
Finding Correlations in Subquadratic Time,
with Applications to Learning Parities and Juntas

Gregory Valiant

UC Berkeley

Berkeley, CA

gregory.valiant@gmail.com

Abstract—Given a set of n d-dimensional Boolean vectors with
the promise that the vectors are chosen uniformly at random
with the exception of two vectors that have Pearson–correlation
ρ (Hamming distance d · 1−ρ

2
), how quickly can one find the

two correlated vectors? We present an algorithm which, for any
constants ε, ρ > 0 and d >> logn

ρ2
, finds the correlated pair with

high probability, and runs in time O(n
3ω
4

+ε) < O(n1.8), where
ω < 2.38 is the exponent of matrix multiplication. Provided that
d is sufficiently large, this runtime can be further reduced. These
are the first subquadratic–time algorithms for this problem for
which ρ does not appear in the exponent of n, and improves
upon O(n2−O(ρ)), given by Paturi et al. [15], Locality Sensitive
Hashing (LSH) [11] and the Bucketing Codes approach [6].

Applications and extensions of this basic algorithm yield
improved algorithms for several other problems:

Approximate Closest Pair: For any sufficiently small constant ε >
0, given n vectors in Rd, our algorithm returns a pair of vectors
whose Euclidean distance differs from that of the closest pair by
a factor of at most 1+ε, and runs in time O(n2−Θ(

√
ε)). The best

previous algorithms (including LSH) have runtime O(n2−O(ε)).

Learning Sparse Parity with Noise: Given samples from an
instance of the learning parity with noise problem where each
example has length n, the true parity set has size at most k << n,
and the noise rate is η, our algorithm identifies the set of k

indices in time n
ω+ε
3

kpoly(1
1−2η

) < n0.8kpoly(1
1−2η

). This is the
first algorithm with no dependence on η in the exponent of n,
aside from the trivial brute-force algorithm.

Learning k-Juntas with Noise: Given uniformly random length
n Boolean vectors, together with a label, which is some function
of just k << n of the bits, perturbed by noise rate η, return the
set of relevant indices. Leveraging the reduction of Feldman et
al. [7] our result for learning k-parities implies an algorithm for
this problem with runtime n

ω+ε
3

kpoly(1
1−2η

) < n0.8kpoly(1
1−2η

),

which improves on the previous best of > n
k(1− 2

2k
)
poly(1

1−2η
),

from [8].

Learning k-Juntas without Noise:1 Our results for learning
sparse parities with noise imply an algorithm for learning juntas
without noise with runtime n

ω+ε
4

kpoly(n) < n0.6kpoly(n), which
improves on the runtime n

ω+1
ω poly(n) ≈ n0.7kpoly(n) of Mossel

et al. [13].

Keywords-Correlation, closest pair, nearest neighbor, locality
sensitive hashing, learning parity with noise, learning juntas,
metric embedding.

1I am grateful to Vitaly Feldman for pointing out that an improved algorithm
for learning sparse parity with noise (with a high level of noise) yields an
improved algorithm for learning k-juntas without noise.

I. INTRODUCTION

Given a set of n d-dimensional Boolean vectors with the

promise that the vectors are chosen uniformly at random from

the Boolean hypercube, with the exception of two vectors

that have Pearson–correlation ρ (Hamming distance d · 1−ρ
2),

can one find the correlated pair in subquadratic time? This

problem was, apparently, first posed by Leslie Valiant in 1988

as the Light Bulb Problem [18]. The first positive solution was

provided by Paturi et al. [15], who gave an n2−Θ(ρ) algorithm.

This fundamental problem of finding correlated features is

a problem encountered in practice throughout the sciences,

and, within computer science theory, arises in various settings

central to our field.

Perhaps most obviously, the Light Bulb Problem is a special

case of the Boolean Approximate Closest Pair Problem: given

a set of vectors, how can one quickly find two vectors

with near-minimal Hamming distance? Surprisingly, previous

algorithms obtained comparable runtimes for the Light Bulb

problem and Approximate Closest Pair problem; phrased dif-

ferently, in contrast to our algorithm, these algorithms do

not significantly leverage the randomness in the Light Bulb

Problem, and the fact that nearly all the pairwise distances are

extremely concentrated near d/2.

The Light Bulb problem is also easily recognized as a

special case of the problem of learning parity with noise,

which we now describe.2 Suppose one is given access to

a sequence of examples (x, y), where x ∈ {−1,+1}n is

chosen uniformly at random, and y ∈ {−1,+1} is set so that

y = z
∏

j∈S xi, for some fixed, though unknown set S ⊂ [n],
where z ∈ {−1,+1} is chosen to be −1 independently for

each example with probability η ∈ [0, 1/2). In the case where

the noise rate η = 0, the problem of recovering the set S
is easy: given n such examples, with high probability one

can recover the set S by Gaussian elimination—translating

this problem into a problem over F2, S is given simply as

the solution to a set of linear equations. From an information

theory standpoint, the addition of some constant amount of

noise (η > 0) does not change the problem significantly; for

2In particular, the Light Bulb problem is the problem of learning parity
with noise where the true parity has size k = 2. To see one direction of the
reduction, given a matrix whose rows consist of examples from a noisy parity
instance, if one removes the examples with odd labels, the columns in the
remaining matrix will be uniformly random, except with the two correlated
columns corresponding to the two indices of the true parity set.

2012 IEEE 53rd Annual Symposium on Foundations of Computer Science

0272-5428/12 $26.00 © 2012 IEEE

DOI 10.1109/FOCS.2012.27

11

constant η < 1/2, given O(n) examples, with high probability

there will only be one set S ⊂ [n] where the parities of the

corresponding set of indices of the examples are significantly

correlated with the labels. From a computational standpoint,

the addition of the noise seems to change the problem entirely.

In contrast to the simple polynomial-time algorithm for the

noise-free case, when given a small constant amount of noise,

the best known algorithm, due to Blum et al. [4] takes time

2O(n
log n).

This problem of learning parity with noise is, increasingly,

understood to be a central problem in learning theory. Addi-

tionally, this problem reoccurs in various forms in several areas

of theoretical computer science, including coding theory, and

cryptography.

Our results for learning parities apply to the setting in

which the true parity set S is much smaller than n, say

k := |S| = O(log n). This problem of learning k-parities

is especially relevant to Learning Theory, as was revealed by

a series of reductions given in work of Feldman et al. [7],

showing that the problem of learning k-parities (under the

uniform distribution, with random classification noise) is at

least as hard as the problems of learning k-juntas (where the

labels are an arbitrary function of k bits), learning 2k-term

DNFs from uniformly random examples, and the variants of

these problems in which the noise is adversarial (rather than

random). The existence of such a reduction should not be

surprising: the problem of learning a parity with noise is the

problem of finding a heavy low-degree Fourier coefficient,

given the promise that one exists; in the case of learning a

k = log(n) sized junta, for example, one knows that there

will be at most 2k significant Fourier coefficients. Intuitively,

the presence of more heavy low-degree Fourier coefficients

should, if anything, facilitate the task of finding such a

coefficient.

A. Techniques

All of our results rely on fast matrix multiplication: our

results for the Light Bulb problem and Learning Parity with

Noise use the fact that n × n matrices may be multiplied in

time O(nω), for ω < 3. The best bound on ω is due to Virginia

Vassilevska Williams [20], who showed that ω < 2.372.

Our results for the approximate closest pair rely on fast

rectangular matrix multiplication; in particular, the fact shown

by Coppersmith, that for any ε > 0, for α < 0.29, the product

of an n × nα and nα × n matrix may be computed in time

O(n2+ε) [5]. At the end of the paper, we briefly discuss the

possibility of obtaining analogous results that do not employ

fast matrix multiplication algorithms.

Our results for the approximate closest pair problem also

rely on some metric embedding machinery. Roughly, our

approach to finding the closest pair will ‘bucket’ the pairwise

inner products of the vectors; if nearly all of the pairwise

inner products are small, with the exception of one large inner

product (corresponding to the closest pair), then we will be

able to discern which bucket contains the large inner product,

and very quickly search within that bucket and find the close

pair. In the setting in which all vectors are random Boolean

vectors, with the exception of a single pair of correlated

vectors, the concentration in the pairwise inner products comes

for free—almost all pairwise inner products will be very close,

with the exception of the one pair of correlated vectors. In

the adversarial setting of the general approximate closest pair

problem, we will apply a metric embedding to obtain some

concentration in the inner products between the images of

‘bad’ pairs of vectors. In particular, we want an embedding

f for which 〈f(u), f(v)〉 ≈ gf (〈u, v〉), where the function

gf : R→ R would, ideally, map all the small inner products

to tiny inner products, while roughly preserving the large inner

product (corresponding to the closest pair).

If we use a single embedding for all vectors any im-

provement over the n2−O(ε) runtime of LSH seems difficult,

in light of classical structural results such as Schoenberg’s

characterization of the functions gf which are realizable via

embeddings of the spherical shell [17].

Instead of a single embedding, we randomly partition the

vectors into two sets, and embed the two sets of vectors

according to different embeddings. We carefully choose these

two embeddings f, h such that 〈f(u), h(v)〉 ≈ gf,h(〈u, v),
where the function gf,h is a Chebyshev polynomial. We

choose Chebyshev polynomials for their extremal properties

(see Fact 12). This idea of using two embeddings to evade

the limitations of using a single embedding was, perhaps, first

employed by Alon and Naor [1].

II. PREVIOUS ALGORITHMIC WORK

In this section we very briefly summarize previous (theo-

retical) algorithmic results for these problems.

A. Light Bulbs and Close Pairs

The earliest results for the Light Bulb problem are due to

Paturi et al. [15], and give a hashing-based algorithm whose

runtime is n2−O(ρ), where ρ is the Pearson-correlation of

the two correlated vectors. The Locality Sensitive Hashing

approach of Indyk and Motwani [11] , and the Bucketing

Codes approach of Dubiner [6] also give algorithms that run

in time n2−O(ρ). The approach of Dubiner achieves the best

constants, with a runtime of O(n2−2ρ), in the limit as ρ gets

small.

For the more general problem of finding a pair of vectors

whose Hamming distance is at most a factor of (1 + ε) times

that of the distance between the closest pair, the Locality

Sensitive Hashing approach [11] achieves runtime O(n1+ 1
1+ε),

which is approximately O(n2−ε) for small ε. Subsequent work

on Locality Sensitive Hashing improves this dependence for

other metrics—specifically, Andoni and Indyk [2] show that

this problem can be solved in time O(n
1+ 1

(1+ε)2) ≈ O(n2−2ε)
for �2 distance. For small ε, no algorithm achieving runtime

O(n2−Ω(ε)) has been previously described.

B. Parities, Juntas, and DNFs

For the general problem of learning noisy parities, Blum

et al. give an 2O(n
log n) algorithm, based on leveraging the

12

availability of a very large number of samples to perform a

structured variant of Gaussian elimination that finds sparse

solutions.

For the problem of learning parities of size k, in a recent

paper, Grigorescu et al. [8] adapt the approach of Hopper

and Blum [9] to the noisy setting to give an algorithm that

runs in time O
(
poly(1

1−2η)n
(1+2η)2+o(1))k/2

)
. In particular,

as the noise rate goes to 0, the performance of this algorithm

tends to O(nk/2), and as the noise rate tends towards 1
2 , the

dependency on n tends towards O(nk).
For the problem of learning juntas over the uniform dis-

tribution, Mossel et al. [13] show that size k juntas can be

learned in the absence of noise, in time O(n
ωk
ω+1) ≈ O(n.7k).

The above results of Grigorescu et al., via the reduction of

Feldman et al. [7], yields an algorithm for learning k juntas

over the uniform distribution with noise η in time

> n(1− 1

2k
)k poly(

1

1− 2η
).

For constant noise η, no algorithm running in time O(nck) for

any constant c < 1 has previously been described.

For the problem of (ε, δ) PAC-learning s-term DNFs under

the uniform distribution, the results of Grigorescu et al. imply

a runtime of

poly(log
1

δ
,
1

ε
, s)n(1−Õ(ε/s)+o(1)) log s

ε ,

which improves upon the O(nlog s
ε) of Verbeurgt [19] from

1990.

III. SUMMARY OF RESULTS

We begin by stating our main results for the Light Bulb

problem, and the Approximate Closest Pair problem. We then

give our results for Learning Parity with Noise, and state its

corollaries for learning juntas, both with and without noise,

and DNFs.

Proposition 1: For any constant ε > 0, for sufficiently large

n, given n vectors in {−1, 1}d chosen uniformly at random

with the exception of a single pair that has inner product at

least ρd, provided d > n
1

4−ω /ρ2, the correlated pair of vectors

can be found in time

O

(
n

5−ω
4−ω+ε

ρ2ω

)
< n1.62 · poly(1/ρ),

where ω < 2.38 is the exponent of matrix multiplication.

We stress that the runtime given in the above proposition

differs in nature from those given by previous approaches in

that the dependence on the correlation, ρ, has been removed

from the exponent of n, yielding significant improvements in

the asymptotic performance for small values of ρ.

The following more general theorem applies to any set of

vectors for which most of the pairwise inner products are

small; this can also be viewed as an algorithm for approxi-

mating the product of two matrices, given the promise that

their product only has a moderate number of large entries.

Theorem 1: Consider a set of n vectors in {−1, 1}d and

constants ρ, τ ∈ [0, 1] such that the following condition holds:

• For all but at most n
3
4ω− 1

2 ≈ n1.3 pairs u, v of distinct

vectors, |〈u, v〉| ≤ τd.

There is an algorithm that, with probability 1 − o(1), will

output all pairs of vectors whose inner product is least ρd.

Additionally, the runtime of the algorithm is

dn
3ω
4 · n4 log ρ

log τ polylogn ≤ O(dn1.79+4 log ρ
log τ),

where ω < 2.38 is the exponent of matrix multiplication.

The above algorithm, together with elementary Chernoff

bounds yields the following corollary for the Light Bulb

problem, in the setting in which the dimension, d, is near

the information theoretic limit of O(logn
ρ2).

Corollary 2: For any constant ρ, ε > 0, there exists a

constant cε dependent on ε such that for sufficiently large n,

given an instance of the Light Bulb problem with parameters

n, d, ρ with d ≥ cε
logn
ρ2 , with probability 1 − o(1), the pair

of correlated vectors can be found in time O(dn
3ω
4 +ε) ≤

O(dn1.79).

To obtain our result for the closest pair problem, we extend

our approach to the Light Bulb problem in conjunction with a

novel “Chebyshev metric embedding”. A key step is also an

intuitive though nontrivial reduction showing that the problem

of finding a pair of vectors whose inner product is within an

additive ε from the pair with maximal inner product given

a set of vectors of unit length, can be used to find the 1 + ε
(multiplicatively) approximate closest pair of arbitrary vectors.

We show the following theorem for the approximate closest

pair problem:

Theorem 2: Given n vectors in Rd, an approximation pa-

rameter ε > 0, and a probability of failure δ > 0, our algorithm

returns a pair of vectors u, v such that with probability at least

1− δ, the Euclidean distance ||u− v|| ≤ (1 + ε)d∗, where d∗

is the Euclidean distance between the closest pair of vectors.

Additionally, the algorithm runs in time(
n2−Ω(

√
ε) + nd

)
poly(log

1

δ
, log n).

For an instance of the Closest Pair problem in which the

pairwise distances between most pairs of vectors are tightly

concentrated about some value, our algorithm gives a more

efficient runtime than is described by the above theorem.

A. Parities, Juntas, and DNFs

Definition 3: An example (x, y) from an (n, k, η)-instance
of parity with noise, consists of x ∈ {−1,+1}n, chosen

uniformly at random, together with a label y ∈ {−1,+1}
defined by y = z ·∏i∈S xi, where z ∈ {−1,+1} is chosen

independently of x to be −1 with probability η, for some fixed

set S ⊂ [n] with |S| = k.

Proposition 1 can be used to yield an algorithm for

an (n, k, η) instance of parity with noise with runtime

nk 5−ω+ε
2(4−ω) poly(1

1−2η) ≈ n0.81poly(1
1−2η). We are able to

13

slightly improve this exponent via a related, though alternate

approach:

Theorem 3: For any fixed ε > 0, for sufficiently large n and

k, given examples from an (n, k, η) instance of parity with

noise, with probability 1− o(1), our algorithm will correctly

return the true set of k parity bits. Additionally, the algorithm

will run in time

n
ω+ε
3 kpoly(

1

1− 2η
) < n0.80kpoly(

1

1− 2η
).

The above theorem, via the reductions of Feldman et al. [7]

has immediate implications for the problems of learning juntas

and DNFs:

Definition 4: An example (x, y) from a (n, η)-instance of

a noisy k-junta consists of x ∈ {−1,+1}n, chosen uniformly

at random, together with a label y ∈ {−1,+1} defined by

y = z · f(xS), where z ∈ {−1,+1} is chosen independently

of x to be −1 with probability η, f is a fixed though unknown

function f : {−1,+1}k → {−1,+1}, and xS denotes the

indices of x occurring in a fixed (though unknown) set S ⊂ [n]
with |S| = k.

Corollary 5: For sufficiently large n and k given access

to examples from an (n, η) instance of a noisy k-junta, with

constant probability our algorithm will correctly return the

true set of k′ ≤ k relevant indices, and truth table for the

function. Additionally, the algorithm has runtime, and sample

complexity bounded by

n
ω+ε
3 kpoly(

1

1− 2η
) < n0.80kpoly(

1

1− 2η
).

For learning juntas without noise, by leveraging our im-

proved algorithm for learning sparse parities with noise in

place of the brute-force-search component of the algorithm of

Mossel et al. [13] (and rebalancing the tradeoff between the

search for low degree Fourier coefficients, and a low degree

representation as a polynomial over F2 in their algorithm), we

can achieve an improved exponent:

Corollary 6: For sufficiently large n and k given access

to examples from an (n, η) instance of a noisy k-junta with

η = 0, with constant probability our algorithm will correctly

return the true set of k′ ≤ k relevant indices, and truth table

for the function. Additionally, the algorithm has runtime, and

sample complexity bounded by

n
ω+ε
4 kpoly(n) < n0.60kpoly(n).

Definition 7: An example (x, y) from a r-term DNF over n
bits under the uniform distribution consists of x ∈ {−1,+1}n,

chosen uniformly at random, together with a label y ∈
{−1,+1} given by a fixed (though unknown) r-term DNF

applied to x.

The following corollary follows from first arguing that an

analog of Theorem 3 holds in which the sample complexity

has been reduced (Theorem 4), and then applying the reduction

of Feldman et al.

Corollary 8: For sufficiently large n and k, there exists an

algorithm that (ε, δ)–PAC learns r-term DNF formulae over n
bits from uniformly random examples that runs in time

poly

(
1

δ
,
r

ε

)
n0.80 log r

ε ,

where the logarithm is to the base 2.

IV. THE Expand and Aggregate ALGORITHM

For the remainder of this paper, it will prove more conve-

nient to switch from Boolean vectors to vectors with entries

in {−1,+1}, as we will work with inner products (rather

than Hamming distances). These two quantities are easily

related, as dH(u, v) = d−〈u′,v′〉
2 , where u′ is obtained from

the Boolean vector u by replacing each 0 by −1 (and v′ is

obtained from v analogously).

Given an m × n matrix X with entries in {−1,+1}
whose columns are uniformly random, with the exception of

two ρ-correlated columns, one naive approach to finding the

correlated columns is to simply compute W = XtX , the

matrix whose i, jth entry is the inner product between the ith
and jth columns of matrix X . With overwhelming probability,

the largest off-diagonal entry of W will correspond to the

correlated columns, as that entry will have value roughly mρ,
whereas all the other off-diagonal entries have expected value

0, and will be tightly concentrated around 0, with standard

deviation
√
m. The obvious issue with this approach is that

W has n2 entries, precluding a subquadratic runtime. This

remains an issue even if the number of rows, m, is taken to

be near the information theoretic limit of O(logn
ρ2).

Our approach is motivated by the simple observation that

if two columns of X are highly correlated, then we can

compress X , by simply aggregating sets of columns. If one

randomly partitions the n columns into, say, n2/3 sets, each of

size n1/3, and then replaces each set of columns by a single

vector, each of whose entries is given by the sum (over the

real numbers) of the corresponding entries of the columns in

the set, then we have shrunk the size of the matrix from

m × n, to an m × n2/3 matrix, Z (that now has integer

entries in the range [−n1/3, n1/3]). It is still the case that most

pairs of columns of Z will be uncorrelated. If, in the likely

event that the two original correlated columns are assigned to

distinct sets, the two columns of Z to which the two correlated

columns contribute, will be slightly correlated. Trivially, the

expected inner product of these two columns of Z is O(ρm),
whereas the inner product between any two other columns

of Z has expected value 0, and variance O(n2/3m). Thus

provided ρm >>
√
n2/3m, and hence m >> n2/3/ρ2, there

should be enough data to pick out the correlated columns

of matrix Z, by computing W ′ = ZtZ, and then finding

the largest off-diagonal element. This computation of the

product of an n2/3 × n2/3/ρ2 matrix with its transpose, via

fast matrix multiplication, is relatively cheap, taking time

n2ω/3poly(1/ρ) < n1.6 · poly(1/ρ).
Once one knows which two columns of Z contain the

original correlated columns of W , one can simply brute-force

14

check all pairs of those columns, which takes time mn2/3.
(One could also recurse the algorithm on the two relevant

sets of n1/3 columns, though this would not improve the

asymptotic running time.) The computation, now, is dominated

by the size of the initial n2/3/ρ2 × n > n1.66 matrix! It

is also clear that the runtime of this algorithm will depend

only inverse polynomially on the correlation. Optimizing

the tradeoff between the size of the initial matrix, and the

time spent computing the product, yields an exponent of

(5− ω)/(4− ω) < 1.62.

We conclude this section by formally describing the algo-

rithm, and giving the basic proof of correctness.

VECTOR AGGREGATION

Input: An m×n matrix X with entries xi,j ∈ {−1,+1},
and constant α ∈ (0, 1].
Output: a pair of indices, c1, c2 ∈ [n].

• Randomly partition [n] into n1−α disjoint
subsets, each of size nα, denoting the sets
S1, . . . , Sn1−α , and form the m × n1−α matrix Z
with entries zi,j =

∑
k∈Sj

xi,k, where the sum is

taken over the reals.
• Let W = ZtZ, and denote the largest

off-diagonal entry by wi,j .
• Using a brute-force search, taking time

O(mn2α), find and output the pair

(c1, c2) := argmaxc1∈Si,c2∈Sj

m∑
k=1

xk,c1xk,c2

.

The following proposition describes the performance of the

above algorithm, and implies Proposition 1:

Proposition 9: For any constant ε > 0, setting α = 1
2(4−ω)

and m = n2α+ε/ρ2, the algorithm VECTOR-AGGREGATION,

when given as input the value α as above and the matrix X
whose columns consist of n uniformly random vectors chosen

from {−1,+1}m, with the exception of a pair of columns

having inner product ρm, will output the true set of correlated

columns with probability 1− o(1), and will run in time

O

(
n

5−ω
4−ω+ε

ρ2ω

)
< O(n1.62/ρ2ω).

Proof: We first verify the runtime of the algorithm. The

input matrix X has size mn = n1+2α+ε/ρ2, and the creation

of the matrix Z takes time linear in this size. The only

remaining bottleneck is the computation of W = ZtZ, which

is the product of a n1−α ×m matrix with its transpose, and

hence can be computed in time max
(
mω, (n1−α/m)2mω

)
<

n
5−ω
4−ω /ρ2ω, where the second argument to the max operation

is the case that m < n1−α.
We now verify the correctness of the algorithm. Assume

without loss of generality that the true correlated columns

are the first and second columns, and that the two true parity

columns contribute to distinct sets (which happens with prob-

ability > 1 − 1/nα), and call them sets S1, S2, respectively.

By a union bound over Chernoff bounds, with probability

1− o(1), for all i, j, |zi,j | ≤ nα/2 log2 n. Additionally, aside

from the first and second columns of Z, which correspond

to the sets S1, S2, all columns are independent, with each

value zi,j having expectation 0, and thus by another union

bound over Chernoff bounds, with probability 1 − o(1) each

off-diagonal entry of W aside from w1,2 and w2,1 will have

magnitude at most |zi,j |2 ·
√
m log2 n ≤ n2α+ε/2

ρ polylog n.
We now argue that w1,2 will be significantly larger than this

value. Indeed, w1,2 =
∑

i∈S1,j∈S2
〈Xi, Xj〉, where Xi denotes

the ith column of matrix X , and by the above calculation,

the magnitude of the contribution to this sum from all terms

other than 〈X1, X2〉 will be at most n2α+ε/2

ρ polylog n, with

probability 1− o(1). To conclude, by assumption〈X1, X2〉 =
ρm = n2α+ε/ρ, which dominates n2α+ε/2

ρ polylog n for any

constant ε > 0 and sufficiently large n, and thus w1,2 or w2,1

will be the largest off-diagonal entries of W with probability

1 − o(1), in which case the algorithm outputs the correct

indices.

A. Projecting Up

The results of the previous section show how to solve the

Light Bulb problem provided that the points have dimension
d ≥ n1/(4−ω)/ρ2. What happens if d is quite small? Infor-

mation theoretically, one should still be able to recover the

correlated pair even for d = O(logn
ρ2). How can one adapt

the VECTOR-AGGREGATION approach to the case when d
is small? The intuition is that we should first increase the

dimension of the points, and then proceed as in the large d
case.

Viewing the matrix of the points as an instance of parity

with noise where all examples with odd parity label have been

removed, to expand the number of rows (‘examples’), one can

simply XOR together a few of the rows, and create a new data

row that is reasonably faithful. In particular, if two columns

are completely correlated, then the result of XORing together a

number of rows will produce a row for which the values in the

two correlated columns will be the same. If the correlation is

not 1, but instead ρ, after combining q rows, the corresponding

columns will only be ρq correlated, as XORing degrades the

correlation. Recall, however, that the algorithm of the previous

section was extremely noise robust, and thus we can afford to

degrade the correlation considerably; for constant ρ, we can

certainly take q = o(log n) without increasing the exponent of

n in the runtime.

Note that as we are viewing the vectors as having entries in

{−1, 1}, this XORing of sets of rows is simply component-

wise multiplication of the rows. Equivalently, it can be seen

as replacing each column with a sample of the entries of the

qth tensor power of the column.

In the context of learning parity with noise, this expansion

approach was fruitfully used by Lyubashevsky [12] to show

that given few examples, one can generate new “simulated”

examples, that can be used in place of actual examples. In

contrast to the current setting, the challenge in that work

was arguing that the generated examples are actually informa-

tion theoretically indistinguishable from new examples (with

higher noise rate).

15

In our setting, we do not need any such strong information

theoretic guarantees, and hence our results will apply more

generally than the random setting of the Light Bulb problem.

Our approach only requires some guarantee on the inner prod-

ucts of pairs of columns, which can be given by inductively

applying the following trivial lemma:

Lemma 10: Given vectors u, v, w, z ∈ Rd with 〈u, v〉 =
ρ1d and 〈w, z〉 = ρ2d, for i, j chosen uniformly at random

from [d],
E[(uiwj) · (vizj)] = ρ1ρ2.

Phrased differently, letting x ∈ Rd2

be the vector whose

entries are given by the d2 entries of the outer-product uwt,

and y is given by the entries of vzt, then 〈x, y〉 = ρ1ρ2d
2.

Elementary concentration bounds show that provided one

samples sufficiently many indices of this outer product, the

inner product between the sampled vectors will be close to

this expected value (normalized by the dimension).
Proof: The proof follows from the independence of i, j,

the facts that E[uivi] = ρ1, E[wjzj] = ρ2, and the basic fact

that the expectation of the product of independent random

variables is the product of their expectations.

We now restate Theorem 1, which applies more generally

than the Light Bulb problem, and can be viewed as an

algorithm for approximating the product of two matrices, given

the promise that their product has a small number of large

entries.

Theorem 1: Consider a set of n vectors in {−1, 1}d and

constants ρ, τ ∈ [0, 1] such that the following condition holds:

• For all but at most n
3
4ω− 1

2 ≈ n1.3 pairs u, v of distinct

vectors, |〈u, v〉| ≤ τd.

With probability 1 − o(1), the algorithm EXPAND AND AG-

GREGATE when given as input the matrix of vectors, ρ and τ ,

will output all pairs of vectors with inner product at least ρd.

Additionally, the runtime of the algorithm is

dn
3ω
4 · n4 log ρ

log τ polylogn ≤ O(dn1.79+4 log ρ
log τ),

where ω < 2.38 is the exponent of matrix multiplication.

EXPAND AND AGGREGATE

Input: An m × n matrix X with entries xi,j ∈
{−1,+1}, ε ∈ (0, 1), and ρ, τ ∈ (0, 1), with ρ > τ
Output: Two indices c1, c2 ∈ [n].

• Let m′ = n
3
4
+2

log ρ
log τ log5 n, and q = logn

− log τ
.

• If m′ ≥ n, do the O(mn2) time brute-force
search.

• Otherwise, we create an m′ × n matrix Y with
entries in {−1,+1}:

– For each of the m′ rows of Y , select
a list t1, . . . , tq with each ti selected
uniformly at random from [m], and set
the jth component of the corresponding
row to be

∏q

i=1
xti,j .

• Let c1, c2 be the output of algorithm
VECTOR-AGGREGATION on input Y with the
parameter α = 1

4
, where the algorithm is

modified to brute-force-search for each of
the top n

3
4
ω− 1

2 entries of W.

The intuition of the above algorithm is that the matrix Y
resulting from the XOR expansion step has the property that

the expected inner product between any two “bad” columns

is bounded in magnitude by m′τ q = m′ 1n , and the expected

inner product of a “good” pair of vectors will be m′ρq =

m′n−
log ρ
log τ >> m′ 1n . We now hope to argue that the inner

products of the “bad” vectors are closely concentrated about

their expectations, in which case the Vector Aggregation step

of the algorithm will find a “good” pair of vectors. The minor

technical issue is that the entries of matrix Y resulting from the

XOR expansion step are not independent. Even if we start with

an instance of the Light Bulb problem—while the expansion

step, intuitively, can be thought of allowing us to pretend that

we were given much more data than we were, the added di-

mensions are far from independent. This lack of independence

harms the exponent slightly—we leverage the randomness of

the partitioning of the Vector Aggregation algorithm to obtain

slightly worse concentration than we would obtain in the truly

random setting. This results in a worse exponent of ≈ 1.79
instead of ≈ 1.62 as in Proposition 9, though this discrepancy

can, perhaps, be removed via a tighter analysis.

The proof of Theorem 1 relies on the following simple

concentration result for the sum of the entries of a random

submatrix of a specified size:

Lemma 11: Given an s×s matrix X , with entries bounded

in magnitude by b, let S1, S2 ⊂ [s] be two sets of size h
chosen uniformly at random. Define the random variable y :=∑

i∈S1,j∈S2
Xi,j . Then

Pr
[
|y − E[y]| > b · h3/2 log h

]
= o(1/poly(h)).

Proof: First consider selecting set S1, and then selecting

set S2. Let zS1
:= E[y|S1] denote the expected value of

y given the choice of S1. We now argue that Pr[|zS1 −
E[zS1]| ≥ b · h3/2 log h] = o(1/poly(h)). To see this, let

pi =

∑s

j=1
xj,i

s denote the average weight of the ith column,

and thus zS1
= h

∑
i∈S1

pi. The probability of zS1
deviating

from its expectation by more than some value is easily seen

to be dominated by the process of choosing the h contributing

pi’s with replacement from the set {p1, . . . , ps}, in which case

a standard Chernoff bound applies, yielding that Pr[|zS1
−

E[zS1]| ≥ b · h3/2 log h] < e−Θ(log2 h) = o(1/poly(h)).
We now argue that, with high probability, the value of y

will be closely concentrated around zS1
. In analogy with the

above, fixing a set S1 fixes the average weight of each row of

the restriction of matrix X to the columns indexed by elements

of S1. An identical analysis to the above (over the randomness

in the choice of S2 rather than S1) yields the desired lemma.

We now prove Theorem 1.

Proof of Theorem 1: The runtime of EXPAND AND AG-

GREGATE is dominated by the multiplication of an n3/4×m′

matrix with its transpose, and thus trivially, takes time at most

O
(
n

3ω
4 · (m′

n3/4)
2
)
.

16

To verify the correctness of the algorithm, we first proceed

under the assumption that the only pair of columns with

inner product greater than τd is the pair with inner product

at least ρd. First observe that for a pair of vectors with

inner product bounded in magnitude by τd, after the degree

q XORing expansion, by Lemma 10, the magnitude of the

expected inner product is at most m′ · τ q ≤ m′/n ≤ 1, which

is negligible in comparison to the variance of this quantity.

By a union bound over Chernoff bounds, with probability

1− o(1) all such inner products will have magnitude at most√
m′ log n < n

3
8+

log ρ
log τ log7/2 n := β. Since the inner product

of two sums of sets of vectors is simply the sum of the pairwise

inner products between the elements of the sets, by Lemma 11,

the contribution from these uncorrelated columns to each entry

of the product of the aggregated matrix and its transpose—

matrix W—calculated in the VECTOR-AGGREGATION stage

of the algorithm will be bounded by

(n1/4)3/2 log n · β = n
3
4+

log ρ
log τ log9/2 n

On the other hand, the inner product of the expanded pair of

correlated vectors will, with probability 1− o(1), be at least

1

2
m′ρq =

1

2
m′n−

log ρ
log τ =

1

2
n

3
4+

log ρ
log τ log5 n,

which dominates the contribution of the uncorrelated vectors

for sufficiently large n.

To conclude, we consider the case that there might be at

most n
3
4ω− 1

2 pairs of columns with inner product > τd. With

probability 1− o(1), all the pairwise correlations between the

sets of vectors to which the most correlated pair get grouped

will be at most τd. Additionally, as there are at most n
3
4ω− 1

2

pairs of vectors whose inner products have magnitude greater

than τd, there will be at most this many entries of W that are

larger than n
3
4+

log ρ
log τ log9/2 n, with probability 1− o(1). Thus

one could modify the VECTOR-AGGREGATION algorithm by

performing the O(dn1/2) time brute-force search for each of

the n
3
4ω− 1

2 largest entries of the matrix W of the VECTOR-

AGGREGATION algorithm, taking total time O(dn
3
4ω). The

probability of success can be boosted by repetition.

V. THE CHEBYSHEV EMBEDDING, AND CLOSEST-PAIR

PROBLEM

We now abstract and refine the main intuitions behind

the EXPAND AND AGGREGATE algorithm, to yield our algo-

rithm for the general approximate closest pair problem. The

VECTOR-AGGREGATION algorithm of the previous section

relies, crucially, on the tight concentration around 0 of the

inner products of the uncorrelated vectors. In the case of

Proposition 1, this concentration came “for free”, because

we assumed that the dimensionality of the data was large

≈ n.6. To obtain Theorem 1, we needed to work to obtain

sufficiently tight concentration. In particular, we performed a

metric embedding f : {−1,+1}d → {−1,+1}m, with the

crucial property that for an appropriately chosen integer q, for

u, v ∈ {−1,+1}d,
〈f(u), f(v)〉

m
≈
(〈u, v〉

d

)q

.

The key property of this mapping x → xq is that if one

pair of vectors has an inner product that is a factor of (1 + ε)
larger than than that of any other pair, after performing this

mapping, the inner product of the image of this pair will now

be a factor of (1 + ε)q larger than that of the images of any

other pair of vectors; thus the “gap” has been significantly

expanded. Of course, we can not take q to be arbitrarily large,

as we would like to maintain a subquadratic amount of data

and thus m << n, and the variance in the inner products that

arises from the subsampling process (choosing which subsets

of the rows to XOR) will be O(m). Thus if q is so large that

the O(
√
m) standard deviation in the inner product dominates

the mρq inner product of the images of the correlated pair,

the algorithm will fail.

A simple calculation shows that if we try to obtain an

algorithm for the (1 + ε) Approximate Closest Pair problem

via this EXPAND AND AGGREGATE approach, we would end

up with an algorithm with runtime n2−O(ε). Can we do any

better? To simplify the exposition, assume that we are told

that there is a “good” pair of vectors with inner product at

least (1 + ε)d/2, and that all other pairs of vectors are “bad”

and have inner product in the range [−d/2, d/2]. In order to

improve upon this runtime of n2−O(ε), we need an improved

embedding—one that damps the magnitudes of the “bad”

pairs of vectors as much as possible, while preserving the

inner product between the closest pair. Specifically, we seek

a mapping fc : {−1,+1}d → {−1,+1}m with the following

properties:

• For all u, v ∈ {−1,+1}d, if 〈u, v〉 ≥ (1 + ε)d/2, then

〈fc(u), fc(v)〉 ≥ c.
• For all u, v ∈ {−1,+1}d, if 〈u, v〉 ∈ [−d/2, d/2], then

〈fc(u), fc(v)〉 is as small as possible.

• For all u ∈ {−1,+1}d, fc(u) can be computed reason-

ably efficiently.

The dimension of the image, m, is not especially important,

as we could always simply choose a random subset of the

dimensions to project onto while roughly preserving the inner

products (provided this can all be computed efficiently). In

general, it is not clear what the optimal such embedding will

be, or how extreme a “gap amplification” we can achieve. In

the following section, we show how to construct one family

of natural embeddings which allow us to give an algorithm for

the (1 + ε) Approximate Closest Pairs problem with runtime

n2−Ω(
√
ε).

A. Embedding via Monic Polynomials

For the remainder of the chapter, it will prove convenient to

consider vectors with unit Euclidean norm; hence the Boolean

vectors will be scaled by a factor of 1/
√
d. Given a monic

degree q polynomial P , with q real roots r1, . . . , rq ∈ (−1, 1)
we wish to give a mapping f : Rd → Rm such that

〈f(u), f(v)〉 ≈ P (〈u, v〉) .

17

Constructing such a mapping in general is not possible:

a classical result of Schoenberg from the 1940s [17] char-

acterizes the set of functions g : R → R which have the

property that for any d, there exists f : Sd−1 → Rm such

that 〈f(u), f(v)〉 = g (〈u, v〉) for all u, v ∈ Sd−1, where

Sd−1 denotes the d-dimensional spherical shell. In particular,

he showed that a necessary and sufficient condition for such

functions g is that their Taylor expansion about 0 has exclu-

sively nonnegative coefficients (and converges uniformly).

Given that realizing a general degree q polynomial P via a

single embedding seems improbably, we now briefly describe

how to construct two mappings, f, g : Rd → Rm with the

property that

〈f(u), g(v)〉 ≈ P (〈u, v〉) · 1

2q
.

Note that for the purposes of the closest pair problem, such a

pair of embeddings are just as good as a single embedding.

Lemma 10 shows that if we can construct such embeddings

for the polynomials Q1 and Q2, then by simply taking the

component-wise products of pairs of rows, we can obtain an

embedding for the polynomial Q(x) = Q1(x)Q2(x). Thus all

that remains is showing that we can construct embeddings for

the degree-1 polynomials Q(x) = x−ri
2 for each root ri of the

desired polynomial P .

The mappings for Q(x) = x+1
2 is obtained by simply adding

d additional dimensions to each vector, populated with +1’s,

thus sending an inner product of cd to an inner product (in

2d-dimensional space) of cd + d = c+1
2 (2d). Generally, for

Q(x) = x−ri
2 , the mapping f will simply add d additional

dimensions populated by +1′s. The mapping g will add d
additional dimensions where the first 1−ri

2 d dimensions are

populated with +1s, and the remaining 1+ri
2 d dimensions are

populated with −1’s. Given these mappings, an inner product

of cd will yield an inner product of cd + 1−ri
2 d − 1+ri

2 d =
c−ri
2 (2d), as desired. Given this tool, the question is now

which polynomials should we use?
The following fact suggests an embedding which, at least

among a certain class of embeddings, will be optimal.3

Fact 12: (see e.g. Thm. 2.37 of [16]) For any x �∈ [−1, 1],
Tq(x) = max

{|p(x)| : p ∈ Pq and supy∈[−1,1]|p(y)| ≤ 1
}
,

where Tq is the degree q Chebyshev polynomial (of the first

kind), and P denotes the set of all degree q polynomials with

real coefficients.

Perhaps the most surprising aspect of this fact is that a single

polynomial, Tq captures this extremal behavior for all x.

To illustrate the general approach of our algorithm, for the

example above in which all the “bad” inner products are in

3We note that better constants would be obtained by replacing Chebyshev
polynomials of the first kind, with Chebyshev polynomials of the second kind,
as we want to minimize the �1 norm of the inner products of the images of
the “bad” vectors, rather than the �∞ norm, though the difference is a small
constant, and the analysis is easier in the case of Chebyshev polynomials of
the first kind.

the range [−d/2, d/2], we will construct an embedding cor-

responding to the monic polynomial P (x) = Tq(2x)/2
2q−1,

where Tq(x) is the qth Chebyshev polynomial (of the first

kind). Note that since Tq(x) has q roots, all in the interval

[−1, 1], the polynomial P (x) will also have q real roots in

the interval [−1/2, 1/2]. The corresponding mappings f, g,
constructed as described above, will have the property that

〈f(u), g(v)〉 = P (〈u, v〉) /2q. In particular, we will have

the following two properties, the second of which will be

the source of the
√
ε term in the n2−Ω(

√
ε) runtime of our

Approximate Closest Pair algorithm:

• For u, v with 〈u, v〉 ∈ [−d/2, d/2], 〈f(u), f(v)〉 ≤ 1
23q−1 .

• For u, v with 〈u, v〉 ≥ (1+ ε)d/2, 〈f(u), f(v)〉 ≥ eq
√

ε

23q−1 .

We will end up choosing q = O(log n), and hence the above

multiplicative gap of eq
√
ε = nO(

√
ε), hence we will be able to

aggregate sets of nO(
√
ε) vectors. We will ensure that the image

of the original vectors have dimension m < n0.29, hence the

most computationally expensive step of our algorithm will be

the computation of the product of an n1−O(
√
ε) × m matrix

and an m × n1−O(
√
ε) matrix, using fast rectangular matrix

multiplication with the following performance guarantee:

Fact 13 (Coppersmith [5]): For any constant δ > 0, pro-

vided α < .29, the product of an n × nα with an nα × n
matrix can be computed in time O(n2+δ).

There are several technical challenges in realizing our

general result for the (1+ε) approximate closest pair problem,

particularly in the Euclidean setting. We first show that it

suffices to consider the case that all vectors lie on the unit

sphere, and then show that it suffices to find a pair of vectors

whose inner product is additively within ε from that of the

pair with maximal inner product. One of the difficulties of

this reduction is the case in which most of the vectors are

extremely close together (<< 2−n). Our algorithm and proof

of Theorem 2 are given in the full version.

VI. LEARNING SPARSE PARITIES WITH NOISE

The problem of finding a ρ-correlated pair of Boolean

vectors from among n random vectors is easily seen to be

equivalent to solving the Learning Parity with Noise problem,

in the special case that the size of the true parity is k = 2;
the correspondence between the correlation ρ and noise rate

η is given by η = 1/2 − ρ/2. To see one direction of the

equivalence, note that given an instance of such a parity with

noise problem, if one removes all examples that have label

1, one will be left with a set of examples in which the two

true parity indices are correlated. One could thus use the

algorithm of Theorem 1 to find the pair of parity indices in

time n1.62poly(1
1/2−η).

In general, given an algorithm for solving the parity with

noise problem for parities of some fixed size c in time O(nα),
one may attempt to adapt it to obtain an algorithm for the

parity with noise problem for parities of any value k that runs

in time O(nk α
c) by performing the following transformation:

for each length n example with label �, transform it into

18

a length N =
(

n
k/c

) ≈ nk/c example, where each index

represents the XOR of some set of k/c of the indices of the

original example. If the original set of examples contained

a set of k indices whose XOR is correlated with the labels,

then the transformed examples will contain (several) sets of

c indices whose XOR is correlated with the labels. One can

now simply apply the original algorithms for finding parities

of size c to the transformed set of examples, to yield a runtime

of O
(
(nk/c)α

)
. The one minor difficulty, of course, is that

the transformed examples are no longer uniformly random bit

strings, though most algorithms should be robust to the type

of dependencies that are introduced by this transformation.

The above transformation motivates the search for im-

proved algorithms for finding small constant–sized parities

(k = 2, 3, 4,) Given the existence of a subquadratic time

algorithm for the case k = 2, a natural hope is that one

can design better and better algorithms for larger k, perhaps

with the eventual hope of yielding an no(k) algorithm. In the

remainder of this section, we describe an algorithm for the case

k = 3, with runtime nω+εpoly(1
1/2−η), which yields an algo-

rithm for parities of size k with runtime n
ω+ε
3 kpoly(1

1/2−η) ≈
n0.80kpoly(1

1/2−η). While the constant in the exponent is only

≈ 0.02 better than what is yielded by Theorem 1, this slightly

different approach may be of independent interest.

Our k = 3 algorithm is also based on using fast matrix

multiplication to find a pair of correlated vectors, though

does not require any column aggregation. The crux of the

approach is that a parity function has reasonably heavy low-

degree Fourier coefficients if one changes from the uniform

distribution over the Boolean hypercube to a slightly biased

product distribution. The required bias is very small, thereby

allowing one to efficiently subsample the uniform examples

so as to produce a distribution with the desired bias. In the

remainder of this section we describe the main idea of the

algorithm.

A. A Little Bias Goes a Long Way

Given an example x, y from an instance of learning parity

with noise with three parity bits, with x ∈ {−1,+1}n and

y ∈ {−1,+1}, for any i, Pr[xi = 1|y = 1] = 1/2. Similarly,

Pr[xixj = 1|y = 1] = 1/2 for distinct i, j ∈ [n]. The

improved algorithm for finding parities rests on the following

observation about parity sets of size 3: if the bits of x
are not chosen uniformly at random, but instead are chosen

independently to be 1 with probability 1
2 +α, for some small

bias α, then the above situation no longer holds. In such a

setting, it is still the case that Pr[xi = 1|y = 1] ≈ 1
2 + α,

irrespective of whether i is in the true parity set or not.

However,

Pr[xixj = 1|y = 1] =

{
1
2 +Θ(α) if i and j in parity set,
1
2 +Θ(α2) if i or j not in parity set.

The punchline of the above discrepancy is that very small

biases—even a bias of α = 1/
√
n can be quite helpful.

Given such a bias, for any pair i, j ∈ [n], for sufficiently

large n, even n1.01 examples will be sufficient to determine

whether i and j are both in the parity set by simply measuring

the correlation between the ith and jth indices for examples

with odd label, namely estimating Pr[xixj |y = 1] based on

the examples. How does one compute these
(
n
2

)
correlations

in time o(n3)? By (fast) matrix multiplication. It is worth

stressing that, provided this argument is sound, the resulting

algorithm will be extremely noise-robust, since the discrepancy

between Pr[xixj |y = 1] in the cases that i, j are both parity

bits and the case that they are not, will degrade linearly as

η → 1/2.
It should now be intuitively clear how to extend this

approach from the small-biased setting to the setting in which

the examples are generated uniformly at random, since a

bias of 1/
√
n is quite modest. In particular, with constant

probability, a random length–n example will have at least
n
2 +

√
n positive indices, thus simply filtering the examples by

removing those with fewer than n/2 positive indices should be

sufficient to instill the necessary bias (at the minor expense of

independence). To simplify the proof, we instead argue that we

can subsample the examples in such a way that the resulting

set of examples is information theoretically indistinguishable

from a set of examples chosen according to the 1/
√
n-biased

product distribution.
In order to obtain the corollary for learning DNF formulae

from random examples, via the reduction of Feldman et al. [7],

we also need to reduce the sample complexity. We accomplish

this by employing the XORing trick to simulate extra exam-

ples, and leverage the “Leftover Hash Lemma” of Impagliazzo

and Zuckerman [10], as was done by Lyubashevsky [12].

In our setting, the analysis is slightly more delicate, as we

cannot XOR together especially large sets of examples without

degrading the correlation that we are hoping to detect, and

thus we are not able to argue that the larger set of constructed

examples is information theoretically indistinguishable from a

set of actual examples (with higher noise rate). Nevertheless,

we show that our algorithm can tolerate the dependencies that

this process introduces. We state the theorem, and defer the

full description of the algorithm and proof of correctness to

the full version.

Theorem 4: For any fixed ε > 0, for sufficiently large n and

k, examples from an (n, k, η) instance of parity with noise,

with probability 1− o(1), our algorithm will correctly return

the true set of k parity bits. Additionally, the algorithm will

run in time

n
ω+ε
3 kpoly(

1

1− 2η
) < n0.80kpoly(

1

1− 2η
),

and requires at most n · poly(k logn
1−2η) examples.

VII. FURTHER DIRECTIONS: BEYOND FAST MATRIX

MULTIPLICATION

Beyond the more obvious open questions posed by this

work, one very relevant direction for future work is to give

practical algorithms with subquadratic asymptotic runtimes.

For example:

19

Does there exist an algorithm for finding a pair of
0.05-correlated Boolean vectors from among n =
100, 000 uniformly random Boolean vectors that
significantly beats brute-force-search, in practice?

There are two natural approaches to this question. The

first is to try to improve practical fast matrix multiplication

implementations. While the algorithms of this work rely on

fast matrix multiplication, they do not require an especially

accurate multiplication. In particular, our algorithms would

still succeed if they used a noisy matrix multiplication, or even

an algorithm that ”misplaced” a constant fraction of the cross-

terms. (For example, for n×n matrices A,B,C, in computing

AB = C, the entry ci,j should be the sum of n cross terms

ai,k · bk,j ; our algorithms would be fine if only, say, half of

these cross terms ended up contributing to ci,j .) Tolerating

such “sloppiness” seems unlikely to allow for faster asymptotic

bounds on the runtime (at least within the Coppersmith–

Winograd framework), though it may significantly reduce the

overhead on some of the more practically expensive compo-

nents of the Coppersmith-Winograd framework.

The second approach to yielding a practical algorithm would

be to avoid fast matrix multiplication entirely. Our Expand and

Aggregate algorithm seems natural (if many pairwise inner

products are extremely small, we should “bucket” them in

such a way that we can process them in bulk, yet still be

able to detect which bucket contains the large inner product).

Nevertheless, if one replaces the fast matrix multiplication

step with the naive quadratic-time multiplication, one gets

no improvement over the quadratic brute-force search. It

seems that no clever bucketing schemes (in the “aggregation”

step, one need not simply add the vectors over the reals. . .),

or fancy embeddings can remove the need for fast matrix

multiplication.

One intuitive explanation for the difficulty of avoiding fast

matrix multiplication is via the connection between finding

correlations, and learning parity with noise. The statistical

query (SQ) lower bound of Blum et al. [3], informally, implies

that any algorithm that will beat brute-force-search must be

highly non-SQ; in particular, it must perform nontrivial oper-

ations that intertwine at least log n rows of the matrix whose

columns are the given vectors. Fast matrix multiplication is

clearly such an algorithm.

Given this intuitive need for a non-SQ algorithm, perhaps

the most likely candidate for an off-the-shelf algorithm that

might replace fast matrix multiplication, is the Fast Fourier

Transform. In a recent paper, Pagh gives an extremely clean

(and practically viable) algorithm for computing [or approx-

imating] the product of two matrices given the promise that

their product is sparse [or has small Frobenius norm after

one removes a small number of large entries] [14]. The

algorithmic core of Pagh’s approach is the computation of a

Fourier transform. Perplexingly, despite the fact that Pagh’s

results specifically apply to the type of matrix products that

we require in the above algorithms, they seem unable to yield

subquadratic algorithms for our problems.

Acknowledgements

I am very grateful to Vitaly Feldman for pointing out that

algorithms for learning sparse parities with noise can be used

to improve the runtime of the algorithm of Mossel et al. [13]

for learning k-juntas without noise, which yields Corollary 6.

I am also grateful to Alexandr Andoni for discussing the

Approximate Closest Pair problem with me, and to Vitaly

Feldman, Adam Kalai, Aleksander Madry, and Paul Valiant

for discussing the Parity with Noise problem with me over

the past few years.

REFERENCES

[1] N. Alon and A. Naor. Approximating the cut-norm via Grothendiecks
inequality. In Proceedings of the ACM Symposium on Theory of
Computing (STOC), pages 72–80, 2004.

[2] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approx-
imate nearest neighbor in high dimensions. In IEEE Symposium on
Foundations of Computer Science (FOCS), pages 459–468, 2006.

[3] A. Blum, M. Furst, J. Jackson, M. Kearns, Y. Mansour, and S. Rudich.
Weakly learning DNF and characterizing statistical query learning using
Fourier analysis. In Proceedings of the ACM Symposium on Theory of
Computing (STOC), pages 253–262, 1994.

[4] A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the
parity problem, and the statistical query model. Journal of the ACM
(JACM), 50(4):507–519, 2003.

[5] D. Coppersmith. Rectangular matrix multiplication revisited. Journal of
Complexity, 13(1):42–49, 1997.

[6] M. Dubiner. Bucketing coding and information theory for the statistical
high dimensional nearest neighbor problem. CoRR, abs/0810.4182,
2008.

[7] V. Feldman, P. Gopalan, S. Khot, and A. Ponnuswami. New results
for learning noisy parities and halfspaces. In IEEE Symposium on
Foundations of Computer Science (FOCS), 2006.

[8] E. Grigorescu, L. Reyzin, and S. Vempala. On noise-tolerant learning
of sparse parities and related problems. In The 22nd International
Conference on Algorithmic Learning Theory (ALT), 2011.

[9] N. J. Hopper and A. Blum. Secure human identification protocols. In
ASIACRYPT, pages 52–66, 2001.

[10] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In
IEEE Symposium on Foundations of Computer Science (FOCS), pages
248–253, 1989.

[11] P. Indyk and R. Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the ACM
Symposium on Theory of Computing (STOC), 1998.

[12] V. Lyubashevsky. The parity problem in the presence of noise, decoding
random linear codes, and the subset sum problem. In RANDOM, pages
378–389, 2005.

[13] E. Mossel, R. O’Donnell, and R. Servedio. Learning functions of k
relevant variables. Journal of Computer and System Sciences, 69(3):421–
434, 2004.

[14] R. Pagh. Compressed matrix multiplication. In ”Innovations in
Theoretical Computer Science (ITCS)”, 2012.

[15] Ramamohan Paturi, Sanguthevar Rajasekaran, and John H. Reif. The
light bulb problem. In Conference on Learning Theory (COLT), pages
261–268, 1989.

[16] T.J. Rivlin. The Chebyshev Polynomials. John Wiley and Sons, 1974.
[17] I.J. Schoenberg. Positive definite functions on spheres. Duke Mathe-

matical Journal, 9(1):96–108, 1942.
[18] L. Valiant. Functionality in neural nets. In First Workshop on

Computational Learning Theory, pages 28–39, 1988.
[19] K. A. Verbeurgt. Learning DNF under the uniform distribution in

quasipolynomial time. In Conference on Learning Theory (COLT), pages
314–326, 1990.

[20] V. Vassilevska Williams. Multiplying matrices faster than Coppersmith–
Winograd. In Proceedings of the ACM Symposium on Theory of
Computing (STOC), 2012.

20

