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Abstract—Topic Modeling is an approach used for automatic
comprehension and classification of data in a variety of settings,
and perhaps the canonical application is in uncovering thematic
structure in a corpus of documents. A number of foundational
works both in machine learning [17] and in theory [30]
have suggested a probabilistic model for documents, whereby
documents arise as a convex combination of (i.e. distribution
on) a small number of topic vectors, each topic vector being
a distribution on words (i.e. a vector of word-frequencies).
Similar models have since been used in a variety of application
areas; the Latent Dirichlet Allocation or LDA model of Blei et
al. is especially popular.

Theoretical studies of topic modeling focus on learning the
model’s parameters assuming the data is actually generated from
it. Existing approaches for the most part rely on Singular
Value Decomposition (SVD), and consequently have one of
two limitations: these works need to either assume that each
document contains only one topic, or else can only recover the
span of the topic vectors instead of the topic vectors themselves.

This paper formally justifies Nonnegative Matrix Factoriza-
tion (NMF) as a main tool in this context, which is an analog
of SVD where all vectors are nonnegative. Using this tool
we give the first polynomial-time algorithm for learning topic
models without the above two limitations. The algorithm uses a
fairly mild assumption about the underlying topic matrix called
separability, which is usually found to hold in real-life data.
Perhaps the most attractive feature of our algorithm is that it
generalizes to yet more realistic models that incorporate topic-
topic correlations, such as the Correlated Topic Model (CTM)
and the Pachinko Allocation Model (PAM).

We hope that this paper will motivate further theoretical
results that use NMF as a replacement for SVD – just as NMF
has come to replace SVD in many applications.

I. INTRODUCTION

Developing tools for automatic comprehension and clas-

sification of data — web pages, newspaper articles, images,

genetic sequences, user ratings — is a holy grail of machine

learning. Topic Modeling is an approach that has proved

successful in all of the aforementioned settings, though for

concreteness here we will focus on uncovering thematic

structure of a corpus of documents (see e.g. [5], [7]).

In order to learn structure one has to posit the existence
of structure, and in topic models one assumes a generative
model for a collection of documents. Specifically, each

document is represented as a vector of word-frequencies
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(the bag of words representation). Seminal papers in the-

oretical CS (Papadimitriou et al. [30]) and machine learning

(Hofmann’s Probabilistic Latent Semantic Analysis [17])

suggested that documents arise as a convex combination of

(i.e. distribution on) a small number of topic vectors, where

each topic vector is a distribution on words (i.e. a vector

of word-frequencies). Each convex combination of topics

thus is itself a distribution on words, and the document is

assumed to be generated by drawing N independent samples

from it. Subsequent work makes specific choices for the

distribution used to generate topic combinations —the well-

known Latent Dirichlet Allocation (LDA) model of Blei et

al [7] hypothesizes a Dirichlet distribution (see Section IV).
Thus the topic modeling problem consists of fitting a

good topic model to the document corpus. The prevailing

approach in machine learning is to use local search (e.g.

[12]) or other heuristics [35] in an attempt to find a maximum
likelihood fit to the above model. For example, fitting to a

corpus of newspaper articles may reveal fifty topic vectors

corresponding to, say, politics, sports, weather, entertain-

ment etc., and a particular article could be explained as

a (1/2, 1/3, 1/6)-combination of the topics politics, sports,

and entertainment. Unfortunately (and not surprisingly), the

maximum likelihood estimation is NP -hard (see Section V)

and consequently when using this paradigm, it seems neces-

sary to rely on unproven heuristics even though these have

well-known limitations (e.g. getting stuck in a local minima

[12], [31]).
The work of Papadimitriou et al [30] (which also for-

malized the topic modeling problem) and a long line of

subsequent work have attempted to give provable guarantees

for the problem of learning the model parameters assuming
the data is actually generated from it. This is in contrast

to a maximum likelihood approach, which asks to find the

closest-fit model for arbitrary data. The principal algorithmic

problem is the following (see Section I-A for more details):

Meta Problem in Topic Modeling: There is an
unknown topic matrix A with nonnegative entries
that is dimension n×r, and a stochastically gener-
ated unknown matrix W that is dimension r×m.
Each column of AW is viewed as a probability
distribution on rows, and for each column we are
given N � n i.i.d. samples from the associated
distribution.
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Goal: Reconstruct A and parameters of the gen-
erating distribution for W .

The challenging aspect of this problem is that we wish

to recover nonnegative matrices A,W with small inner-

dimension r. The general problem of finding nonnegative

factors A,W of specified dimensions when given the matrix

AW (or a close approximation) is called the Nonnegative
Matrix Factorization (NMF) problem (see [24], and [3] for

a longer history) and it is NP-hard [34]. Lacking a tool to

solve such problems, theoretical work has generally relied

on the Singular Value Decomposition (SVD) which given the

matrix AW will instead find factors U, V with both positive

and negative entries. SVD has the feel of tool clustering —

and its application in this setting seems to require assuming

that each document has only one topic. In Papadimitriou et

al [30] this is called the pure documents case and is solved

under strong, additional assumptions about the topic matrix

A. (See also [29] and the recent work of Anandkumar et

al. [2] which completely solves this case using the method

of moments.) Alternatively, other papers use SVD to recover

the span of the columns of A (i.e. the topic vectors) [4], [22],

[21], which suffices for some applications such as computing

the inner product of two document vectors (in the space

spanned by the topics) as a measure of their similarity.
These limitations of existing approaches —either restrict-

ing to one topic per document, or else learning only the span

of the topics instead of the topics themselves—are quite

serious. In practice documents are much more faithfully

described as a distribution on topics and indeed for a wide

range of applications one needs the actual topics and not

just their span – such as when browsing a collection of

documents without a particular query phrase in mind, or

when tracking how topics evolve over time (see [5] for

a survey of various applications). Here we consider what

we believe to be a much weaker assumption – separability.

Indeed, this property has already been identified as a natural

one in the machine learning community [13] and has been

empirically observed to hold in topic matrices fitted to

various types of data [6].
Separability requires that each topic has some near-perfect

indicator word – a word that we call the anchor word for

this topic — that appears with reasonable probability in that

topic but with negligible probability in all other topics (e.g.,

“401k” could be an anchor word for the topic “personal

finance”). We give a formal definition in Section I-A.

This property is particularly natural in the context of topic

modeling, where the number of distinct words (dictionary

size) is very large compared to the number of topics. In a

typical application, it is common to have a dictionary size

in the thousands or tens of thousands, but the number of

topics is usually somewhere in the range from fifty to a

hundred. Note that separability does not mean that an anchor

word always occurs —in fact, a typical document may be

very likely to contain no anchor words. Instead, separability

says that when an anchor word does occur, this is a strong

indicator that the corresponding topic is in the mixture used

to generate the document.

Recently, we gave a polynomial time algorithm to solve

NMF under the condition that the topic matrix A is separable

[3]. The intuition that underlies this algorithm is that the

set of anchor words can be thought of as extreme points

(in a geometric sense) of the dictionary. This condition can

be used to identify all of the anchor words and then also

the nonnegative factors. Ideas from this algorithm are a key

ingredient in our present paper, but our focus is on the

question:

Question. What if we are not given the true matrix AW , but
are instead given a few samples (say, a hundred samples)
from the distribution represented by each column?

The main technical challenge in adapting our earlier

NMF algorithm is that each document vector is a very
poor approximation to the corresponding column of AW
— it is too noisy in any reasonable measure of noise.

Nevertheless, the core insights of our NMF algorithm still

apply. Note that it is impossible to learn the matrix W
to within arbitrary accuracy. (Indeed, this is information

theoretically impossible even if we knew the topic matrix

A as well as the distribution from which the columns of W
are generated.) So we cannot in general give an estimator

that converges to the true matrix W , and yet we can give an

estimator that converges to the true topic matrix A! (For

an overview of our algorithm, see the first paragraph of

Section III.)

We hope that this application of our NMF algorithm is just

a starting point and other theoretical results can use NMF as

a replacement for SVD – just as NMF has come to replace

SVD in several applied settings. In addition, the geometric

problems that underly NMF are not yet fully understood and

there are many interesting theoretical challenges that remain.

Practical Issues. The estimates of runtimes throughout the

paper are possibly too pessimistic. As mentioned in the

conclusions section, simple variations of the algorithms in

this paper run very fast —much more so than existing

software for topic models.

A. Our Results

Here we formally define the topic modeling (learning)

problem which we informally introduced above. There is

an unknown topic matrix A which is of dimension n × r
(i.e. n is the dictionary size) and each column of A is a

distribution on [n]. There is an unknown r ×m matrix W
each of whose columns is itself a distribution (i.e. a convex

combination) on [r]. The columns of W are i.i.d. samples

from a distribution T which belongs to a known family, e.g.,

Dirichlet distributions, but whose parameters are unknown.

Thus each column of AW being a convex combination of

distributions is itself a distribution on [n], and the algorithm’s
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input consists of N i.i.d. samples for each column of AW .

Here N is the document size and is assumed to be a constant

for simplicity. Our algorithm can be easily adapted to work

when the documents have different sizes.

The algorithm’s running time will necessarily depend

upon various model parameters, since distinguishing a very

small parameter from zero imposes a lower bound on the

number of samples needed. The first such parameter is a

quantitative version of separability, which was presented

above as a natural assumption in context of topic modeling.

Definition I.1 (p-Separable Topic Matrix). An n× r matrix

A is p-separable if for each i there is some row π(i) of A
that has a single nonzero entry which is in the ith column

and it is at least p.

The next parameter measures the lowest probability with

which a topic occurs in the distribution that generates

columns of W .

Definition I.2 (Topic Imbalance). The topic imbalance of

the model is the ratio between the largest and smallest

expected entries in a column of W , in other words, a =
maxi,j∈[r]

E[Xi]
E[Xj ]

where X ∈ R
r is a random weighting of

topics chosen from the distribution.

Finally, we require that topics stay identifiable despite

sampling-induced noise. To formalize this, we define a

matrix that will be important throughout this paper:

Definition I.3 (Topic-Topic Covariance Matrix R(T)). If T

is the distribution that generates the columns of W , then

R(T) is defined as an r × r matrix whose (i, j)th entry is

E[XiXj ] where X1, X2, ...Xr is a vector chosen from T.

Let γ > 0 be a lower bound on the �1-condition number

of the matrix R(T). This is defined in Section II, but for

a r × r matrix it is within a factor of
√
r of the smallest

singular value. Our algorithm will work for any γ, but the

number of documents we require will depend (polynomially)

on 1/γ:

Theorem I.4 (Main). There is a polynomial time algorithm
that learns the parameters of a topic model if the number
of documents is at least

m ≥ max

{
O

(
log n · a4r6
ε2p6γ2N

)
, O

(
log r · a2r4

γ2

)}
,

where the three parameters a, p, γ are as defined above. The
algorithm learns the topic-term matrix A up to additive error
ε. Moreover, when the number of documents is also larger
than O

(
log r·r2

ε2

)
the algorithm can learn the topic-topic

covariance matrix R(T) up to additive error ε.

As noted earlier, we are able to recover the topic matrix

even though we do not always recover the parameters of the

column distribution T. In some special cases we can also

recover the parameters of T, e.g. when this distribution is

Dirichlet, as happens in the popular Latent Dirichlet Alloca-
tion (LDA) model [7], [5]. This is done in Section IV-A by

computing a lower bound on the γ in terms of the parameter

for the Dirichlet distribution, which allows us with some

other ideas (see Section IV-B) to recover the parameters of

T from the co-variance matrix R(T).
Recently the basic LDA model has been refined to allow

correlation among different topics, which is more realistic.

See for example the Correlated Topic Model (CTM) [8] and

the Pachinko Allocation Model (PAM) [26]. Perhaps the

most attractive aspect of our algorithm is that it extends

to these models as well: we can learn the topic matrix,

even though we cannot always identify T. In real data, there

are always topics that are closely correlated (or very anti-

correlated) and we believe that this extra generality is the

reason our algorithm returns high-quality topics on real data.

Comparison with related works: (i) We rely crucially

on separability. But prior works assume a single topic per

document, which can be thought of as a stronger “separa-

bility” assumption about W instead of A. (ii) After posting

a draft of this paper, a subsequent paper by Anandkumar

et.al. [1]gave an algorithm to recover parameters of an

LDA model without requiring A to be separable. These

results are incomparable since we require separability but

can allow topic correlations. We believe that allowing topic

correlations is crucial when working with real data (and have

found empirical evidence that supports this conclusion). (iii)

We remark that some prior approaches learn the span of A
instead of A require large document sizes (on the order of

the number of words in the dictionary!). By contrast we can
work with documents of length 2.

II. TOOLS FOR (NOISY) NONNEGATIVE MATRIX

FACTORIZATION

A. Various Condition Numbers

Central to our arguments will be various notions of ma-

trices being “far” from being low-rank. The most interesting

one for our purposes was introduced by Kleinberg and

Sandler [21] in the context of collaborative filtering and can

be thought of as an �1-analogue to the smallest singular value

of a matrix.

Definition II.1 (�1 Condition Number). If a matrix B has

nonnegative entries and all rows sum to one then its �1
Condition Number Γ(B) is defined as:

Γ(B) = min
‖x‖1=1

‖xB‖1.

If B does not have row sums of one then Γ(B) is equal to

Γ(DB) where D is the diagonal matrix such that DB has

row sums of one.

For example, if the rows of B have disjoint support then

Γ(B) = 1 and in general the quantity Γ(B) can be thought

of a measure of how close two distributions on disjoint sets
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of rows can be. Note that if x is an n-dimensional real

vector, ‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2 and hence (if σmin(B) is

the smallest singular value of B) we have:

1√
n
σmin(B) ≤ Γ(B) ≤ √mσmin(B).

The above notions of condition number will be most

relevant in the context of the topic-topic covariance matrix

R(T). We shall always use γ to denote the �1 condition

number of R(T). The definition of condition number will be

preserved even when we estimate the topic-topic covariance

matrix using random samples.

Lemma II.2. When m > 5 log r/ε20, with high probability
the matrix R = 1

mWWT is entry-wise close to R(T) with
error ε0. Further, when ε0 < γ/4ar2 where a is topic
imbalance, the matrix R has �1 condition number at least
γ/2.

Proof: Since E[WiW
T
i ] = R(T), the first part of the

lemma follows by a Chernoff bound and a union bound. The

second part follows because R(T) has �1 condition number

γ, and for unit vector v the vector vR can change by at

most ar · rε0 in �1 norm. The extra factor ar comes from

the normalization of rows of R.

In our previous work on nonnegative matrix factoriza-

tion [3] we defined a different measure of “distance” from

singular which is essential to the polynomial time algorithm

for NMF:

Definition II.3 (β-robustly simplicial). If each column of

a matrix A has unit �1 norm, then we say it is β-robustly
simplicial if no column in A has �1 distance smaller than β
to the convex hull of the remaining columns in A.

The following claim clarifies the interrelationships of

these latter condition numbers.

Claim II.4. (i) If A is p-separable then AT has �1 condition
number at least p. (ii) If AT has all row sums equal to 1
then A is β-robustly simplicial for β = Γ(AT )/2.

We shall see that the �1 condition number for product of

matrices is at least the product of the �1 condition numbers.

The main application of this composition is to show that the

matrix R(T)AT (or the empirical version RAT ) is at least

Ω(γp)-robustly simplicial. The following lemma will play a

crucial role in analyzing our main algorithm:

Lemma II.5 (Composition Lemma). If B and C are matri-
ces with �1 condition number Γ(B) ≥ γ and Γ(C) ≥ β, then
Γ(BC) is at least βγ. Specifically, when A is p-separable
the matrix R(T)AT is at least γp/2-robustly simplicial.

Proof: For any vector x we have ‖xBC‖1 ≥
Γ(C) ‖xB‖1 ≥ Γ(C)Γ(B) ‖x‖1. For the matrix R(T)AT ,

by Claim II.4 we know the matrix AT has �1 condition

number at least p. Hence Γ(R(T)AT ) is at least γp and

again by Claim II.4 the matrix is γp/2-robustly simplicial.

B. Noisy NMF under Separability

A key ingredient is an approximate NMF algorithm from

[3] which can recover an approximate nonnegative matrix

factorization M̃ ≈ AW when the �1 distance between each

row of M̃ and the corresponding row in AW is small. We

emphasize that this is not enough for our purposes, since the

term-by-document matrix M̃ will have a substantial amount

of noise (when compared to its expectation) precisely be-

cause the number of words in a document N is much smaller

than the dictionary size n. Rather, we will apply to the Gram

matrix M̃M̃T the algorithms given in the following theorem

and its improvement in the subsequent theorem.

Theorem II.6 (Robust NMF Algorithm [3]). Suppose M =
AW where W and M are normalized to have rows sum
up to 1, A is separable and W is γ-robustly simplicial. Let
ε = O(γ2). There is a polynomial time algorithm that given
M̃ such that for all rows

∥∥∥M̃ i −M i
∥∥∥
1
< ε, finds a W ′

such that
∥∥W ′i −W i

∥∥
1
< 10ε/γ + 7ε. Further every row

W ′i in W ′ is a row in M̃ . The corresponding row in M can
be represented as (1 − O(ε/γ2))W i + O(ε/γ2)W−i. Here
W−i is a vector in the convex hull of other rows in W with
unit length in �1 norm.

In this paper we have an incomparable goal than in [3].

Our goal is not to recover estimates to the anchor words

that are close in �1-norm but rather to recover almost anchor

words (word whose row in A has almost all its weight on a

single coordinate). Hence, we will be able to achieve better

bounds by treating this problem directly, and we give a

substitute for the above theorem. The proof of the Theorem

can be found in the full version.

Theorem II.7. Suppose M = AW where W and M are
normalized to have rows sum up to 1, A is separable and
W is γ-robustly simplicial. When ε < γ/100 there is a
polynomial time algorithm that given M̃ such that for all
rows ‖M̃ i−M i‖1 < ε, finds r row (almost anchor words) in
M̃ . The i-th almost anchor word corresponds to a row in M
that can be represented as (1−O(ε/γ))W i+O(ε/γ)W−i.
Here W−i is a vector in the convex hull of other rows in
W with unit length in �1 norm.

III. ALGORITHM FOR LEARNING A TOPIC MODEL:

PROOF OF THEOREM I.4

First it is important to understand why separability helps

in nonnegative matrix factorization and the exact role played

by the anchor words. Suppose the NMF algorithm is given

a matrix AB. If A is p-separable then this means that A
contains a diagonal matrix (up to row permutations). Thus

a scaled copy of each row of B is present as a row in AB.

In fact, if we knew the anchor words of A, then by looking
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at the corresponding rows of AB we could “read off” the

corresponding row of B (up to scaling) and use these in

turn to recover all of A. Thus the anchor words constitute

the “key” that “unlocks” the factorization, and indeed the

main step of our earlier NMF algorithm was a geometric

procedure to identify the anchor words. When one is given a

noisy version of AB the analogous notion is “almost anchor”

words which correspond to rows of AB that are “very close”

to rows of B; see Theorem II.7.

Next we sketch how to apply these insights to learning

topic models. Let M denote the given term-by-document

matrix, each of whose columns describes the empirical word

frequencies in the documents. It is obtained from sampling

AW and thus is an extremely noisy approximation to AW .

Our algorithm starts by forming the Gram matrix MMT ,

which can be thought of as an empirical word-word covari-

ance matrix. In fact as the number of documents increases
1
mMMT tends to a limit Q = 1

mE[AWWTA], implying

Q = AR(T)AT . (See Lemma III.7.) Imagine that we are

given the exact matrix Q instead of a noisy approximation.

Notice that Q is a product of three nonnegative matrices,

the first of which is p-separable and the last is the transpose

of the first. NMF at first flance seems too weak to help find

such factorizations. However, if we think of Q as a product

of two nonnegative matrices, A and R(T)AT , then our NMF

algorithm [3] can at least identify the anchor words of A.

As noted above, these suffice to recover R(T)AT , and then

(using the anchor words of A again) all of A as well. See

Section III-A for details.

The complication is that we are not given Q but merely a

good approximation to it. Now our NMF algorithm allows

us to recover “almost anchor” words of A, and the crux

of the proof is Section III-B showing that these suffice to

recover provably good estimates to A and WWT . This uses

(mostly) bounds from matrix perturbation theory and inter-

relationships of condition numbers mentioned in Section II.

For simplicity we assume the following condition on the

topic model, which we will see in Section III-D can be

assumed without loss of generality:

(*) The number of words, n, is at most 4ar/ε.
Please see Algorithm 1: Main Algorithm for description of

the algorithm. Note that R is our shorthand for 1
mWWT ,

which as noted converges to R(T) as the number of docu-

ments increases.

A. Recover R and A with Anchor Words

We first describe how the recovery procedure works in

an “idealized” setting (Algorthm 2:RECOVER WITH TRUE

ANCHOR WORDS), when we are given the exact value of

ARAT and a set of anchor words – one for each topic.

We can permute the rows of A so that the anchor words

are exactly the first r words. Therefore AT = (D,UT )
where D is a diagonal matrix. Note that D is not necessarily

the identity matrix (nor even a scaled copy of the identity

= 
DRD DRUT 

URD URUT 

D W 

WT 

D U 

U 

R 

Figure 1. The matrix Q

matrix), but we do know that the diagonal entries are at least

p. We apply the same permutation to the rows and columns

of Q. As illustrated in Figure 1 the submatrix formed by the

first r rows and r columns is exactly DRD. Similarly, the

submatrix consisting of the first r rows is exactly DRAT .

We can use these two matrices to compute R and A, in this

idealized setting (and we will use the same basic strategy in

the general case, but need only be more careful about how

the errors accumulate in our algorithm).

Our algorithm has exact knowledge of the matrices DRD
and DRAT and so the main task is to recover the diagonal

matrix D. Given D, we can then compute A and R (for the

Dirichlet Allocation we can also compute its parameters -

i.e. the �α so that R(α) = R). The key idea to this algorithm

is that the row sums of DR and DRAT are the same, and

we can use the row sums of DR to set up a system of linear

constraints on the diagonal entries of D−1.

Lemma III.1. When the matrix Q is exactly equal to ARAT

and we know the set of anchor words, RECOVER WITH TRUE

ANCHOR WORDS outputs A and R correctly.

Proof: The Lemma is straight forward from Figure 1

and the procedure. By Figure 1 we can find the exact value

of DRAT and DRD in the matrix Q. Step 2 of recover

computes DR�1 by computing DRAT�1. The two vectors are

equal because A is the topic-term matrix and its columns

sum up to 1, in particular AT�1 = �1.

In Step 3, since R is invertible by Lemma II.2, D
is a diagonal matrix with entries at least p, the matrix

DRD is also invertible. Therefore there is a unique solution

�z = (DRD)−1DR�1 = D−1�1. Also D�z = �1 and hence

DDiag(z) = I . Finally, using the fact that DDiag(z) = I ,

the output in step 4 is just (DR)−1DRAT = AT , and the

output in step 5 is equal to R.

B. Recover R and A with Almost Anchor Words

What if we are not given the exact anchor words, but are

given words that are “close” to anchor words? In general

we cannot hope to recover the true anchor words, but

nevertheless a good approximation to these will be enough

to recover R and A.

When we restrict A to the rows corresponding to “almost”

anchor words, the submatrix will not be diagonal. However,
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Algorithm 1. MAIN ALGORITHM, Output: R and A

1) Query the oracle for m documents, where

m = max

{
O

(
log n · a4r6

ε2p6γ2N

)
, O

(
log r · a2r4

γ2

)
, O

(
log r · r2

ε2

)}

2) Split the words of each document into two halves, and let M̃ , M̃ ′ be the term-by-document matrix with first and second half of
words respectively.

3) Compute word-by-word matrix Q = 4
N2m

M̃M̃ ′T

4) Apply the “Robust NMF” algorithm of Theorem II.7 to Q which returns r words that are ”almost” the anchor words of A.
5) Use these r words as input to RECOVER WITH ALMOST ANCHOR WORDS to compute R = 1

m
WWT and A

Algorithm 2. RECOVER WITH TRUE ANCHOR WORDS

Input: r anchor words, Output: R and A

1) Permute the rows and columns of Q so that the anchor words appear in the first r rows and columns
2) Compute DRAT�1 (which is equal to DR�1)
3) Solve for �z: DRD�z = DR�1.
4) Output AT = ((DRDDiag(z))−1DRAT ).
5) Output R = (Diag(z)DRDDiag(z)).

it will be close to a diagonal in the sense that the submatrix

will be a diagonal matrix D multiplied by E, where E is

entry-wise close to the identity matrix (and the diagonal

entries of D are at least Ω(p)). Here we analyze the same

procedure as above and show that it still recovers A and

R (approximately) even when given “almost” anchor words

instead of true anchor words. For clarity we state the

procedure again in Algorithm 3: RECOVER WITH ALMOST

ANCHOR WORDS. The guarantees at each step are different

than before, but the implementation of the procedure is the

same. Notice that here we permute the rows of A (and

hence the rows and columns of Q) so that the “almost”

anchor words returned by Theorem II.6 appear first and the

submatrix A on these rows is equal to DE.

Here, we still assume that the matrix Q is exactly equal to

ARAT and hence the first r rows of Q form the submatrix

DERAT and the first r rows and columns are DERETD.

The complication here is that Diag(z) is not necessarily

equal to D−1, since the matrix E is not necessarily the

identity. However, we can show that Diag(z) is “close” to

D−1 if E is suitably close to the identity matrix – i.e. given

good enough proxies for the anchor words, we can bound the

error of the above recovery procedure. We write E = I+Z.

Intuitively when Z has only small entries E should behave

like the identity matrix. In particular, E−1 should have only

small off-diagonal entries. We make this precise through the

following lemmas:

Lemma III.2. Let E = I + Z and
∑

i,j |Zi,j | = ε < 1/2,
then E−1�1 is a vector with entries in the range [1− 2ε, 1+
2ε].

Proof: E is clearly invertible because the spectral norm

of Z is at most 1/2. Let �b = E−1�1. Since E = I + Z we

multiply E on both sides to get �b + Z�b = �1. Let bmax

be the largest absolute value of any entry of b (bmax =
max |bi|). Consider the entry i where bmax is achieved, we

know bmax = |bi| ≤ 1 + |(Zb)i| ≤ 1 +
∑

j |Zi,j ||bj | ≤
1+ εbmax. Thus bmax ≤ 1/(1− ε) ≤ 2. Now all the entries

in Z�b are within 2ε in absolute value, and we know that
�b = �1 + Z�b. Hence all the entries of b are in the range

[1− 2ε, 1 + 2ε], as desired.

Lemma III.3. Let E = I + Z and
∑

i,j |Zi,j | = ε < 1/2,
then the columns of E−1 − I have �1 norm at most 2ε.

Proof: Without loss of generality, we can consider just

the first column of E−1 − I , which is equal to (E−1 −
I)�e1, where �e1 is the indicator vector that is one on the first

coordinate and zero elsewhere.

The approach is similar to that in Lemma III.2. Let �b =
(E−1 − I)�e1. Left multiply by E = (I +Z) and we obtain
�b + Z�b = −Z �e1. Hence �b = −Z(�b + �e1). Let bmax be the

largest absolute value of entries of �b (bmax = max |bi|). Let

i be the entry in which bmax is achieved. Then

bmax = |bi| ≤ |(Z�b)i|+ |(Z �e1)i| ≤ εbmax + ε

Therefore bmax ≤ ε/(1 − ε) ≤ 2ε. Further, the ‖�b‖1 ≤
‖Z �e1‖1 + ‖Z�b‖1 ≤ ε+ 2ε2 ≤ 2ε.

Now we are ready to show that the procedure RECOVER

WITH ALMOST ANCHOR WORDS succeeds when given

“almost” anchor words:

Lemma III.4. When the matrix Q is exactly equal to
ARAT , the matrix A restricted to almost anchor words
is DE where E − I has �1 norm ε < 1/10 when viewed
as a vector, procedure RECOVER WITH ALMOST ANCHOR

WORDS outputs A such that each column of A has �1 error
at most 6ε. The matrix R has additive error ZR whose �1
norm when viewed as a vector is at most 8ε.
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Algorithm 3. RECOVER WITH ALMOST ANCHOR WORDS

Input: r ”almost” anchor words, Output: R and A

1) Permute the rows and columns of Q so that the ”almost” anchor words appear in the first r rows and columns.
2) Compute DERAT�1 (which is equal to DER�1)
3) Solve for �z: DERETD�z = DER�1.
4) Output AT = ((DERETDDiag(z))−1DERAT ).
5) Output R = (Diag(z)DERETDDiag(z)).

Proof: Since Q is exactly ARAT , our algorithm is

given DERAT and DERETD with no error. In Step 3,

since D, E and R are all invertible, we have

�z = (DERETD)−1DER�1 = D−1(ET )−1�1

Ideally we would want Diag(z) = D−1, and indeed

DDiag(z) = Diag((ET )−1�1). From Lemma III.2, the vector

(ET )−1�1 has entries in the range [1− 2ε, 1+ 2ε], thus each

entry of Diag(z) is within a (1 ± 2ε) multiplicative factor

from the corresponding entry in D−1.

Consider the output in Step 4. Since D, E, R are

invertible, the first output is

(DERETDDiag(z))−1DERAT = (DDiag(z))−1(ET )−1AT

Our goal is to bound the �1 error of the columns of

the output compared to the corresponding columns of A.

Notice that it is sufficient to show that the jth row of

(DDiag(z))−1(ET )−1 is close (in �1 distance) to the in-

dicator vector �ej
T .

Claim III.5. For each j, ‖�ejT (DDiag(z))−1(ET )−1 −
�ej

T ‖1 ≤ 5ε

Proof: Again, without loss of generality we can con-

sider just the first row. From Lemma III.3 �e1
T (ET )−1 has

�1 distance at most 2ε to �e1
T . (DDiag(z))−1 has entries in

the range [1− 3ε, 1 + 3ε]. And so

‖�e1T (DDiag(z))−1(ET )−1 − �e1
T ‖1

≤ ‖�e1T (DDiag(z))−1(ET )−1 − �e1
T (ET )−1‖1

+ ‖�e1T (ET )−1 − �e1
T ‖1

The last term can be bounded by 2ε. Consider the first

term on the right hand side: The vector �e1
T (DDiag(z))−1−

�e1
T has one non-zero entry (the first one) whose absolute

value is at most 3ε. Hence, from Lemma III.3 the first term

can be bounded by 6ε2 ≤ 3ε, and this implies the claim.

The first row of (DDiag(z))−1(ET )−1AT is A1 + zTA
where z is a vector with �1 norm at most 5ε. So every column

of A is recovered with �1 error at most 6ε.
Consider the second output of the algorithm. The output is

Diag(z)DERETDDiag(z) and we can write Diag(z)D =
I+Z1 and E = I+Z2. The leading error are Z1R+Z2R+
RZ1+RZ2 and hence the �1 norm of the leading error term

(when treated as a vector) is at most 6ε and other terms are

of order ε2 and can safely be bounded by 2ε for suitably

small ε).
Finally we consider the general case (in which there is

additive noise in Step 1): we are not given ARAT exactly.

We are given Q which is close to ARAT (by Lemma III.7).

We will bound the accumulation of this last type of error.

Suppose in Step 1 of RECOVER we obtain DERAT + U
and DERETD + V and furthermore the entries of U and

U�1 have absolute value at most ε1 and the matrix V has �1
norm ε2 when viewed as a vector.

Lemma III.6. If ε, ε1, ε2 are sufficiently small, RECOVER
outputs A such that each entry of A has additive error at
most O(ε+ (raε2/p

3 + ε1r/p
2)/γ). Also the matrix R has

additive error ZR whose �1 norm when viewed as a vector
is at most O(ε+ (raε2/p

3 + ε1r/p
2)/γ).

The main idea of the proof is to write DERETD+V as

DER(ET +V ′)D. In this way the error V can be translated

to an error V ′ on E and Lemma III.4 can be applied.

Proof: We shall follow the proof of Lemma III.4. First

can express the error term V instead as V = (DER)V ′(D).
This is always possible because all of D, E, R are invertible.

Moreover, the �1 norm of V ′ when viewed as a vector

is at most 8raε2/γp
3, because this norm will grow by a

factor of at most 1/p when multiplied by D−1, a factor of

at most 2 when multiplied by E−1 and at most ra/Γ(R)
when multiplied by R−1. The bound of Γ(R) comes from

Lemma II.2, we lose an extra ra because R may not have

rows sum up to 1.

Hence DERETD+V = DER(ET +V ′)D and the ad-

ditive error for DERETD can be transformed into error in

E, and we will be able to apply the analysis in Lemma III.4.

Similarly, we can express the error term U as U =
DERU ′. Entries of U ′ have absolute value at most

8ε1r/γp
2. The right hand side of the equation in step 3

is equal to DER�1+U�1 so the error is at most ε1 per entry.

Following the proof of Lemma III.4, we know Diag(z)D
has diagonal entries within 1± (

2ε+ 16ε2/γp
3 + 2ε1

)
.

Now we consider the output. The output for AT is equal

to (DER(ET +V ′)DDiag(z))−1DER(AT +U ′), which is

(DDiag(z))−1(ET+V ′)−1(AT+U ′). Here we know (ET+
V ′)−1 − I has �1 norm at most O(ε + raε2/γp

3) per row,

(DDiag(z)) is a diagonal matrix with entries in 1±O(ε+
raε2/γp

3+ε1), entries of U ′ has absolute value O(ε1r/γp
2).

Following the proof of Lemma III.4 the final entry-wise error
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of A is roughly the sum of these three errors, and is bounded

by O(ε+ (raε2/p
3 + ε1r/p

2)/γ) (Notice that Lemma III.4

gives bound for �1 norm of rows, which is stronger. Here

we switched to entry-wise error because the entries of U are

bounded while the �1 norm of U might be large).

Similarly, the output of R is equal to

Diag(z)(DERETD + V )Diag(z). Again we write

Diag(z)D = I + Z1 and E = I + Z2. The extra term

Diag(z)V Diag(z) is small because the entries of z are at

most to 2/p (otherwise Diag(z)D won’t be close to identity).

The error can be bounded by O(ε+(raε2/p
3+ ε1r/p

2)/γ).

Now in order to prove our main theorem we just need to

show that when number of documents is large enough, the

matrix Q is close to the ARAT , and plug the error bounds

into Lemma III.6. We state the convergence of Q below and

defer the details to the full version.

C. Error Bounds for Q

Here we state the error bound for matrix Q, whose proof

we defer to the full version.

Lemma III.7. When m > 50 logn
Nε2Q

, with high probability all

entries of Q − 1
mAWWTAT have absolute value at most

εQ. Further, the �1 norm of rows of Q are also εQ close to
the �1 norm of the corresponding row in 1

mAWWTAT .

D. Reducing Dictionary Size

So far we have assumed that the number of distinct

words is not too large. Here, we give a simple gadget to

demonstrate that this is true without loss of generality:

Lemma III.8. The general case can be reduced to an
instance in which there are at most 4ar/ε words all of which
(with at most one exception) occur with probability at least
ε/4ar.

The proof is straightforward and the idea is to collect all

words that occur infrequently and “merge” all of these words

into a aggregate word that we will call the runoff word. We

defer the proof to the full version.

IV. THE DIRICHLET SUBCASE

Here we demonstrate that the parameters of a Dirichlet

distribution can be (robustly) recovered from just the covari-

ance matrix R(T). Hence an immediate corollary is that our

main learning algorithm can recover both the topic matrix

A and the distribution that generates columns of W in a

Latent Dirichlet Allocation (LDA) Model [7], provided that

A is separable. We believe that this algorithm may be of

practical use, and provides the first alternative to local search

and (unproven) approximation procedures for this inference

problem [35], [12], [7].

The Dirichlet distribution is parametrized by a vector

α of positive reals and is a natural family of continuous

multivariate probability distributions. The support of the

Dirichlet Distribution is the unit simplex whose dimen-

sion is the same as the dimension of α. Let α be a r
dimensional vector. Then for a vector θ ∈ R

r in the r
dimensional simplex, its probability density is given by

Pr[θ|α] = Γ(
∑r

i=1 αi)∏r
i=1 Γ(αi)

∏r
i=1 θ

αi−1
i , where Γ is the Gamma

function. In particular, when all of the αi’s are equal to one,

the Dirichlet Distribution is just the uniform distribution on

the probability simplex.

The expectation and variance of θi’s are easy to compute

given the parameters α. We denote α0 = ‖α‖1 =
∑r

i=1 αi,

then the ratio αi/α0 should be interpreted as the “size” of

the i-th variable θi, and α0 controls whether the distribution

is concentrated in the interior (when α0 is large) or near the

boundary (when α0 is small). The first two moments of the

Dirichlet distribution are: E[θi] =
αi

α0
,

E[θiθj ] =

{ αiαj

α0(α0+1)
when i 	= j

αi(αi+1)
α0(α0+1)

when i = j
.

Suppose the Dirichlet distribution has maxαi/minαi =
a and the sum of parameters is α0; we give an algorithm

that computes close estimates to the vector of parameters α
given a sufficiently close estimate to the co-variance matrix

R(T) (Theorem IV.3). Combining this with Theorem I.4, we

obtain the following corollary:

Theorem IV.1. There is an algorithm that learns the topic
matrix A with high probability up to an additive error of ε
from at most

m = max

{
O

(
log n · a6r8(α0 + 1)4

ε2p6N

)
,

O

(
log r · a2r4(α0 + 1)2

ε2

)}

documents sampled from the LDA model and runs in time
polynomial in n, m. Furthermore, we recover the parameters
of the Dirichlet distribution to within an additive ε.

Our main goal in this section is to bound the �1-condition

number of the Dirichlet distribution (see Section IV-A), and

using this we show how to recover the parameters of the

distribution from its covariance matrix (Section IV-B).

A. Condition Number of a Dirichlet Distribution

There is a well-known meta-principle that if a matrix

W is chosen by picking its columns independently from a

fairly diffuse distribution, then it will be far from low rank.

However, our analysis will require us to prove an explicit

lower bound on Γ(R(T)). We now prove such a bound when

the columns of W are chosen from a Dirichlet distribution

with parameter vector α. We note that it is easy to establish

such bounds for other types of distributions as well. Recall

that we defined R(T) in Section I, and here we will abuse

notation and throughout this section we will denote by R(α)
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Algorithm 4. DIRICHLET(R), Input: R, Output: α (vector of parameters)

1) Set α/α0 = R�1.
2) Let i be the row with smallest �1 norm, let u = Ri.i and v = αi/α0.

3) Set α0 = 1−u/v
u/v−v

.

4) Output α = α0 · (α/α0).

the matrix R(T) where T is the Dirichlet distribution with

parameter α.

Let α0 =
∑r

i=1 αi. The mean, variance and co-variance

for a Dirichlet distribution are well-known, from which we

observe that R(α)i,j is equal to
αiαj

α0(α0+1)
when i 	= j and

is equal to
αi(αi+1)
α0(α0+1)

when i = j.

Lemma IV.2. The �1 condition number of R(α) is at least
1

2(α0+1)
.

Proof: As the entries R(α)i,j is
αiαj

α0(α0+1)
when i 	= j

and
αi(αi+1)
α0(α0+1)

when i = j, after normalization R(α) is just

the matrix D′ = 1
α0+1

(α× (1, 1, ..., 1) + I) where × is

outer product and I is the identity matrix.

Let x be a vector such that |x|1 = 1 and |D′x|1 achieves

the minimum in Γ(R(α)) and let I = {i|xi ≥ 0} and let

J = Ī be the complement. We can assume without loss of

generality that
∑

i∈I xi ≥ |∑i∈J xi| (otherwise just take

−x instead). The product D′x is
∑

xi

α0+1
α+ 1

α0+1
x. The first

term is a nonnegative vector and hence for each i ∈ I ,

(D′x)i ≥ 0. This implies that |D′x|1 ≥ 1
α0+1

∑
i∈I xi ≥

1
2(α0+1)

.

B. Recovering the Parameters of a Dirichlet Distribution

When the covariance matrix R(α) is recovered with error

εR in �1 norm when viewed as a vector, we can use

Algorithm 4: DIRICHLET to compute the vector α.

Theorem IV.3. When the covariance matrix R(α) is recov-
ered with error εR in �1 norm when viewed as a vector,
the procedure DIRICHLET(R) learns the parameter of the
Dirichlet distribution with error at most O(ar(α0 + 1)εR).

Proof: The αi/α0’s all have error at most εR. The value

u is αi

α0

αi+1
α0+1

± εR and the value v is αi/α0± εR. Since v ≥
1/ar we know the error for u/v is at most 2arεR. Finally

we need to bound the denominator αi+1
α0+1

− αi

α0
> 1

2(α0+1)

(since αi

α0
≤ 1/r ≤ 1/2). Thus the final error is at most

5ar(α0 + 1)εR.

V. MAXIMUM LIKELIHOOD ESTIMATION IS HARD

Here we observe that computing the Maximum Likelihood

Estimate (MLE) of the parameters of a topic model is NP -

hard. We call this problem the Topic Model Maximum

Likelihoood Estimation (TM-MLE) problem:

Definition V.1 (TM-MLE). Given m documents and a target

of r topics, the TM-MLE problem asks to compute the topic

matrix A that has the largest probability of generating the

observed documents (when the columns of W are generated

by a uniform Dirichlet distribution).

Surprisingly, this appears to be the first proof that com-

puting the MLE estimate in a topic model is indeed com-

putationally hard, although its hardness is certainly to be

expected. On a related note, Sontag and Roy [32] recently

proved that given the topic matrix and a document, com-

puting the Maximum A Posteriori (MAP) estimate for the

distribution on topics that generated this document is NP -

hard. Here we will establish that TM-MLE is NP -hard via

a reduction from the MIN-BISECTION problem: In MIN-

BISECTION the input is a graph with n vertices (n is an

even integer), and the goal is to partition the vertices into

two equal sized sets of n/2 vertices each so as to minimize

the number of edges crossing the cut.

Theorem V.2. There is a polynomial time reduction from
MIN-BISECTION to TM-MLE (r = 2).

We defer the proof to the full version. We remark that

the canonical solutions in our reduction are all separable,

and hence this reduction applies even when the topic matrix

A is known (and required) to be separable. So, even in the

case of a separable topic matrix, it is NP -hard to compute

the MLE. Yet, here we have given an efficient estimator that

converges to the true (separable) topic matrix A when the

data is actually generated according to the LDA model.

VI. CONCLUSIONS

Though the goal of the paper is design of an algorithm

with theoretical guarantees, the actual algorithm turns out

to be practical. A straightforward implementation (using

a more efficient, LP-free subroutine to find anchor words

but no other tuning) runs much faster than state-of-the-art

software for topic models, and gives results of comparable

quality. For example on the UCI “Bag of Words” dataset

with New York Times articles [14] we fit 200 topics in

only 10 minutes on a dataset with 300000 articles with a

vocabulary of size 102660, whereas MALLET [28] takes

several hours. A detailed study of its performance is under-

way and will be reported soon. The separability assumption

seems benign on such datasets. In fact our machine learning

colleagues suggest that real-life topic matrices satisfy even

stronger separability assumptions, e.g., the presence of many
anchor words per topic instead of a single one. Leveraging

this promising suggestion, is an open problem.
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