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Abstract—We address the following problem: how to execute
any algorithm P , for an unbounded number of executions, in
the presence of an adversary who observes partial information
on the internal state of the computation during executions. The
security guarantee is that the adversary learns nothing, beyond
P ’s input/output behavior.

This general problem is important for running crypto-
graphic algorithms in the presence of side-channel attacks, as
well as for running non-cryptographic algorithms, such as a
proprietary search algorithm or a game, on a cloud server
where parts of the execution’s internals might be observed.

Our main result is a compiler, which takes as input an
algorithm P and a security parameter κ, and produces a
functionally equivalent algorithm P ′. The running time of P ′

is a factor of poly(κ) slower than P . P ′ will be composed of
a series of calls to poly(κ)-time computable sub-algorithms.
During the executions of P ′, an adversary algorithm A, which
can choose the inputs of P ′, can learn the results of adaptively
chosen leakage functions - each of bounded output size Ω̃(κ)
– on the sub-algorithms of P ′ and the randomness they use.

We prove that any computationally unbounded A observing
the results of computationally unbounded leakage functions, will
learn no more from its observations than it could given black-
box access only to the input-output behavior of P . This result
is unconditional and does not rely on any secure hardware
components.

I. INTRODUCTION

This work addresses the question of how to compute

any program P , for an unbounded number of executions,

so that an adversary who can obtain partial information

on the internal states of executions of P on inputs of its

choice, learns nothing about P beyond its I/O behavior.

Throughout the introduction, we will call such executions

leakage resilient.
This question is of importance for non-cryptographic as

well as cryptographic algorithms. In the setting of crypto-

graphic algorithms, the program P is usually viewed as a

combination of a public algorithm with a secret key, and the

secret key should be protected from side channel attacks.

Stepping out of the cryptographic context, P may be a
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proprietary search algorithm or a novel numeric computation

procedure which we want to protect, say while running on an

insecure environment, say a cloud server, where its internals

can be partially observed. Looking ahead, our results will

not rely on computational assumptions and thus will be

applicable to non-cryptographic settings without adding any

new conditions. They will hold even if P = NP (and

cryptography as we know it does not exist).

A crucial aspect of this question is how to model the

partial information or leakage attack that an adversary can

launch during executions. Proper modeling should simulta-

neously capture real world attacks and achieve the right level

of theoretical abstraction. Furthermore, impossibility results

on obfuscation [1] imply inherent limitations on the leakage

attacks which can be tolerated by general programs: [2]

observes that if the leakage attack model allows even a single

bit of leakage to be computed by an adversarially chosen

polynomial-time function applied to the entire internal state

of the execution, then there exist programs P which cannot

be executed in a leakage resilient manner. Thus, to enable

any algorithm to run securely in the presence of continual

leakage, we must put restrictions on the leakage attack model

to rule out this impossibility result.

Several different leakage attack models have been consid-

ered (and meaningful results obtained) in the literature. We

briefly survey these models here (and later compare known

results in these models to our results).

Wire Probe (ISW-L) The pioneering work of Ishai, Sahai,

and Wagner [3] first considered the question of converting

general algorithms to equivalent leakage resistant algo-

rithms. Their work views algorithms as stateful circuits (e.g.

a cryptographic algorithm, whose state is the secret-key of

an algorithm), and considers adversaries which can learn the

value of a bounded number of wires in each execution of the

circuit, whereas the values of all other wires in this execution

are perfectly hidden and that all internal wire values are

erased between executions.

AC0 Bounded Leakage(CB-L). Faust, Rabin, Reyzin,

Tromer and Vaikuntanathan [4] modify the leakage model

and result of [3]. They still model an algorithm as a stateful

circuit, but in every execution, they let the adversary learn

the result of any AC0 computable function f computed on

the values of all the wires. Similarly to the [3] model they
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also place a total bound on the output length of this AC0
function f . To obtain results in this model, [4] also augment

the model to assume the existence of leak free hardware

components that produce samples from a polynomial time

sampleable distribution. It is assumed that there is no data

leakage from the randomness generated and the computation

performed inside of the device.

Only-Computation Leaks (OC-L). The Micali-Reyzin [5]

only-computation axiom assumes that there is no leakage in

the absence of computation, but computation always does

leak. This axiom was used in the works of Goldwasser

and Rothblum [6] and by Juma and Vhalis [7], who both

transform an input algorithm P (expressed as a Turing

Machine or a boolean circuit) into an algorithm P ′, which

is divided into subcomputations. An adversary can learn the

the value of any (adaptively chosen) polynomial time com-

putable length bounded function called a leakage function,1

computed on each sub-computation’s input and randomness.

To obtain results in this model, both [6] and [7] augment

the model to assume the existence of leak free hardware

components that produce samples from a polynomial time

sampleable distribution. It is assumed that there is no data

leakage from the randomness generated and the computation

performed inside of the device. Similarly, in independent

work, Dziembowski and Faust [8] also assume leak-free

components. Unlike [6], [7], they do not bound the com-

putational power of the adversary.

RAM Cell Probe (RAM-L). The RAM model of Goldreich

and Ostrovsky [9] considers an architecture that loads data

from fully protected memory, and runs computations in a

secure CPU. [9] allowed an adversary to view the access

pattern to memory (and showed how to make this access

pattern oblivious), but assumed that the CPU’s internals and

the contents of the memory are perfectly hidden.2 This was

recently extended by Ajtai [10]. He divides the execution

into sub-computations. Within each sub-computation, the

adversary is allowed to observe the contents of a constant

fraction of the addresses read from memory (This is similar

to the ISW-L model, in that a portion of memory-addresses

used in a computation are either fully exposed or fully

hidden, except that [10] works in the RAM model and

divides the executions into sub-computations whereas [3]

work in the stateful circuit model). These are called the

compromised memory accesses (or times). The contents

of the un-compromised addresses, and the contents of the

main memory not loaded into the CPU, are assumed to be

perfectly hidden.

1In contrast to the AC0 restriction on f in [4]
2alternatively, they assume that the memory contents are encrypted, and

their decryption in the CPU is perfectly hidden.

A. The New Work

In this work, show how to transform any algorithm P
into a functionally equivalent and leakage resilient algorithm

Eval, which can be run for an unbounded number of execu-

tions, without using any secure hardware or any intractability

assumptions. We work within the OC-L leakage model,

but we further allow the adversary to be computationally

unbounded and the leakage on sub-computations to be

the result of evaluating computationally unbounded leakage

functions. We proceed to precisely describe the power of our

adversary, and the security guarantee to be provided:

Computationally Unbounded OC-L Leakage Adversary.
The leakage attacks we address are in the “only computation

leaks information” model of [5]. The algorithm Eval will

be composed of a sequence of calls to sub-computations.

The leakage adversary Aλ, on input a security parameter

1κ, can (1) specify a polynomial number of inputs to P
and (2) per execution of Eval on input x, request for every

sub-computation of Eval, any λ bits of information of its

choice, computed on the entire internal state of the sub-

computation, including any randomness the sub-computation

may generate. We stress that we did not put any restrictions

on the complexity of the leakage Adversary Aλ, and that the

requested λ bits of leakage may be the result of computing

a computationally unbounded function of the internal state

of the sub-computation.

Security Guarantee. Informally, the security guarantee that

we provide will be that for any leakage adversary Aλ,

whatever Aλ can compute during the execution of Eval,
it can compute with black-box access to the algorithm P .

Formally, this is proved by exhibiting a simulator which,

for every leakage-adversary Aλ, given black box access to

the functionality P , simulates a view which is statistically
indistinguishable from the real view of Aλ during executions

of Eval . The simulated view will contains the results of I/O

calls to P , as well as results of applying leakage functions on

the sub-computations as would be seen by Aλ. The running

time of the simulator is polynomial in the running time of Aλ

and the running time of the leakage functions Aλ chooses.

Main Theorem (Informal). We show a compiler that takes

as input a program, in the form of a circuit family {Cn},
a secret state y ∈ {0, 1}n, and a security parameter κ,

and produces as output a description of an uniform stateful

algorithm Eval such that:

1) Eval(x) = C(y, x) for all inputs x.

2) The execution of Eval(x) for |x| = n, will consist of

O(|Cn|) sub-computations, each of complexity (time

and space) Õ(κω), (where ω is the exponent in the

best algorithm known for matrix multiplication).

3) There exists a simulator Sim , a leakage bound λ(κ) =
Ω̃(κ), and a negligible distance bound δ(κ), such that

for every leakage-adversary Aλ(κ) and κ ∈ N:
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SimC(1κ,A) is δ(κ)-statistically close to view(Aλ),
where SimC(1κ,A) denotes the output distribution of

Sim , on input the description of A, and with black-

box access to C. view(Aλ) is the view of the leakage

adversary during a polynomial number of executions

of Eval on inputs of its choice. The running time of

Sim is polynomial in that of A and that of the leakage

functions chosen by A. The number of oracle calls

made is always poly(κ).

We emphasize that our result holds unconditionally, with-
out any leak-free hardware or any computational assump-

tions. We stress that this is in contrast to all known works

[4], [6], [7], [8], [11] on resilience of general programs

against continual leakage that consider non-trivial3 leakage

functions. See Section III for a fuller comparison with

prior work on leakage resilience for general programs. See

Section I-B for a description of the “leaky CPU” model, an

alternative to the OC leakage model.

Doing Away with Secure Hardware. The idea behind

doing away with the need for secure hardware, is to first note

that in previous works the use of hardware was to sample

randomly from polynomial time computable distribution Db

where Db corresponded to encryptions (or encodings) of bit

b (where b ∈ {0, 1, r} for r randomly chosen in {0, 1})
without leaking the coins used to compute the encryptions.

The new idea will be for the compiler at the time of com-

piling C to prepare what we will call “ciphertexts banks”,

which will be a collection of samples from the relevant

distributions Db, and show we can continually “regenerate”

new samples from older ones in a leakage-resilient manner

by taking appropriate linear combinations of collections of

ciphertexts.

Doing Away with Computational Assumptions. Previous

works relied on the existence of homomorphic properties

of an underlying public-key encryption scheme with good

leakage resilience properties and good key-refreshing pos-

sibilities, which helped carry out the computation in a

“leakage resilient” manner. We observe however that there

is no need to use a public-key encryption scheme in the

context of secure execution, as the scheme is not used for

communication but rather as a way to carry out computation

in a “secrecy-preserving” fashion. Once we make the shift

to a private-key encryption scheme which offers sufficient

homomorphism for our usage, we are able to inject new

entropy into the key “on the fly”, as the computation pro-

gresses, and to achieve unconditional security. It is crucial

to use the fact that the user executing the compiled circuit in

this setting is trusted rather than adversarial, and thus will

choose independent randomness for this entropy boosting

operation.

3By non-trivial, we mean that the leakage function performs some a non-
trivial computation on wires or memory accesses in the execution, rather
than simply releasing their values as in [3], [10].

The new private-key encryption method is simple, and

uses the inner product function. The key is a string key ∈
{0, 1}κ, and the encryption of a bit b ∈ {0, 1} is a ciphertext

�c ∈ {0, 1}κ s.t. b is the inner product of key and �c. This

simple scheme is resilient to separate leakage on the key and

the ciphertext, is homomorphic under addition, and is refre-

shable. The technical challenge will be to show why these

properties (and in particular this level of homomorphism)

suffice.

We also mention that, whereas our focus is on enabling

any algorithm to run securely in the presence of continual

leakage, continual leakage on restricted computations (e.g.

[12], [13], [14], [15], [16], [17], [18]), and on storage ([19]),

has been considered under various additional leakage models

in a rich body of recent works. See Section III for further

discussions of related work.

B. Leaky CPU: An Alternative to OC-Leakage

A question that is often raised regarding the OC-L model

is what constitutes a reasonable division of computation to

basic sub-computations (on which leakage is computed). We

suggest that to best address this question, one should think of

the OC-L model in terms of an alternative model which we

call a leaky CPU. A leaky CPU will consist of an instruction

set of constant size, where instructions correspond to basic

sub-computations in the OC-L model , and the instruction set

is universal in the sense that every program can be written

as in terms of a sequence of calls to instructions from this

set. The operands to an instruction can be leaked on when

the instruction is executed.

We proceed with an slightly more formal description of

this model. Computations are run on a RAM with two

components:

1) A CPU which executes instructions from a fixed set

of special universal instructions, each of size poly(κ)
for a security parameter κ.

2) A memory that stores the program, input, output,

and intermediate results of the computation. The CPU

fetches instructions and data and stores outputs in this

memory.

The adversary model is as follows:

1) For each program instruction loaded and executed in

the CPU, the adversary can learn the value of an

arbitrary and adaptively chosen leakage function of

bounded output length (output length Ω(κ) in our

results). The leakage function is applied to the instruc-

tion executed in the CPU – namely, it is a function of

all inputs, outputs, randomness, and intermediate wires

of the CPU instruction being executed.

2) Contents of memory, when not loaded into the CPU,

are hidden from the adversary.

Our result, stated in this model, provides a fixed set

of CPU instructions, and a compiler which can take any
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polynomial time computation (say given in the form of a

boolean circuit), and compile it into a program that can be

run on this leaky CPU. A leakage adversary as above, who

can specify inputs to the compiled program and observe its

outputs, learns nothing from the execution beyond its input-

out behavior. We elaborate on the set of instructions required

by our compiler in Section II-D

C. Applications of the Main Theorem

Application of Our Compiler to Obfuscation with Leaky
Hardware. There is a fascinating connection between the

problem of code obfuscation and leakage resilience for

general programs. In a nut-shell, one may think of obfus-

cation of an algorithm as the ultimate “leakage resilient”

transformation: If successful, it implies that the resulting

algorithm can be “fully leaked” to the adversary – it is

under the adversary’s complete control! Since we know that

full and general obfuscation is impossible [1], we must

relax the requirements on what we may hope to achieve

when obfuscating a circuit. Leakage resilient versions of

algorithms can be viewed as one such relaxation. In partic-

ular, one may view our result as showing that although we

cannot protect general algorithms if we give the adversary

complete view of code which implements the algorithm

(i.e obfuscation), nevertheless we can (for any functionality)

allow an adversary to have a “partial view” of the execution

and only learn its black-box functionality. In our work, this

“partial view” is as defined by the “only computation leaks”

leakage attack model.

In a recent work, Bitansky et al. [20] make the connection

between the OCL attack model and obfuscation explicit.

They use the compiler described here to obfuscate pro-

grams using simple secure hardware components which are

“leaky”: they may be subject to memory leakage attacks.

At a high level, they run each “sub-computation” on a

separate hardware component which is subject to memory

leakage. Alternatively, viewing OC leakage as an attack in

the leaky CPU model, each instruction of the leaky CPU is

implemented in a separate hardware component. The main

challenge in their setting is providing security even when the

communication channels between the hardware components

are observed and controlled by an adversary, which they

address using non-committing encryption [21] and MACs .

Application of Our Compiler to Leakage Resilient Multi
Party Computation. In a recent work, Boyle et al. [22]

use our compiler (and the assumption that FHE exists) to

build secure MPC protocols that can compute an unbounded

number of polynomial time functions Ci on an input (which

has been shared among the players a one-time leak free

pre-processing stage) that are resilient to corruptions of

a constant fraction of the players and to leakage on all

of the rest of the players (separately). Intuitively, one can

think of each player in the MPC as running one of the

“sub-computations” in a compilation of Ci using our OC-L

compiler. Alternatively, viewing of OC leakage as an attack

in the leaky CPU model, operations of the leaky CPU are

implemented in by different players in the MPC protocol.

The additional challenges here are both adversarial mon-

itoring/control of the communication channels and (more

significantly) that the adversary may completely corrupt

many of the players/sub-computations.

II. COMPILER OVERVIEW AND TECHNICAL

CONTRIBUTIONS

In this section we overview the compiler and the main

technical ideas introduced. The compiler takes any algorithm

in the form of a (public) Boolean circuit C(y, x) with a

“secret” fixed input y, and transforms it into a functionally

equivalent probabilistic stateful algorithm that on input x
outputs C(y, x) (for the fixed secret y). Each execution of

the transformed algorithm consists of a sequence of sub-

computations, and the adversary’s view of each execution is

through applying a sequence of adaptively chosen bounded-

length leakage functions to these sub-computations. We

overview the construction in three steps:

• In Section II-A we describe the first tool in our con-

struction: a leakage-resilient one-time pad cryptosystem

(LROTP), which is used as the subsidiary cryptosys-

tem4 in our construction, and is resilient to bounded

leakage. In particular, we use this cryptosystem to

encrypt the secret fixed input y.

• In Section II-B, we show how to use these encryptions

to compute the program’s output once on a given

input. This “one-time” safe evaluation is resilient to

bounded OC leakage attacks. The main challenge is

to develop a “safe homomorphic evaluation” procedure

for computing the NAND of LROTP encrypted bits.

• In Section II-C we show how to extend the “one-

time” safe evaluation to “any polynomial number” of

safe evaluations on new inputs, i.e. to resist continual
leakage. The main new technical tool introduced here,

and where the bulk of technical difficulty of our paper

lies, is in using what we call “ciphertext banks”: they

will allow the repeated generation of secure ciphertexts

even under leakage.

Put together, this yields a compiler that is secure against

continual OC leakage attacks.

A. Leakage-Resilient One Time Pad

One of the main components of our construction is the

“leakage resilient one-time pad” cryptoscheme (LROTP).

4It is important to distinguish between leakage on the secret input y
taken as input by the compiler, and the leakage resilience of the subsidiary
LROTP keys and ciphertexts. Whereas the LROTP keys and ciphertexts are
leaked on (separately) and are designed to retain security in spite of this
leakage, there is no leakage on y: all that an adversary can learn about y
is the input-output behavior of C(y, x).
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This simple private-key encryption scheme uses a vector

key ∈ {0, 1}κ as its secret key, and each ciphertext is also a

vector �c ∈ {0, 1}κ. The plaintext underlying �c (under key) is

the inner product: Decrypt(key ,�c) = 〈key ,�c〉. The scheme

maintains the invariants that key [0] = 1,�c[1] = 1, for any

key and ciphertext �c. We generate each key to be uniformly

random under this invariant. To encrypt a bit b, we choose a

uniformly random �c s.t. �c[1] = 1 and Decrypt(key ,�c) = b.
The LROTP scheme is remarkably well suited for our

goal of transforming general computations to resist leakage

attacks. We use the following properties (see the full version

for details):

Semantic Security under Multi-Source Leakage. Seman-

tic security of LROTP holds against an adversary who

launches leakage attacks on both a key and a ciphertext
encrypted under that key. This might seem impossible at

first glance. The reason it is facilitated is two-fold: first

due to the nature of our attack model, where the adversary

can never apply a leakage function to the ciphertext and

the secret-key simultaneously (otherwise it could decrypt);

second, the leakage from the key and from the ciphertext

is of bounded length. This ensures, for example, that the

adversary cannot learn enough of the ciphertext to be useful

for it at a later time—when it could apply an adaptively

chosen leakage function to the secret key (and, for example,

decrypt).

Translating this reasoning into a proof, we show that

semantic security is retained under concurrent attacks of

bounded leakage O(κ) length on key and �c. As long as

leakage is of bounded length and operates separately on

key and on �c, they remain (w.h.p.) high entropy sources,

and are independent up to their inner product equaling the

underlying plaintext. Since the inner product function is

a two-source extractor, the underlying plaintext is statisti-

cally close to uniformly random even given the leakage.

Moreover, this is true even for computationally unbounded

adversaries and leakage functions. To ensure that the leakage

operates separately on key and �c, we take care in our

construction not to load ciphertexts and keys into working

memory simultaneously.5 We note that two-source extractors

were used for enabling leakage-resilient cryptography in [6],

[23], [8].

Key and Ciphertext Refreshing. We give procedures for

“refreshing” an LROTP key and ciphertexts: the output

key and ciphertext will be a “fresh” uniformly random

encryption of the same underlying plaintext bit. Moreover,

the refreshing procedure operates separately on the key

and on the ciphertext, and so an OC leakage attack will

not be able to determine the underlying plaintext. In fact,

5There will be one exception to this rule (see below), where a key and
ciphertext will be loaded into working memory simultaneously, but this will
be done only after ensuring that the ciphertext are “blinded” and contain
no sensitive information.

security of the underlying plaintext is maintained even under

OC leakage from multiple composed applications of the

refreshing procedure. Security is maintained as long as the

accumulated leakage is a small constant fraction of the

key and ciphertext length. After a large enough number of

composed applications, however, security is lost: An OC

leakage adversary can successfully reconstruct the underly-

ing plaintext. This attack is described in the full version.

Intuitively, it “kicks in” once the length of the accumulated

leakage is a large constant fraction of the key and ciphertext

length.

Homomorphic Addition. For key and two ciphertexts

�c1,�c2, we can homomorphically add by computing �c′ ←
(�c1 ⊕ �c2). By linearity, the plaintext underlying �c′ is the

XOR of the plaintexts underlying �c1 and �c2. For a key-

ciphertext pair (key ,�c) and a plaintext bit b, we can ho-

momorphically add plaintext to the ciphertext by computing

�c′ ← (�c ⊕ (b, 0, . . . , 0)). Since key [0] = 1 we get that the

plaintext underlying �c′ is the XOR of b and the plaintext

underlying �c.

We note that the construction in [6] relied on several simi-

lar properties of a computationally secure public-key leakage

resilient scheme: the BHHO/Naor-Segev scheme [24], [25].

Here we achieve these properties with information theoretic

security and without relying on intractability assumptions

such as Decisional Diffie Hellman.

B. One-Time Secure Evaluation

Next, we describe the high-level structure of the compila-

tion and evaluation algorithm for a single secure execution.

In Section II-C we will show how to extend this framework

to support any polynomial number of secure executions. The

input to the compiler is a secret input y ∈ {0, 1}n, and a

public circuit C of size poly(n) that is known the adversary.

The circuit takes as inputs the secret y, and also public

input x ∈ {0, 1}n (which may be chosen by the adversary),

and produces a single bit output.6 For example, C can be

a public cryptographic algorithm (say for producing digital

signatures), y a secret key, and x a public message to sign.

More generally, to compile general algorithms, C can be

the universal circuit, y the description of any particular

algorithm that is to be protected, and x a public input to

the protected algorithm.

The output of the compiler on C and y is a probabilistic

stateful evaluation algorithm Eval (with a state that will

be updated during each run of Eval ), such that for all

x ∈ {0, 1}n, C(y, x) = Eval(y, x). The compiler is run

exactly once at the beginning of time and is not subject to

leakage. See the full version for a formal definition of utility

and security under leakage. In this section, we describe

6We restrict our attention to single bit output, the case of multi-bit outputs
also follows using the same ideas.
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an initialization of Eval that suffices for a single secure

execution on any adversarially chosen input.

Without loss of generality, the circuit C is composed of

NAND gates with fan-in 2 and fan-out 1, and duplication
gates with fan-in 1 and fan-out 2. We assume a lexicographic

ordering on the circuit wires, s.t. if wire k is the output wire

of gate g then for any input wire i of the same gate, i < k.

We use vi ∈ {0, 1} to denote the bit value on wire i of the

original circuit C(y, x). Eval does not compute or load into

memory the explicit vi values for internal wires (or y-input

wires) into memory: any such value loaded into memory

might leak and exposes non black-box information about

the circuit C! Instead, Eval keeps track of each vi value in

LROTP encrypted form (key i,�ci). I.e., there is a key and

a ciphertext (with underlying plaintext vi) for each circuit

wire, and vi is protected because the key and ciphertext are

not be loaded into memory at once.

We emphasize that the adversary does not actually ever

see any key or ciphertext in its entirety, nor does he see

any underlying plaintext. Rather, the adversary only sees

the result of bounded-length leakage functions that operate

separately on these keys and ciphertexts.

Initialization for One-Time Evaluation. For each y-input

wire i carrying bit y[j] of the y-input, generate an LROTP

encryption of y[j]: (key i,�ci). For each x-input wire i,
generate an LROTP encryption of 0: (�ci, key i). For the

output wire output , generate an LROTP encryption of 0:

(��output , �doutput) . For each internal wire i, choose a bit

ri ∈R {0, 1} uniformly at random. Generate two indepen-

dent LROTP encryptions of ri: (��i, �di) and (��′i, �d
′
i). Finally,

for each internal wire i (and for the output wire too),

generate an LROTP encryption of 1: (�oi, �ei)
Recall that initialization is performed without any leakage.

Looking ahead, the main challenge for multiple execution

will be securely generating the keys and ciphertexts for each

wire even in the presence of OC leakage. See Section II-C.

Eval on input x. Once a (non secret) input x is selected for

Eval , for each wire i carrying bit x[j], “toggle” �ci so that the

underlying plaintext is x[j]. This is done using homomorphic

ciphertext-plaintext addition, taking �c← �c⊕(x[j], 0, . . . , 0).
Taking these encryptions together with those generated in

initialization, we get that for each input wire i of the original

circuit C (carrying a bit of y or a bit of x), we now have

an LROTP encryption (key i,�ci) of vi.
Eval proceeds to compute, for each internal wire i of the

circuit (and for the output wire output), a secure LROTP

encryption (key i,�ci) of vi. This is accomplished using a

safe homomorphic evaluation procedure discussed below.

The homomorphic evaluation follows the computation of the

original circuit C gate by gate in lexicographic order (from

the input wires to the output wire). The adversary learns

nothing about the vi values, even under leakage. All the

adversary “sees” are the input x and the output voutput =

C(y, x). The challenge is homomorphic evaluation of the

internal NAND gates.

Leakage-Resilient “Safe NAND” Computation. We pro-

vide a procedure that, for a NAND gate, takes as input

LROTP encryptions of the bits on the gate’s input wires, and

outputs an LROTP encryption of the bit on the gate’s output

wire. We prove that even under leakage, this procedure

exposes nothing about the private shares of the gate’s input

wires and output wire (beyond the value of the output

wire’s public share). This “Safe NAND” procedure uses

a secure LROTP encryption of 1 and two secure LROTP

encryptions of a random bit (which were generated in the

initialization phase above). We also need a similar procedure

for aforementioned duplication gates, but we focus here on

the more challenging case of NAND.

For a NAND gate with input wires i, j and output wire

k, the input to the SafeNAND procedure is ciphertext-key

pairs: (key i,�ci), (keyj ,�cj) (underlying plaintexts vi, vj),

(��k, �dk) (random underlying plaintext rk), and (�ok, �ek)
(underlying plaintext 1). The goal is to compute the bit

ak = (vi NAND vj) ⊕ rk, without leaking anything more

about the underlying plaintexts (vi, vj , rk).
Note that, in its own right, the bit ak exposes noth-

ing about vi or vj . This is because the random bit rk
masks (vi NAND vj). Once we have securely computed

the bit ak, we use the pair (��′k, �d
′
k) (with underlying

plaintext rk) to obtain an LROTP encryption (keyk,�ck)
of vk = (vi NAND vj). This is done using homomorphic

ciphertext-plaintext addition, by setting keyk ← ��′k and

�ck ← (�d′k ⊕ (ak, 0, 0, . . . , 0)).
7

We proceed with an overview of SafeNAND , see the full

version for details. As a starting point, we first choose a

single key , and compute from (key i,�ci), (keyj ,�cj), (
��k, �dk),

(�ok, �ek), new ciphertexts (�c∗i ,�c
∗
j ,

�d∗k, �e
∗
k) whose underlying

plaintexts under this single key remain (vi, vj , rk, 1) (respec-

tively). This uses homomorphic properties of the LROTP

cryptosysm keys. Once the ciphertexts are all encrypted

under the same key , our goal is to compute the bit ak =
(vi NAND vj)⊕ rk.

To compute ak, we start with an idea of Sanders Young

and Yung [26] for homomorphically computing the NAND

of two ciphertexts with underlying plaintexts vi, vj . They

7It is natural to ask why we needed two different LROTP encryptions

(��k, �dk) and (��′k, �d
′
k) of the same random bit rk . Why not simply use

(��k, �dk) twice? The reason is that, during the execution of SafeNAND ,
��k and �dk are used to determine LROTP keys and ciphertexts that are
eventually loaded into memory together and decrypted. While we will
argue that this exposes nothing about the bit rk , the leakage might create

statistical dependencies between the strings ��k and �dk . If we then re-used
��k and �dk to compute the output (keyk,�ck) of SafeNAND , then they
might later be involved in another SafeNAND computation (as inputs).
The statistical dependencies might accumulate and break security. Using a

fresh pair of ciphertexts (��′k, �d
′
k) (encrypting the same bit) that have never

been loaded into memory together avoids the accumulation of any statistical
dependencies and allows us to prove security.
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used homomorphic addition to create a 3-tuple of ciphertexts

s.t. the number of ciphertexts with underlying plaintext 0 in

this 3-tuple specifies whether (vi NAND vj) is 0 or 1. The

locations of 0’s and 1’s in the 3-tuple expose information

about vi and vj beyond their NAND , but [26] permute the

3-tuple of ciphertexts using a random permutation (and also

refresh each ciphertext). They showed that the resulting 3-

tuple of permuted ciphertexts exposes only (vi NAND vj)
and nothing more. They use this idea to build secure function

evaluation protocols for NC1 circuits.

We translate this idea to our setting. We use the homo-

morphic addition properties of LROTP to compute a 4-tuple

of encryptions (all under the same key):

C ← (�d∗k, (�c
∗
i ⊕ �d∗k), (�c

∗
j ⊕ �d∗k), (�c

∗
i ⊕ �c∗j ⊕ �d∗k ⊕ �e∗k))

the plaintexts underlying the 4 ciphertexts in C are:

(rk, (vi ⊕ rk), (vj ⊕ rk), (vi ⊕ vj ⊕ rk ⊕ 1))

now if ak = 0, then 3 of these plaintexts will be 1, and one

will be 0, whereas if ak = 1, then 3 of the plaintexts will

be 0 and one will be 1.

Now, as was the case for [26], the locations of 0’s and

1’s might reveal (via the adversary’s leakage) information

about (vi, vj , rk) beyond just the value of ak. Trying to

follow [26], we might try to permute the ciphertexts before

decrypting. Our problem, however, is that any permutation
we use might leak. What we seek, then, is a method for

randomly permuting the ciphertexts even under leakage.

Securely Permuting under Leakage. The leakage-resilient

permutation procedure Permute that takes as input key
and a 4-tuple C, consisting of 4 ciphertexts. Permute
makes 4 copies of key , and then proceeds in � iterations

i ← 1, . . . , �. The input to each iteration i is a 4-tuple of

keys and a 4-tuple of corresponding ciphertexts. The output

from each iteration is a 4-tuple of keys and a 4-tuple of

corresponding ciphertexts, whose underlying plaintexts are

some permutation πi ∈ S4 of those in that iteration’s input.

The output of iteration i is fed as input to iteration (i+ 1),
and so after � iterations the plaintexts underlying the output

keys and ciphertexts of iteration � will be a “composed”

permutation π = π1 ◦ . . . ◦ π� of the plaintexts underlying

the first iteration’s input keys and ciphertexts.

The goal is that πi used in each iteration will look

“fairly random” even under leakage. This will imply that

the composed permutation π will be statistically close to

uniformly random even under leakage. To this end, each

iteration i operates as follows:

Sub-Computation 1: Duplicate-Refresh-Permute. Create

κ copies of the input key and ciphertext 4-tuples. Refresh

each tuple-copy using key-ciphertext refresh as in Section

II-A (each refresh uses independent randomness). Finally,

permute each tuple-copy using an independent uniformly

random permutation πj
i ∈R S4 (πj

i is used in iteration i
on the j-th refreshed tuple-copy).

Sub-Computation 2: Choose. Choose, uniformly and at

random, one of the tuple copies as this iteration’s output

We first observe that without leakage from sub-

computation 1, all κ permutations (πi,1, . . . , πi,κ) look in-

dependently and uniformly random.8 Thus, given λ bits

of leakage from sub-computation 1, where λ < 0.1κ,

most permutations still look “fairly random”: by a counting

argument, even given the λ bits of leakage, the entropy in

many of the permutations (πi,1, . . . , πi,κ) will remain high.

In other words, while significant leakage can occur on some
of the permutations, it cannot occur on all of them. After

this leakage occurs, in sub-computation 2 we choose one

of the tuple-copies j∗ ∈ {1, . . . , κ} (and its permutation)

uniformly at random and set πi ← πj∗
i . By the above, with

constant probability we get that πi has high entropy even

given the leakage. Composing the permutations chosen in

many iterations, with overwhelming probability in a constant

fraction of the iterations the permutation chosen has high

entropy. When this is the case, the composed permutation is

statistically close to uniform. See the full version for further

details on Permute and a formal statement and proof of its

security properties.

C. Multiple Secure Evaluations

In this section we modify the Init and Eval procedures

described in Section II-B to support any polynomial number

of secure evaluations. The main challenge is generating

secure key-ciphertext pairs for the various circuit wires.

Ciphertext Generation under Continual Leakage. We

seek a procedure for repeatedly generate secure LROTP key-

ciphertext pairs with a fixed underlying plaintext bit. The

underlying plaintexts will be as before in the construction of

Section II-B: for each y-input wire i corresponding to the j-

th bit of y, the underlying plaintext should be y[j]. For each

x-input wire and for the output wire output , the underlying

plaintext should 0. For each internal wire (and for the output

wire), we will generate a key-ciphertext pair with underlying

plaintext 1. Finally, we also seek a procedure for repeatedly

generating a two LROTP key-ciphertext pairs (��i,�ci) and

(��′i,�c
′
i) whose underlying plaintexts are a uniformly random

bit ri ∈ {0, 1} (the same bit in both pairs).

8In slightly more detail, we consider the case where the underlying
plaintexts are all 0, and show that without leakage, even given all the
refreshed and permuted tuple-copies, the permutation chosen for each copy
looks uniformly random. This is because the refreshing procedure outputs
a uniformly random key-ciphertext pair encrypting the same underlying
plaintext. We will then show that when the underlying plaintexts are all 0,
the composed permutation looks uniformly random even under leakage.
Finally, we will claim that when the underlying plaintexts are not all 0 the
composed permutation also looks uniformly random under leakage. This
is because, by LROTP security of the underlying plaintext bits, a leakage
adversary cannot distinguish whether the underlying plaintexts are all 0 or
have some other values.
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For security, the underlying plaintexts of the keys and

ciphertexts produced should be completely protected even

under continual leakage on the repeated generations. In

previous works such as [4], [7], [6], similar challenges

were (roughly speaking) overcome using secure hardware

to generate “fresh” encodings of leakage-resilient plaintexts

from scratch in each execution.

We generate key-ciphertext pairs using ciphertext banks.

We begin by describing this new tool and how it is used for

repeated secure generations with a fixed underlying plaintext

bit. This is what is needed for input wires and for the

output wire. We then describe how to “randomize” the fixed

underlying plaintext bit to be uniformly random (which is

used to repeatedly generate two key-ciphertext pairs with a

uniformly and independently random underlying plaintext).

A ciphertext bank is initialized once using a BankInit(b)
procedure, where b is either 0 or 1 (there is no leakage during

initialization). It can then be used, via a BankGen proce-

dure, to repeatedly generate key-ciphertext pairs with under-

lying plaintext bit b, for an unbounded polynomial number

of generations. We refer to b as the Ciphertext Bank’s

underlying plaintext bit. We also provide a BankGenRand
procedure for generating pairs of key-ciphertext pairs with

a uniformly random underlying plaintext bit. Informally, the

ciphertext bank security property is that, even under leakage

from the repeated generations, the plaintext underlying each

key-ciphertext pair is protected. More formally, there are

efficient simulation procedures that have arbitrary control

over the plaintexts underlying all key-ciphertext pairs that

the bank produces. Leakage from the simulated calls is

statistically close to leakage from the “real” ciphertext bank

calls. We outline these procedures below, see the full version

for further details.

Using ciphertext banks, we modify the initialization and

evaluation outlined in Section II-B. In initialization, we ini-

tialize a ciphertext bank with a fixed underlying plaintext bit

for each input wire, for each internal wire (with underlying

plaintext 1), and two banks for the output wire (see Section

II-B for all the fixed underlying plaintexts). We also initialize

a ciphertexts bank with a random underlying plaintext bit,

which will be used for generating pairs of key-ciphertext

pairs with a random underlying plaintext for the internal

wires ((see Section II-B. Before each evaluation, we use

these ciphertext banks to generate all of the key-ciphertext

pairs that are needed for each circuit wire. After this first

step, evaluation proceeds as outlined in Section II-B.

Ciphertext Bank Implementation. A ciphertext bank con-

sists of an LROTP key , and a collection C of 2κ ciphertexts.

We view C as a κ × 2κ matrix, whose columns are the

ciphertexts. In the BankInit procedure, on input b, key
is drawn uniformly at random, and the columns of C are

drawn uniformly at random s.t the plaintext underlying

each column equals b. This invariant will be maintained

throughout the ciphertext bank’s operation, and we call b
the bank’s underlying plaintext bit.

The BankGen procedure outputs key and a linear com-

bination of C’s columns. The linear combination is chosen

uniformly at random s.t. it has parity 1. This guarantees

that it will yield a ciphertext whose underlying plaintext

is b. We then inject new entropy into key and into C: we

refresh the key using the LROTP key refresh property, and

we refresh C by multiplying it with a random 2κ×2κ matrix

whose columns all have parity 1. These refresh operations

are performed under leakage.

The BankGenRand procedure re-draws the bank’s un-

derlying plaintext bit by choosing a uniformly random

ciphertext �v ∈ {0, 1}κ, and adding it to all the columns

of C. If the inner product of key and �v is 0 (happens w.p.

1/2), then the bank’s underlying plaintext bit is unchanged.

If the inner product is 1 (also w.p. 1/2), then the bank’s

underlying plaintext bit is flipped.

Int the security proof, we provide a simulation procedure

SimBankGen that can arbitrarily control the value of the

plaintext bit underlying the key-ciphertext pair it generates.

Here we maintain a simulated ciphertext bank, consisting

of a key and a matrix, similarly to the real ciphertext bank.

These are initialized, without leakage, using a SimBankInit
procedure that draws key and the columns of C uniformly

at random from {0, 1}κ. Note that here, unlike in the real

ciphertext bank, the plaintexts underlying C’s columns are

uniformly random bits (rather than a single plaintext bit

b). The operation of SimBankGen is similar to BankGen ,

except that it uses a biased linear combination of C’s

columns to control the underlying plaintext it produces.

The main technical challenge and contribution here is

showing that leakage from the real and simulated calls is

statistically close. Note that, even for a single generation,

this is non-obvious. As an (important) example, consider

the rank of the matrix C: in the real view (say for b = 0),

C’s columns are all orthogonal to key , and the rank is at

most κ − 1. In the simulated view, however, the rank will

be κ (w.h.p). If the matrix C was loaded into memory in

its entirety, then the real and simulated views would be

distinguishable!

Observe, however, that computing an linear combination

of C’s columns does not require loading C into memory in

its entirety. Instead, we can compute the linear combination

in a “piecemeal” manner: first, load only (c · κ) columns

of C into memory (for a small 0 < c < 0.5). Compute

their contribution �x1 to the linear combination. Then, load

�x1 into memory together with the next (c · κ) columns of

C, and add �x1 to these columns’ contribution to the linear

combination. This gives �x2, which is the contribution of

the first (2c · κ) columns to the linear combination. We

can continue this process for (2/c) sub-steps, eventually

computing the linear combination of C’s columns without

ever loading C into memory in its entirety. All we need to
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load into memory at one time is a collection of ((c ·κ)+ 1)
linear combinations of columns of C. We call each such

collection a “sketch” (or a “piece”) of C. We prove that

sketches of random matrices are leakage resilient, and in

particular leakage from sketches of C is statistically close

in the real and simulated distributions (i.e. when C is of

rank κ−1 or uniformly random). Thus, the above procedure

for computing a linear combination of C’s rows is leakage

resilient. Similarly, we show how to implement BankGen
and SimBankGen using sub-computations, where each sub-

computation only loads a single “sketch” of C into memory.

We use this to show security of the ciphertext bank for any

unbounded (polynomial) number of generations. We view

these proofs as our most important technical contribution.

D. Leaky CPU: What are The Universal Instructions?

Recall that in the leaky CPU model (which is equivalent

to the OC-leakage model), a leaky CPU executes atomic

operations from a fixed set of universal instructions. Leakage

operates separately on each atomic operation. The atomic

operations are equivalent to the sub-computations performed

by our compiler.

We elaborate here on the set of universal CPU instructions

required. These are fairly simple and straightforward. They

include instructions for generating a random matrix/vector

of 0/1 bits, for vector-vector addition and multiplication (i.e.

inner product), for matrix-matrix addition, and for matrix-

vector and matrix-matrix multiplication. Beyond these, the

only additional functionality used is permuting a sequence

of vectors. This, in a nutshell, is a complete (high-level) list

of the required instructions. This set of instructions suffices

for LROTP operations such as decryption, key and ciphertext

refresh, homomorphic operations (implemented using vector

operations), as well as for the ciphertext banks outlined in

Section II-C (implemented using matrix-matrix and matrix-

vector multiplication). The SafeNAND and Permute pro-

cedures outlined above use these procedures, as well as a

duplicate-refresh-and-permute operation. This operation can

be implemented as a single atomic instruction (as described

above), or as a sequence of instructions for duplication,

refreshing and permuting. Both implementations are leakage

resilient.

For security parameter κ, the instructions used all have

input and output size O(κ2), and can be implemented by

circuits of size O(κω), where ω is the exponent of the

circuit-size required for matrix multiplication.

III. FURTHER COMPARISON TO RELATED WORK

We provide a more detailed comparison prior work

leakage-resilience compilers for general programs in various

continual leakage attack models. Comparing to the work of

Goldwasser and Rothblum [6] and of Juma and Vhalis [7]

in the OC-L model, the main qualitative difference is that

both of those prior works use computational intractability

assumptions (DDH in [6] and the existence of fully homo-

morphic encryption scheme (FHE) in [7]) as well as secure

hardware. Our result, on the other hand, is unconditional and

uses no secure hardware components.

In terms of quantitative bounds, for security parameter κ,

[7] transform a circuit of size C into a new circuit C ′ of

size poly(κ) · |C|. The new circuit C ′ is composed of O(1)
sub-circuits (one of the sub-circuits is of size poly(κ) · |C|).
Assuming a fully-homomorphic encryption scheme that (for

the security parameter κ) is secure against adversaries that

run in time T , their construction can withstand O(log T )
bits of leakage on each sub-circuit. For example, if the

FHE is secure against poly(L)-time adversaries, then the

leakage bound is O(logL). In our new construction, for any

leakage parameter L, there are O(|C|) sub-computations (i.e.

more sub-computations), each of size Õ(Lω), where ω is

the exponent is the exponent in the best algorithm known

for matrix multiplication (i.e. smaller). The new construction

can withstand L bits of leakage from each sub-computation

(i.e. the amount of leakage we can tolerate, relative to the

sub-computation size, is larger). The quantitative parameters

of [6] are similar to ours (up to polynomial factors).

The work of Ishai, Sahai and Wagner [3] in the ISW-

L leakage model, may be viewed as converting any circuit

C into O(|C|) sub-circuits each of size O(L2), and allow

the leakage of L wire values from each sub-circuit. Our

transformation converts C into O(|C|) sub-circuits, each of

size Õ(Lω), and allow the leakage of L bits from each

sub-circuit where these bits can be the output of arbitrary

computations on the wire values (rather than the wire values

themselves as in [3]).

The work of Faust et al. [4] in the CB-L model, under the

additional assumption that leak free hardware components

exist, shows how to convert any circuit C into a new circuit

C ′ of size O(|C| · L2), which is resilient to leakage of the

result of any AC0 function f of output length L computed

on the entire set of wire values. Qualitatively, the main

differences are (i) that construction used secure hardware,

whereas we do not use secure hardware, and (ii) in terms

of the class of leakage tolerated, they can handle bounded-

length AC0 leakage on the entire computation of each execu-

tion. We, on the other hand, can handle length bounded OC-

L leakage of arbitrary complexity that operates separately

(if adaptively) on each sub-computation. A more recent

result of [11] removes the need for hardware component

and shows how to convert C into C ′ of size O(|C| ·poly(L)
which is resilient against AC0 leakage functions of length L,

under the computational assumption that computing inner-

product cannot be done in AC0, even if polynomial time pre-

processing (of the inputs to the inner product) is allowed.

[11] uses ciphertext banks, a tool introduced in this work.

Comparing to the work of Ajtai [10] in the RAM-

L model, he divides the computation of program P into

sub-computations, each utilizing O(L) memory accesses,
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and shows resilience to an adversary who, for each sub-

computation, sees the contents of L memory accesses out

of the O(L) accesses in that sub-computation. I.e a constant

fraction of all memory accesses in each sub-computation

are exposed, whereas all the other memory accesses are

perfectly hidden. Translating our result to the RAM model,

we divide the computation into sub-computations of Õ(Lω)
accesses, and show resilience against an adversary that can

receive L arbitrary bits of information computed on the

entire set of memory accesses and randomness. In particular,

there are no protected or hidden accesses.

Continual Leakage on a Stored Secret. A recent inde-

pendent work of Dodis, Lewko, Waters, and Wichs [19],

addresses the problem of how to store a value S secretly on

devices that continually leak information about their internal

state to an external attacker. They design a leakage resilient

distributed storage method: essentially storing an encryption

of S denoted Esk(S) on one device and storing sk on

another device, for a semantically secure encryption method

E which: (i) is leakage resilient under the linear assumption

in prime order groups, and (ii) is ”refreshable” in that

the secret key sk and Esk(S) can be updated periodically.

Their attack model is that an adversary can only leak on

each device separately, and that the leakage will not ”keep

up” with the update of sk and Esk(S). One may view

the assumption of leaking separately on each device as

essentially a weak version of the only computation leak

axiom, where locality of leakage is assumed per “device”

rather than per “computation step”. We point out that storing

a secret on continually leaky devices is a special case of

the general results described above [3], [4], [6], [7] as they

all must implicitly maintain the secret “state” of the input

algorithm (or circuit) throughout its continual execution. The

beauty of [19] is that no interaction is needed between the

devices, and they can update themselves asynchronously.
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