from the DGS preamble.

• Using this decommitment information, S can cheat

throughout by using it to complete all the WIAOK ex-

ecutions.

• In the secure computation phase, S , by invoking the

simulator of the protocol ΠSH, can complete the secure

computation phase given the output from the trusted
functionality.

• Note that for any given session, the input of the

adversary may be different in different threads (since

it might choose its input based on the transcript of the

interaction so far). Now to complete the secure com-

putation phase, S would need to get the corresponding

output. To complete the secure computation phases in
the main thread, S gets the output simply by querying

the trusted party. For all the look-ahead threads, S gets

the output by running the predictor guaranteed by the

KTP in the ideal world.

We now give more details of our simulator S.

Rewinding strategy of the simulator: We assume there

are a total of k sessions with each session having one

DGS preamble. Each of these preambles has m = 2n3D2

p
“slots” with a slot representing a rewinding opportunity. The

beginning of a slot is when the simulator gives the challenge,

the end of the slot being when it receives the response. In

between these two messages, there might be messages of

other sessions.

As with the strategy in [RK99] (and [PV08]), the DGS

rewinding schedule is “adaptive”. At a very high level,

whenever a slot s completes, the simulator may rewind s by

calling itself recursively on s. That is, the simulator chooses

another challenge for s and recursively executes until either

it receives the response (and hence “solves” the preamble) or

it observes that the adversary has executed “too many” new

slots in between or has aborted. By the time the simulator

completes the preamble in any thread, our choice of the

number of slots guarantees that there would exist at least

one recursive level which will have at least 2n2D2

p slots of

that preamble. Whenever the simulator observes 2n2D2

p slots

in one level, it would rewind each of those slots exactly once

and will try to solve that preamble. The formal description of

our simulator rewinding strategy CEC-Sim is given below.

Some of the text is borrowed from [DGS09].

• dmax = 
logn(2k ·m)� will denote the maximum

depth of recursion. Note that dmax is a constant since

the number of preambles 2k and number of slots per

preamble m is polynomial in the security parameter n.

It would be helpful to keep in mind that 2k ·m is the

total number of slots at depth 0 (i.e., the main thread).

• slot(i, j) will denote slot j of preamble i. d denotes the

current depth of the recursion.

SOLVE(x, d, hinitial, s):
Let h ← hinitial. Repeat forever and update h after each

step:

1) If the adversary aborts or the number of slots in h
started after hinitial (which we will call new slots)

exceed 2k·m
nd , return h;

2) If the next message is a simulator challenge for the

beginning of a slot s′, choose the challenge randomly

and send it to the adversary.

3) If the next message is the end message (adversary’s

reply) of a slot s′ = slot(i′, j′), proceed as follows:

a) If s = s′, we have succeeded in solving the target

slot and hence the preamble. Return h;
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b) Otherwise if the preamble i′ has already been

solved or the number of new slots (including s′)
of preamble i′ in h started after hinitial is less

than 2n2D2

p , the simulator need not rewind this

slot. Go to the condition in Step 5;

c) Otherwise, we have an unsolved preamble i′

such that 2n2D2

p of its slots (from slot(i′, j′ +
1 − 2n2D2

p ) to slot(i′, j′)) have appeared at the

current level. The S will rewind each of these

slots once and will try to solve preamble i′.
Observe that the depth dmax of the recursion

is a constant and the total number of slots in

a preamble is 2n3D2

p . This means just by the

pigeonhole principle, for every preamble i′, we

would have this case at some level before the

preamble is concluded. For each slot s” in this

list of 2n2D2

p slots:

i) Let h” be the prefix of h which contains all

messages up to but excluding the simulator

challenge for s”. Set h∗ ← SOLVE(x, d +
1, h”, s”).

ii) If h∗ contains an accepting execution for slot

s”, the simulator has succeeded in solving s”
and hence preamble i′.

4) If the next message is the last message of a preamble

and the preamble has not been solved yet, the current

set of look-ahead threads have failed. Abort and output

Ext Fail if we are in the main thread. If we are in a

look-ahead thread, return.

5) If the next message is a message which belongs to

the secure computation phase, the simulator strategy is

given next (for main as well as look ahead threads). If

the next message belongs to neither the DGS preamble

nor the secure computation phase, the simulator exe-

cutes in a straightline manner as described above (i.e.,

using the decommitment to B2 to complete WIAOK,

playing honestly during coin flipping and while acting

as the zero-knowledge verifier).

CEC − Sim(x, z):
Run SOLVE(x, 0,⊥,⊥) and output the view returned by

SOLVE, with the following exception. When the simulator

generates random challenge for a slot and it becomes equal

to the another challenge generated previously in a different

thread for the same slot, the simulator aborts and outputs ⊥.

Simulator strategy in the secure computation phase: By

the time S begins the secure computation phase in any ses-

sion, it would have already extracted the input/randomness

X2 to be used by the adversary in the semi-honest two-party

protocol. It invokes the simulator of the protocol ΠSH who

makes a call to the trusted functionality. Now we have two

possible cases:

1: S is currently executing the main thread. In this

case, S goes ahead and queries the ideal functionality.

It uses the received output to complete the secure

computation phase.

2: S is currently executing some look ahead thread. This

is the more interesting case since S cannot simply

query the ideal functionality. S would now use the

predictor P guaranteed by the KTP of the ideal world.

More precisely, S simply invokes P on x2 and all pre-

viously seen inputs/outputs in the current thread. Note

that these previous outputs might have been answered

by S either by making a call to the ideal functionality

or using the predictor itself (in which case, correctness

of the output is not guaranteed). Indeed assuming

the adversary has full auxiliary information about the

inputs of the honest parties, it can distinguish a correct

output from an incorrect one (generated using the

predictor). The core of the analysis of this prediction

strategy (along with how it fits with our rewinding

strategy) can be found in lemma 2.

C. Indistinguishability of the Outputs

We now consider a series of hybrid experiments and show

that the views of A in successive hybrids are indistinguish-

able from each other.

Experiment H0: The simulator S is given all the inputs

of the honest parties. By running honest programs for the

honest parties, it generates their outputs along with A’s view.

This is the execution in the real world in protocol Σ.

Experiment H1: This experiment is exactly the same as

the final simulated experiment except for the following. S
still has all the honest party inputs and uses that to compute

the outputs in the look ahead threads (instead of using the

predictor).

The indistinguishability of the output distributions in H0

and H1 follows from standard techniques. By the property

of the DGS preamble [DGS09] (also see the full version),

the simulator is successful in extracting the preamble secret

β2 (which is a decommitment to B2). In H1, the simulator

switches to using the witness β2 to complete all WIAOK ex-

ecutions. Here, the indistinguishability argument relies on

the witness indistinguishability of the WIAOK system.

Furthermore, the secure computation phase is completed

by using the simulator of the ΠSH protocol. Here, the

indistinguishability argument relies on the security of the

ΠSH protocol. The formal proof is given in the full version

for our final construction.

Experiment H2: This experiment is exactly the same as

the previous one except for the following. S starts using the

predictor in the look ahead threads. However it still has all

the honest party inputs. S aborts the execution of a thread
as soon as the predictor returns an incorrect output value

in the execution of that threads. That is, S returns the view

so far in the current recursive call without continuing it any

further thus returning the execution to the thread one level

below.
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We now prove the indistinguishability of the output dis-

tributions in H1 and H2. This is the core of our rewinding

analysis. First observe that actually the main threads in

H1 and H2 are identical conditioned on the event that the

simulator does not fail to solve a preamble (and output

Ext Fail). We shall now prove that the probability of S
outputting Ext Fail in this experiment is negligible. This

is also where we use the special properties of the DGS

rewinding strategy and our key technical property.

Lemma 2: The probability of the simulator outputting

Ext Fail in experiment H2 is negligible.

The proof of the above lemma constitutes the core of

our analysis of the rewinding strategy. For lack of space,

the details of the proof can be found in the full version

[Goy11b].

Experiment H3: This experiment corresponds to the

final simulated experiment. That is, S no longer has the

honest party inputs and hence does not abort the look ahead

threads where the predictor makes an error. Observe that in

this hybrid, the probability of S outputting Ext Fail can only

go down compared to that in H2. Hence, indistinguishability

of the output distributions in H2 and H3 immediately follows

thus completing the proof.

Running Time of S: To bound the number of queries

S makes to A, we consider the recursive execution tree (of

constant depth) resulting out of S rewinding A. Each call to

the function SOLVE(·, ·, ·, ·) will represent one node in the

execution tree. The nodes resulting from all further recursive

calls to SOLVE will be treated as children of this node. Thus,

the root node (at depth 0) is the call SOLVE(x, 0, ·, ·) made

by CEC − Sim(x, z). This call results in the main thread

while recursive calls give rise to the look ahead threads.

Now consider the transcript generated by a function call

representing a node at depth d (excluding the transcripts

generated by any further recursive calls). The number of

new slots in this transcript is bounded by 2k · 2n3D2

p (in

fact 2k·2n3D2

pnd ). Now, each of these slots may have up to

one look ahead thread resulting in a total of up to 4k 2n3D2

p
children for this node. Hence, the execution tree is a tree

of depth up to dmax and degree up to 4k 2n3D2

p . Hence,

the total number of nodes is bounded by (4k 2n3D2

p )dmax+1.

The transcript of each node contains up to O(4k 2n3D2

p )
queries. Hence, the total number of queries S makes to A is

O((4k 2n3D2

p )dmax+2) which is a polynomial (since dmax is

a constant). Also, its easy to see that each query to A takes

only PPT assuming A is a PPT machine. This concludes our

analysis.

Final Construction: The above construction only pro-

vides concurrent security for one party. This is because

in case P1 is corrupted and interacts with multiple honest

parties, its input in one session may somehow be dependent

upon the input of an honest parties in another session. To

overcome this problem, we use techniques from concurrent

non-malleable zero-knowledge protocols [BPS06]. Our final

construction (relying on BPS concurrent non-malleable ZK)

can be found in the full version.
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