
The minimum k-way cut of bounded size is fixed-parameter tractable

Ken-ichi Kawarabayashi
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku

Tokyo 101-8430, Japan
k_keniti@nii.ac.jp

Mikkel Thorup
AT&T Labs—Research

180 Park Avenue, Florham Park, NJ 07932, USA
mthorup@research.att.com

Abstract— We consider the minimum k-way cut problem
for unweighted undirected graphs with a size bound s on the
number of cut edges allowed. Thus we seek to remove as few
edges as possible so as to split a graph into k components,
or report that this requires cutting more than s edges. We
show that this problem is fixed-parameter tractable (FPT) with
the standard parameterization in terms of the solution size s.
More precisely, for s = O(1), we present a quadratic time
algorithm. Moreover, we present a much easier linear time
algorithm for planar graphs and bounded genus graphs.

Our tractability result stands in contrast to known W[1]
hardness of related problems. Without the size bound, Downey
et al. [2003] proved that the minimum k-way cut problem
is W[1] hard with parameter k, and this is even for simple
unweighted graphs. Downey et al. asked about the status for
planar graphs. We get linear time with fixed parameter k for
simple planar graphs since the minimum k-way cut of a planar
graph is of size at most 6k. More generally, we get FPT with
parameter k for any graph class with bounded average degree.

A simple reduction shows that vertex cuts are at least as
hard as edge cuts, so the minimum k-way vertex cut is also
W[1] hard with parameter k. Marx [2004] proved that finding
a minimum k-way vertex cut of size s is also W[1] hard with
parameter s. Marx asked about the FPT status with edge cuts,
which we prove tractable here. We are not aware of any other
cut problem where the vertex version is W[1] hard but the
edge version is FPT, e.g., Marx [2004] proved that the k-
terminal cut problem is FPT parameterized by the cut size,
both for edge and vertex cuts.

1. INTRODUCTION

We consider the minimum k-way cut problem1 of an
undirected graph. The goal is to find a minimum set of

Ken-ichi Kawarabayashi’s research is partly supported by Japan
Society for the Promotion of Science, Grant-in-Aid for Scientific
Research, by C & C Foundation, by Kayamori Foundation and by
Inoue Research Award for Young Scientists.

At the time of the conference, Mikkel Thorup will be Professor at
the University of Copenhagen.

1There is a lot of confusing terminology associated with cut
problems, e.g., in the original conference version of [5], “multiway
cut” referred to the separation of given terminals, but that term
is fortunately corrected to “multiterminal cut” in the final journal
version. Here we follow the latter more explicit terminology: k-way
cut for arbitrary splitting into k pieces, k-terminal cut for splitting k
terminals, k-pair cut for splitting k pairs, and so forth...

cut edges so as to split the graph into at least k compo-
nents. This paper is focused on unweighted graphs, so
graphs are unweighted unless stated otherwise.

Finding a minimum k-way cut is an extension of the
classical minimum cut problem, and it has applications
in the area of VLSI system design, parallel computing
systems, clustering, network reliability and finding cut-
ting planes for the traveling salesman problem.

Goldschmidt and Hochbaum [11] proved that finding
a minimum k-way cut is NP-hard when k is part of the
input, but polynomial time solvable for fixed k. Their al-
gorithm finds a minimum k-way cut in O(n(1/2−o(1))k2

)
time. Karger and Stein [17] proposed an extremely
simple randomized Monto Carlo algorithm for the k-
way cut problem whose running time is O(n(2−o(1))k).
Then Kamidoi et al. [15] presented a deterministic
algorithm that runs in O(n(4+o(1))k) time, and finally,
Thorup [22] presented the current fastest deterministic
algorithm with a running time of Õ(mn2k−2). The
above results all hold for both weighted and unweighted
graphs.

For exact algorithms, the obvious next complexity tar-
get is to get fixed-parameter tractability [9]. Recall that
a problem is fixed-parameter tractable with parameter
t if there is an algorithm with running time f(t)nc for
some fixed function f and constant c. In parameterized
complexity, W[1]-hardness plays a role similar to NP-
hardness versus polynomial time. If a problem is W[1]
hard with parameter t, we take it as evidence that
it is not FPT with parameter t (see [9] for details
including the somewhat technical definition of W[1]).
For unweighted minimization problems, the generic
standard parameter is the solution size, which in our
case is the cut size. With the standard parameterization,
we get a nice relation to approximation schemes that
we shall return to later.

Downey et al. [8] have proved that the k-way cut is
W[1] hard parameterized by k. This hardness holds even
for simple unweighted graphs. Here we use the standard
parameterization by the cut size s. Getting polynomial

parametrized by k s
k-way vertex cut of size s W[1] hard [8] W[1] hard [20]
k-way edge cut of size s W[1] hard [8] FPT [This paper]

Table I
FPT STATUS OF k-WAY CUT PROBLEMS

time for fixed s is trivial since we can try all subsets of
s edges in O(n2s) time. Reducing this to O(ns) time is
straightforward using the sparsification from [21]. The
natural challenge, raised by Marx [20], is if the k-way
cut problem is FPT with parameter s. In this paper, we
solve Marx’s problem:

Theorem 1: The k-way cut problem is fixed-
parameter tractable (FPT) when parameterized by the
cut size s. More precisely, we can decide of a graph
has a k-way cut with s edges in ss

O(s)

n2 time, and if
so, find the smallest such cut.

Corollary 2: The k-way cut problem is FPT with
parameter k for any graph class with bounded average
degree. In particular, this included the class of graphs
excluding a specific minor.

Proof: If the average degree of a graph is bounded
by d, it has a trivial k-way cut of size less than dk.

Cut problems and fixed-parameter tractability.:
Theorem 1 offers the first FPT-separation between ver-
tex cuts and edge cuts for a classic cut problem. When
Marx [20] questioned the FPT status of k-way cut
parameterized by the cut size s, he proved that the
corresponding vertex cut version is W[1] hard. Our
Theorem 1 states that the edge cut version in FPT. As
we shall discuss below, such a difference in FPT status
for edge cuts and vertex cuts is unusual.

Generally vertex cuts are at least as hard to find as
edge cuts. Basically, edge cuts in G = (V,E) may be
found as vertex cuts in the intersection graph of V ∪
E. Therefore, if there is a difference in FPT-status, it
has to be hardness for vertex cuts and tractability for
edge cuts. However, in previous work on classic cut
problems, there has not been such a difference.

On the W[1] hardness side, the result of Downey
et al. [8] implies that minimum k-way cut problem is
W[1] hard with parameter k both for edge cuts and
for vertex cuts. Table I summarizes how our new FPT
results stands in contrast to the existing W[1] hardness
results for k-way cut.

On the tractable side, when Marx raised our problem
in [20], he also considered the k-terminal and k-pair
cut problems. These are both classic NP-hard problems
even for fixed k ≥ 3 [5]. However, parameterized by

the cut size s, Marx [20] proved that the k-terminal
problem is FPT both for vertex and edge cuts. He also
proved that the k-pair problem is FPT both for vertex
and edge cuts when parameterized by both s and k.
Recently this was strengthened by Marx and Razgon
[19] and Bousquet et al. [3], showing that the multi-
pair cut problem is FPT parameterized only by the cut
size leaving the number of pairs unbounded. Also this
recent FPT result holds for both vertex and edge cuts
[19]. Our new result for k-way cut parameterized by
the cut size breaks the established pattern, with FPT for
the edge cuts contrasting Marx’s W[1] hardness for the
vertex cuts.

The fact that the previous FPT results hold for both
vertex and edge cuts shows that our technique has
to be fundamentally different. Since our problem is
W[1] hard for vertex cuts, our FPT algorithm has to
exploit special properties of edge cuts not shared by
vertex cuts. We shall point out in Section 2.7 how our
approach fails for vertex cuts. Of course, there are plenty
of other reasons to expect major technical differences,
e.g., the multi-pair and multi-terminal cut problems
have nice linear programming relaxations dual to multi-
commodity flows. In the k-way cut problem we insist on
getting a certain minimal number of components rather
than telling what is to be separated, and this appears
harder to capture.

Below we return our focus to k-way cuts which unless
otherwise stated are assumed to be edge cuts.

Planar graphs.: The k-way cut problem has been
quite well-studied even in the special case of planar
graphs. In the case of weighted planar graphs, Dahlhaus
et al. [5] used their k-terminal cut algorithm to solve the
k-way cut problem in O(n3k−1 log n) time. The bound
was later improved to Õ(n2k−1) time by Hartvigsen
[12]. His bound was later matched by the Õ(mn2k−2)
bound by Thorup [22] for general graphs.

The case of simple unweighted planar graphs has also
received attention. Hochbaum and Shmoys [14] gave
an O(n2) time algorithm for simple unweighted planar
graphs when k = 3. This was improved by He [13] to
O(n log n) time. The motivation given in [14], [13] is
the case of general k, with k = 3 being the special case
for which they provide an efficient solution.

Having proved the k-way cut problem W[1] hard for
simple unweighted general graphs, Downey et al. [8]
asked about the FPT status for planar graphs. A positive
answer follows directly from Corollary 2. However, for
this case, we have a much simpler linear time algorithm:

Proposition 3: We can decide if a simple plane graph

has a k-way cut with k edges in kO(k)n time2, and if
so, find the smallest such cut. More generally, for graph
embedded with bounded genus g, we can do this in
(gk)O(kg2)n time.

Note that even in the special case of k = 3, our result
improves on the above mentioned algorithms of Shmoys
and Hochbaum [14] and He [13]. Proposition 3 is,
however, more of an observation, where we point out
that a certain planar decomposition lemma of Klein [18]
provides a very nice solution to the k-way cut problem
(see Section 3). Recently [6] generalized Klein’s de-
composition to graphs with an excluded minor. With no
parallel edges, they used our observation to claim an
FPT for k-way cuts with parameter k. Our Corollary 2
is much more general as it works for arbitrary graphs
of bounded degrees of which simple graphs with an
excluded minor is a special case.

Approximation algorithms.: The k-way cut prob-
lem has also been studied from the perspective of
approximation algorithm, but no-one has been able to
improve substantially on the trivial factor 2 obtained by
iterative optimal 2-way cuts. The current best 2− o(1)
approximation [23] iterates an optimal h-way cut algo-
rithm where h = O(1), and gets an 2−h/k+O((h/k)2)
approximation. Getting an approximation factor strictly
below 2 is a major open problem. This contrast the sit-
uation with the k-terminal cut where the approximation
factor is below 1.35 [16].

Our FPT result can be seen as raising some hope
that an efficient polynomial time approximation scheme
(EPTAS) may be possible for the k-way cut problem.
Here an EPTAS is a scheme that for any ε > 0,
finds a 1 + ε approximation in f(1/ε)nc time for
some function f and constant c. Generally speaking,
for unweighted minimization problems, EPTAS implies
FPT parameterized by the solution size [9], so our FPT
is a necessary first step towards an EPTAS for k-way
cut.

Techniques.: We prove Theorem 1 with a simple
combinatorial algorithm not relying on any previous
results. To solve the problem recursively, we will define
“the powercut problem” which is much stronger than the
minimum k-way cut problem. The powercut problem
also generalizes the p-pair cut problem for bounded p.
The p-pair problem is in itself easier in that it has long
been known to be FPT for both vertex cuts and edge
cuts [20]. The hard part is still to make sure that we cut
into enough components. Nevertheless our power-cut

2A slight improvement to 2O(k)n time appears possible, but this
is not essential to our paper which is focussed on Theorem 1.

problem is a nice example where a stronger inductive
hypothesis gives a simpler inductive proof.

The main point in the power cut problem is that it
makes it easy to handle all high degree vertices except
for one, which acts like an apex vertex of the structure
theorem in graph minor theory. The rest is a bounded
degree graph in which we will identify a contractible
edge and recurse.

2. FPT ALGORITHM FINDING MINIMUM k-WAY CUTS
OF BOUNDED SIZE

We want to find a minimum k-way cut of size at
most s. Assuming that a given graph is connected, the
problem can only be feasible if k ≤ s+1. We will use
Os to denote O assuming s = O(1). We will solve the
problem in ss

O(s)

n2 = Os(n
2) time.

2.1. The powercut problem

To solve the problem k-way cut problem inductively,
we are going to address a more general problem:

Definition 4: The powercut problem takes as input
a triple (G,T, s) where G is a connected graph, T ⊆
V (G) a set of terminals, and s a size bound parameter.
For every j ≤ s + 1 and for every partition P of T
into j sets, some of which may be empty, we want a
minimal j-way cut Cj,P of G whose sides partitions T
according to P but only if there is such a feasible cut of
size at most s. The resulting family C of minimal cuts
Cj,P is a power cut.
Powercuts generilize trivially to disconnected graphs,
but it simplifies some of our arguments to require that
G is conncted. Often we will identify a powercut with
its set of distinct edge cuts. Note that if |T | and s are
bounded, then so is the total size of the power cut. More
precisely,

Observation 5: The total number of edges in a power
cut is bounded by s

∑s+1
j=2(j

|T |/j!) < (s+ 1)|T |+1.
We will show how to solve the powercut problem
in quadratic time when |T |, s = O(1). To solve our
original problem, we k-way cut problem, we solve the
powercut problem with an empty set of terminals T = ∅.
In this case, for each j ≤ s+ 1, we only have a single
trivial partition Pj of T consisting of j empty sets, and
then we return Ck,Pk

.
We can, of course, also use our powercut algorithm

to deal with cut problems related to a bounded number
of terminals, e.g., the p-pair cut problem which for p
pairs {(s1, t1), ..., (sp, tp)} ask for a minimum cut that
splits every pair, that is, for each i, the cut separates si
from ti. If there is such a cut of size at most s, we find
it with a powercut setting T = {s1, ..., sp, t1, ..., tp}. In

the output powercut family {Cj,P }, we consider all par-
titions P splitting every pair, returning the smallest of
the corresponding cuts. Such problems with a bounded
number of terminals and a bounded cut size, but no
restrictions on the number of components, are easier to
solve directly, as done by Marx [20] for both edge and
vertex cuts. However, for vertex cuts, Marx [20] proved
that the k-way cut problem is W[1] hard. Hence the
hardness is not in splitting of a bounded set of terminals,
but in getting a certain number of components. With our
powercut algorithm, we show that getting any specified
number of components is feasible with size bounded
edge cuts.

Below we will show how to solve the power cut
problem recursively in quadratic time, let T0 be the
initial set of terminals, e.g., T0 = ∅ for the k-way cut
problem. We now fix

t = max{2s, |T0|}. (1)

In our recursive problems we will never have more than
t terminals. The parameter s will not change.

Identifying vertices and terminals.: Our basic strat-
egy will be to look for vertices that can be identified
while preserving some powercut. To make sense of
such a statement, we specify a cut as a set of edges,
and view each edge as having its own identity which
is preserved even if its end-points are identified with
other vertices. Note that when we identify vertices u
and v, then we destroy any cut that would split u and
v. However, the identification cannot create any new
cuts. We say that u and v are identifiable if they are not
separated by any cut of some powercut C. It follows that
if u and v are identifiable, then C is also a powercut
after their identification, and then every powercut C′

after the identification is also a powercut before the
identification. Since loops are irrelevant for minimal
cuts, identifying the end-points of an edge is the same
as contracting the edge. Therefore, if the end-points of
an edge are identifiable, we say the edge is contractible.

We do allow for the case of identifiable terminals t
and t′ that are not split by any cut in some powercut C.
By definition of a powercut, this must imply that there
is no cut of size s separating t and t′.

Often we will identify many vertices. Generalizing
the above notion, we say a set of vertex pairs is
simultaneously identifiable if there is a powercut with
no cut separating any of them. This implies that we can
identify all the pairs while preserving some powercut.

Note that we can easily have cases with identifiable
vertex pairs that are not simultaneously identifiable,
e.g., if the graph is a path of two edges between two

terminals, then either edge is contractible, yet they are
not simultaneously contractible.

Recursing on subgraphs.: Often we will find iden-
tifiable vertices recursing via a subgraph H ⊆ G. If C
is a powercut of G, then C|H denotes C restricted to H
in the sense that each cut C ∈ C is replaced by its edges
C ∩E(H) in H , ignoring cuts that do not intersect H .

Lemma 6: Let H be a connected subgraph of G.
Let S be the set of vertices in H with incident edges
not in H . Define TH = S ∪ (T ∩ V (H)) to be the
terminals of H . Then each powercut CH of (H,TH , s)
is the restriction to H of some powercut C of (G,T, s).
Hence, if pairs of vertices are simultaneously identifi-
able in (H,TH , s), then they are also simultaneously
identifiable in (G,T, s).

Proof: Since the pairs are simultaneously identifi-
able in (H,TH , s), there is a powercut CH of (H,TH , s)
with no cut separating any of the pairs. Now consider a
powercut C of (G,T, s), and let C be any cut in C. Then
H \ C has a certain number j ≤ s + 1 of components
inducing a certain partition P of TH . In C we now
replace C∩H with Cj,P from CH , denoting the new cut
C ′. Since Cj,P is a minimal, this can only decrease the
size of C. It is also clear that G\C and H \C have the
same number of components inducing the same partition
of T . This way we get a powercut C′ of (G,T, s) such
that C′|H = CH . In particular it follows that our pairs
from H are simultaneously identifiable in (G,T, s).

2.2. Good separation
For our recursion, we are going to look for good

separations as defined below. A separation of the graph
G is defined via an edge partition into two connected
subgraphs A and B, that is, each edge of G is in
exactly one of A and B. We refer to A and B as the
sides of the separation. Let S be the set of vertices in
both A and B. Then S separates V (A) from V (B)
in the sense that any path between them will intersect
S. Contrasting vertex cut terminology, we include S
in what is separated by S. In order to define a good
separation, we fix

p = (s+ 1)t+1 and q = 2(p+ 1). (2)

Then p is the upper bound from Observation 5 on the
total number of edges in a power cut with at most t
terminals. The separation is good if |S| ≤ s and both
A and B have at least q vertices.

Suppose we have found a good separation. Then one
of A and B will contain at most half the terminals from
T \S. Suppose it is A. Recursively we will find a pow-
ercut CA of A with terminal set TA = S ∪ (T ∩ V (A))

as in Lemma 6. Finally in G we contract all edges from
A that are not in the powercut CA.

For the validity of the recursive call, we note that
|TA| ≤ s+ t/2 ≤ t. The last inequality follows because
t ≥ 2s. For the positive effect of the contraction, recall
that A has at least q = 2(p + 1) vertices where p
bounds the number of edges in CA. We know that A
is connected, and it will remain so when we contract
the edges from A that are not in CA. In the end, A has
at most p non-contracted edges, and they can span at
most p+1 distinct vertices. The contractions thus reduce
the number of vertices in G by at least |A| − p− 1.

Below, splitting into a few cases, we will look for
good separations to recurse over.

2.3. Multiple high degree vertices

A vertex is said to have high degree if it has at least

d = q + s− 1 (3)

neighbors. Here q was the lower bound from (2) on
the number of vertices in a side of a good separation.
Suppose that the current graph G has two high degree
vertices u and v. In that case, we check if there is a
minimal cut D between u and v of size at most s. If
not, we can trivially identify u and v and recurse.

If there is a minimal cut D of size at most s between
u and v, let A be the component containing u in G\D,
and let B be the subgraph with all edges not in A.

Lemma 7: The subgraphs A and B form a good
separation.

Proof: The set S of vertices in both A and B are
exactly the end-points on the u-side of the edges in D.
Therefore |S| ≤ |D| ≤ s. We now need to show that
each of A and B span at least q vertices. This is trivial
for B since B contains v plus all the d = q + s − 1
neighbors of v. For the case of A, we note that D can
separate u from at most s of its neighbors. This means
that u is connected to at least d− s = q− 1 vertices in
G \D, so A contains at least q nodes.

Thus, if we have two high degree vertices, depending
on the edge connectivity between u and v, we can either
just identify u and v, or recurse via a good separation.
Below we may therefore assume that the graph has at
most one high degree vertex.

2.4. No high degree vertex

We now assume that there is no vertex with high
degree ≥ d—c.f. (3). The case of one high degree
“apex” vertex will later be added a straightforward
extension.

A kernel with surrounding layers.: We start by
picking a start vertex v0 and grow an arbitrary connected
subgraph H0, called the kernel from v0 such that H0

contains all edges leaving v0 and H0 spans h ≥ d
vertices where h = Os(1) is a parameter to be fixed
later. Next we pick edge disjoint minimal layers Hi,
i = 1, ..., p, subject to the following constraints:
(i) The layer Hi contains no edges from H<i =∪

j<i Hj , but Hi contains all other edges from G
incident to the vertices in H<i.

(ii) Each component of Hi is either a big component
with at least q vertices, or a limited component with
no edge from G \H≤i leaving it—if a component
is both, we view it as big.

We note that the layer Hi is typically not unique as
there may be many ways of chosing the minimally big
components. Recall that a powercut C can have at most
p edges. This means that there must be at least one of the
p+1 edge disjoint subgraphs Hi which has no edges in
C. Supposing we have guessed this Hi, we will find a set
Fi of simultaneously contractible edges from H0 (note
that we mean H0, not Hi). By definition, F0 = E(H0).
If i > 0, condition (i) implies that Hi is a cut between
H<i and the rest of the graph, and we will use this fact
to find the set Fi. Since one of the guesses must be
correct, the intersection F =

∩p
i=0 Fi =

∩p
i=1 Fi must

be simultaneously contractible. An alternative outcome
will be that we find a good separation which requires
q vertices on either side. This is where condition (ii)
comes in, saying that we have to grow each component
of Hi until either it becomes a big component with q
vertices, or it cannot be grown that big because no more
edges are leaving it.

Before elaborating on the above strategy, we note that
the graphs Hi are of limited size:

Lemma 8: The graph H≤i has at most hdi vertices.
Proof: We prove the lemma by induction on i. By

definition |V (H0)| = h. For the inductive step with
i > 0, we prove the more precise statement that layer
Hi has at most d times more vertices than the vertices
it contains from layer Hi−1.

Since each layer is a cut, the edges leaving H<i

must all be incident to Hi−1. We will argue that each
component of Hi has at most d vertices. This is trivially
satisfied when we start, since each vertex from Hi−1

comes with its at most d−1 neighbors. Now, if we grow
a component along an edge, it is because it has less than
q < d vertices, including at least one from Hi−1. Either
the edge brings us to a new vertex, increasing the size of
the component by 1, which is fine, or the edge connects
to some other component from Hi which by induction

also had at most d vertices per vertex in Hi−1.

If V (G) = V (H≤p), then G has only hdi = Os(1)
vertices, and then we can solve the powercut problem
exhaustively. Below we assume this is not the case.

Pruning layers checking for good separations.:
Consider a layer Hi, i > 0, and let H−

i be the union of
the big components of Hi. Moreover let H+

<i be H<i

combined with all the limited components from Hi. We
call H−

i the pruned layer. Since the limited components
have no incident edges from G\H≤i, we note that H−

i is
a cut between H+

<i and the rest of the graph. The lemma
below summarizes the important properties obtained:

Lemma 9: For i = 1, ..., p:
(i) Pruned layer H−

i ⊆ Hi is a cut separating H0 from
G \ V (H≤i). In particular, we get an articulation
point if we identify all of H−

i in a single vertex.
(ii) Each component of H−

i is of size at least q.

Now, we take each pruned layer H−
i separately, and

order the components arbitrarily. For every pair A and
B of consecutive components (of order at least q), we
check if the edge connectivity between A and B is at
least s in G. If not, there is a minimal cut D in G
with at most s edges which separates A and B. We
claim this leads to a good separation. On the one side
of the separation, we have the component A of G \D
containing A, and on the other we have the reminder B
of G which includes B and cut edges from D. Then A
and B intersect in at most |D| ≤ s vertices, and both
A and B have at least q vertices. Thus we get a good
separation.

Below we assume for each pruned layer that the edge
connectivity between consecutive components is at least
s.

Articulation points from pruned layers.:
Lemma 10: If there is a powercut of (G,T, s) that

does not use any edge from Hi, then all vertices in the
pruned layer H−

i can be identified in a single vertex vi.
Proof: We are claiming that no cut D from C

separates any vertices from H−
i . Otherwise, since D

does not contain any edges from Hi, the cut would have
to go between components from H−

i . In particular, there
would be two consecutive components of H−

i separated
by D. However, D has at most s edges, and we already
checked that there was no such small cut between any
consecutive components of H−

i .

Below we assume we have guessed a layers Hi that is
not used in some powercut of (G,T, s). Let [H−

i 7→ vi]
denote that all vertices from H−

i are identified in a
single vertex vi, which we call the articulation point.

From Lemma 10 it follows that some powercut is
preserved in (G[H−

i 7→ vi], T [H
−
i 7→ vi], s).

Next, from Lemma 9 (i) we get that H≤i[H
−
i 7→ vi]

is a block of G[H−
i 7→ vi] separated from

the rest by the articulation point vi. As in
Lemma 6, we now find a powercut Ci of(
H≤i[H

−
i 7→ vi], {v0} ∪ (T ∩ V (H≤i))[H

−
i 7→ vi], s

)
.

The powercut Ci can be found exhaustively
since H≤i has at most hdi = Os(1) vertices.
Since this is not a recursive call, so it is OK if
{v0} ∪ (T ∩ V (H≤i))[H

−
i 7→ vi] involves t + 1

terminals.
Lemma 11: If there is a powercut of (G,T, s) that

does not use any edge from Hi, then there is such a
powercut which agrees with Ci on H≤i, and on H0 in
particular.

Proof: From Lemma 6 we get that Ci is the
restriction to H≤i[H

−
i 7→ vi] of some powercut C′

i of
(G[H−

i 7→ vi], T [H
−
i 7→ vi], s). From Lemma 10 it

follows that C′
i is also a powercut of (G,T, s). Since

C′
i does not contain any edges contracted in H−

i , we
conclude that Ci is the restriction of C′

i to H≤i.

With our assumption that Hi is not used in some
powercut, we get that all edges in Fi = E(H0) \E(Ci)
are identifiable. Disregarding the assumption, we are
now ready to prove

Lemma 12: Let F =
∩p

i=1 Fi be the set of edges
from H0 that are not used in any Ci, i = 1, ..., p. The
edges from F are simultaneously contractible.

Proof: Given any powercut C of (G,T, s), since
it has at most p edges, we know there is come i ∈
{0, ..., p} such that C does not use any edge from Hi.
If i is 0, this means all edges from H0 are contractible.
For any other i, the claim follows from Lemma 11.

With Lemma 12 we contract all edges from H0 that
are not in some Ci. From Observation 5, we know that
each Ci involves at most (s+1)t+2 edges, so combined
they involve at most p(s + 1)t+2 un-contracted edges,
spanning at most p(s + 1)t+2 + 1 distinct vertices. As
the initial size for H0, we start with

h = 2(p(s+ 1)t+2 + 1) (4)

vertices. Therefore, when we contract all edges from H0

that are not in some Ci, we get rid of half the vertices
from H0.

2.5. A single high degree “apex” vertex

All that remains is to consider the case where there
is a single high degree vertex r with degree ≥ d—c.f.
(3). We are basically going to run the reduction for no

high degree from Section 2.4 on the graph G \ {r}, but
with some subtle extensions described below.

Starting from an arbitrary vertex v0 that is neighbor to
r, we construct the layers Hi in G\{r}. If this includes
all vertices of G \ {r}, then G has Os(1) vertices, and
then we find the powercut exhaustively.

Next we add the vertex r to each layer Hi, including
all edges between r and Hi\H<i. We denote this graph
Hr

i . Note that Hr
0 is connected since r is a neighbor of

v0. Also note that all the Hr
i are edge disjoint like the

Hi.
After the addition of r, for i > 0, we consider any

limited component involving r big. More precisely, in
Hr

i we say that a component is big if it is has q or more
vertices or if it contains r. The remaining components
are limited. Removing all remaining limited components
from Hr

i we get the pruned layer Hr−
i . Similarly, we

have the graph Hr+
<i which is Hr

<i expanded with the
limited components from Hr

i . Corresponding to Lemma
9, we get

Lemma 13: For i = 1, ..., p:
(i) The vertices from the pruned layer Hr−

i form a
vertex separator in G between Hr

0 and G \ Hr
≤i.

In particular, we get an articulation point if we
identify Hr−

i in a single vertex.
(ii) Each component of Hr−

i which does not contain
r has at least q vertices.

Proof: Above (ii) is trivial. Concerning (i), we
already have from Lemma 9 that the edges from H−

i

provide a cut of G\{r} between H0 and G\{r}\H≤i.
The vertices in H−

i provide a corresponding vertex
separation in G \ {r}. When adding r to the graph and
to the separation, we get a vertex separation V (Hr−

i)
between Hr

0 and G \Hr
≤i.

Now, as in Section 2.4, we order the components
of Hr−

i arbitrarily, and check if the edge connectivity
between pairs of consecutive components is at least s in
G. If not, we claim there is a good separation. Let D be
a cut in G of size at most s between two components
A and B of Hr−

i . If A and B both have at least q
vertices, then we have the same good separation as in
Section 2.4. Otherwise, one of them, say B involves r.
In this case we have an argument similar to that used for
two high degree vertices in Section 2.3. On one side of
the good separation, we have the component A of G\D
including A. Clearly it has at least |V (A)| ≥ q vertices.
The other side B is the rest of G including B and the
cut edges from D. Then B includes the neighborhood
of all vertices in B including all neighbors of r, so B
has at least d + 1 > q vertices. Below we assume that
we did not find such a good separation.

We now continue exactly as in Section 2.4.
For i = 1, ..., q we identify the vertices of Hr−

i

in a vertex vi which becomes an articulation
point, and then we find a powercut Ci of
(
(
Hr

≤i[H
r−
i 7→ vi], {v0} ∪ (T ∩ V (Hr

≤i))[H
r−
i 7→ vi]),

s). Corresponding to Lemma 12, we get

Lemma 14: The edges from Hr
0 that are not used in

any Ci, i = 1, ..., p are simultaneously contractible.

As in Section 2.4, we conclude that we get at most
p(s + 1)t+2 un-contracted edges from Lemma 14 and
they span at most p(s+ 1)t+2 + 1 distinct vertices. As
the initial size for Hr

0 , we start with h + 1 = 2(p(s +
1)t+2+1) vertices. Then the contractions of Lemma 14
allows us to get rid of at least half the h vertices in Hr

0 .

2.6. Analysis and implementation

We are now going to analyze the running time includ-
ing some implementation details of the above recursive
algorithm, proving a time bound of

T (n) = O
(
st

O(t)

n2
)
= st

O(t)

n2. (5)

First, we argue that we can assume sparsity with at most
O(sn) edges. More precisely, if the graph at some point
has m ≥ 2sn edges, then, as in [21], we find s edge
disjoint maximal spanning forests. If an edge (v, w) is
not in one of these spanning forests, then v and w are
s edge connected. We can therefore contract all such
outside edges, leaving us with at most sn ≤ m/2 edges.
This may also reduce the number of vertices, which
is only positive. Even if this sparsification process is
applied to several subproblems in our recursion, the
overall sparsification cost is O(sn2).

In our analysis, for simplicity, we just focus on the
case with no high degree vertices from Section 2.4.
When we look for good separations, we check if the
edge connectivity between two vertex sets is s. As
we saw above, the graph can be assumed to have at
most 2ns edges, so this takes only O(s2n) time [10]
including identifying a cut with s edges if it exists. The
number of such good separation checks is limited by
the total number of components in all the layers Hi, and
for each layer, this is limited by the number of vertices.
Thus, by Lemma 8, we have at most

∑p
i=1 hd

i < 2hdp

good separation checks, each of which takes O(s2n)
time. With t ≥ 2s, p = (s + 1)t+1, q = 2(p + 1),
d = q + s − 1, and h = 2(p(s + 1)t+2 + 1)—c.f. (1),
(2), (3), and (4)—we get that the total time for good
separation checks is bounded by

O(2hdps2n) = O(st
O(t)

n).

If we do find a good separation, we recurse on one of
the sides A, which we know has at least q vertices.
Including the separating vertices, we know that A has
at most n− q + s vertices. After the recursion, we can
identify all but q/2 vertices in A. All this leads to a the
recurrence

T (n) ≤ max
q≤ℓ≤n−q+s

O
(
st

O(t)

n
)
+T (ℓ)+T (n−ℓ+q/2).

Inductively this recurrence satisfies (5), the worst-case
being when ℓ attains one of its extreme values.

If we do not find a good separation, for i = 1, ..., p,
we exhaustively find a powercut of a graph with at most
hdi vertices and shdi edges. We simply consider all the
(shdi)s potential cuts with s edges, and that is done
in O

(
st

O(t)

n
)

total time. This reduces the number of
vertices in H0 from h to h/2. In particular, we get
rid of at least one vertex, so this is also a recurrence
satisfying (5). This completes the proof that (5) bounds
our overall running time. In the case of the k-way cut
problem, we start with no terminals. Then t = 2s, and
then our running time is bounded by O

(
ss

O(s)

n2
)

. This
completes the proof of Theorem 1.

2.7. Failure for vertex cuts

Recall that contrasting the FPT algorithms for cutting
pairs and terminals [3], [20], [19], our algorithm for
k-way cuts has to be specific to edge cuts since the
vertex cut version is W[1] hard [20]. Our power cuts
themselves could be defined equally well for vertex cuts,
but in the vertex cut case, they offer no easy way of
handling high degree vertices. To be more precise, the
idea in a good separation was that each side was so
large that a power cut would leave some edges for later
contraction. A high degree vertex was itself enough for
a large side when dealing with bounded size edge cuts.
However, a bounded size vertex cut could take out the
high degree vertex with all its incident edges.

With bounded degree vertices, we could potentially
perform a recursive step from Section 2.4 even with
vertex cuts. However, the point in the recursive step is
to identify vertices, thus creating higher degree vertices
for later recursive steps.

3. PLANAR GRAPHS AND BOUNDED GENUS GRAPHS

For k-way cut in simple planar graphs Corollary 2
gives a quadratic algorithm when k is fixed. However,
it turns out that there is a much simpler but overlooked
linear time algorithm. We observe here that a k-way cut
algorithm follows nicely from a certain decomposition
lemma that Klein [18] developed for his approximate

TSP algorithm. In fact, this seems to be the simplest di-
rect application of Klein’s lemma for a classic problem.
The k-way cut algorithm follows whenever we have
Klein’s decomposition (which is dual to Baker’s layered
approach [1] to planar graphs). We present a faster
such decomposition for bounded genus graphs. Recently
Demaine et al. [6] generalized Klein’s decomposition
to graph classes with an excluded minor. They cite our
observation (Proposition 18 below) for the application
to k-way cuts. Our Corollary 2 is, of course, much more
general as it does not need an excluded minor.

We now present the simple algorithm for the planar
case using several known ingredients.

Observation 15: A simple planar graph has a k-way
cut of size at most 5(k − 1).
The same observation was used in the previous slower
algorithms for 3-way cuts [13], [14]. Our k-way cut
algorithm applies to planar graphs with parallel edges,
but like our algorithm for general graphs, it needs
a bound s on the size of the cuts considered. From
Observation 15, we get s = 5k − 5. Internally, the
algorithm will consider minors which may have many
parallel edges and no small cuts, but we will only look
for cuts of size at most s.

Our algorithm uses the notion of tree decompositions
and tree-width. The formal definitions are reviewed in
Appendix, which also includes the proof of the lemma
below which is kind of folklore:

Lemma 16: If a graph H has tree width at most
w, then we can find a minimum k-way cut in
k2wO(w)|V (H)|) time.
For any set A of edges, we let G/A denote G with the
edges A contracted. If G is embedded, respecting the
embedding, we contract the edges from A one by one,
except that loops are deleted. We need the following
theorem:

Lemma 17 (Klein [18]): For any parameter q and a
planar graph G with n vertices, there is an O(n) time
algorithm to partition the edges of G into q disjoint
edge sets S0,...,Sq−1 such that for each i ∈ [q], the
graph G/Si has tree width O(q).
We now observe the simple application to k-way cuts.

Proposition 18: Given a graph G, suppose we have
a partition the edges of G into q disjoint edge sets
S0,...,Sq−1 such that for each i ∈ [q], the graph G/Si

has tree width O(q). We can then find a minimum k-
way cut of size up to q − 1 in k2qO(q)n time.

Proof: The algorithm is trivial. We use Lemma 16
with w = O(q) to compute the minimum k-way cut Di

of each G/Si and return the smallest of these cuts Di.

Cutting after some edges have been contracted is also
a cut in the original graph, so the cut returned by our
algorithm is indeed a k-way cut. We need to argue that
one of the Di is a minimal one for G. However, we are
only interested if the minimum cut is of size at most s,
which means that it must be disjoint from at least one
of the q ≥ s+1 disjoint Si. Then D is also a k-way cut
of G/Si. Hence the minimum k-way cut Di of G/Si

is also a minimum k-way cut of G.

From Observation 15, Lemma 17, and Proposition 18
with q = 5(k−1)+1, it follows that we can solve the k-
way cut problem for a simple plane graph in O(kO(k)n)
time. This is the planar part of Proposition 3.

Bounded genus.: We now extend our planar algo-
rithm to a graph embedded with bounded genus. From
Euler’s formula, we get

Observation 19: A simple graph embedded into a
surface with genus g and n = |V (G)| ≥ 6g + k has
a minimum k-way cut in G of size at most 6k − 6.

Next we need the following generalization of Klein’s
Lemma 17:

Lemma 20: For any parameter q and a graph G
embedded into a surface of genus g with n vertices,
there is an 2O(g2q)n time algorithm to partition the
edges of G into q disjoint edge sets S0,...,Sq−1 such
that for each i ∈ [q], the graph G/Si has tree width
O(g2q).

Lemma 20 with a partition time of O(g3n log n) follows
from [4], [7]. Our time bound is better when g, q =
O(1). Our proof of Lemma 20 is deferred to the full
version of this paper. Applying Proposition 18 as in
the planar case, we solve the k-way cut problem for
a simple unweighted graph embedded with genus g in
(gk)O(kg2)n time. Thus we get the bounded genus part
of Proposition 3.

In fact, we can also plug Lemma 20 back into Klein’s
original approximate TSP algorithm, generalizing his
linear time solution from the planar to the bounded
genus case.

REFERENCES

[1] B. Baker, “Approximation algorithms for NP-complete
problems on planar graphs,” J. ACM, vol. 41, no. 1, pp.
153–180, 1994.

[2] H. L. Bodlaender, “A linear-time algorithm for finding
tree-decompositions of small treewidth,” SIAM J. Com-
put., vol. 25, no. 6, pp. 1305–1317, 1996.

[3] N. Bousquet, J. Daligault, and S. Thomassé, “Multi-
cut is FPT,” in STOC’11, 2011, pp. 459–468. Also
arXiv:1010.5197v1 [cs.DS].

[4] S. Cabello and E. Chambers, “Multiple source shortest
paths in a genus g graph,” in Proc. 18th SODA, 2007,
pp. 89–97.

[5] E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour,
and M. Yannakakis, “The complexity of multiterminal
cuts,” SIAM J. Comput., vol. 23, no. 4, pp. 864–894,
1994.

[6] E. Demaine, M. Hajiaghayi, and K. Kawarabayashi,
“Contraction decomposition in h-minor-free graphs and
algorithmic applications,” in STOC’11, 2011, pp. 441–
450.

[7] E. Demaine, M. Hajiaghayi, and B. Mohar, “Approxima-
tion algorithms via contraction decomposition,” in Proc.
18th SODA, 2007, pp. 278–287.

[8] R. Downey, V. Estivill-Castro, M. Fellows, E. Prieto, and
F. Rosamond, “Cutting up is hard to do: the parameter-
ized complexity of k-cut and related problems,” Electr.
Notes Theor. Comput. Sci., vol. 78, 2003.

[9] R. Downey and M. Fellows, Parameterized Complexity.
Monographs in Computer Science. Springer-Verlag, New
York, 1999.

[10] L. Ford and D. Fulkerson, “Maximal flow through a
network,” Canadian Journal of Mathematics, vol. 8, pp.
399–404, 1956.

[11] O. Goldschmidt and D. S. Hochbaum, “A polynomial
algorithm for the k-cut problem for fixed k,” Math. Oper.
Res., vol. 19, no. 1, pp. 24–37, 1994, announced at
FOCS’88.

[12] D. Hartvigsen, “Minimum path basis,” J. Algorithms,
vol. 15, no. 1, pp. 125–142, 1993.

[13] X. He, “An improved algorithm for the planar 3-cut
problem,” J. Algorithms, vol. 12, no. 1, pp. 23–37, 1991.

[14] D. S. Hochbaum and D. Shmoys, “An o(|v|2) algorithm
for the planar 3-cut problem,” SIAM J. Algebraic and
Discrete Methods, vol. 6, pp. 707–712, 1985.

[15] Y. Kamidoi, N. Yoshida, and H. Nagamochi, “A deter-
ministic algorithm for finding all minimum k-way cuts,”
SIAM J. Computing, vol. 36, no. 5, pp. 1329–1341, 2006.

[16] D. Karger, P. Klein, C. Stein, , M. Thorup, and N. Young,
“Rounding algorithms for a geometric embedding of
minimum multiway cut,” Math. Oper. Res., vol. 29, no. 3,
pp. 436–461, 2004.

[17] D. R. Karger and C. Stein, “A new approach to the
minimum cut problem,” J. ACM, vol. 43, no. 4, 1996.

[18] P. Klein, “A linear-time approximation scheme for TSP
in undirected planar graphs with edge-weights,” SIAM J.
Comput., vol. 37, no. 6, pp. 1926–1952, 2008.

[19] D. Marx and I. Razgon, “Fixed-parameter tractability
of multicut parameterized by the size of the cutset,” in
STOC’11, 2011, pp. 469–478. Also arXiv:1010.3633v1
[cs.DS].

[20] D. Marx, “Parameterized graph separation problems,”
Theor. Comput. Sci., vol. 351, no. 3, pp. 394–406, 2006,
announced at IWPEC’04.

[21] H. Nagamochi and T. Ibaraki, “Linear time algorithms
for finding a sparse k-connected spanning subgraph of a
k-connected graph,” Algorithmica, vol. 7, pp. 583–596,
1992.

[22] M. Thorup, “Minimum k-way cuts via deterministic
greedy tree packing,” in Proc. 40th STOC, 2008, pp.
159–166.

[23] M. Xiao, L. Cai, and A. C. Yao, “Tight approximation
ratio of a general greedy splitting algorithm for the
minimum k-way cut problem,” Algorithmica, vol. 59,
no. 4, pp. 510–520, 2011.

APPENDIX

In this appendix, we shall deal with the tree width
bounded case. There is nothing technically new. We are
just specializing standard techniques for bounded tree-
width to k-way cuts.

Recall that a tree decomposition of a graph G is a
pair (T,R), where T is a tree and R is a family {Rt |
t ∈ V (T)} of vertex sets Rt ⊆ V (G), such that the
following two properties hold:

(1)
∪

t∈V (T) Rt = V (G), and every edge of G has
both ends in some Rt.

(2) If t, t′, t′′ ∈ V (T) and t′ lies on the path in T
between t and t′′, then Rt ∩Rt′′ ⊆ Rt′ .

As noted in [2] we can assume that T is a rooted binary
tree with O(n) nodes.

The width of a tree-decomposition is max |Rt| for t ∈
V (T). The tree width of G is defined as the minimum
width taken over all tree decompositions of G. We often
refer to the sets Rt as a bags of the tree decomposition.

We first observe that if a given graph has tree-width
at most w, then we can construct a tree-decomposition
of width at most w in O(wwn) time by Theorem 21
below.

Theorem 21 ([2]): For any constant w, there exists
an O(wwn) time algorithm that, given a graph G, either
finds a tree-decomposition of G of width w or concludes
that G has tree width at least w. For a plane graph, the
time complexity can be improved to O(2wn).
To complete the proof of Lemma 16, we just need to
prove the following:

Lemma 22: Given a tree-decomposition (T,R) of G
of width at most w, then for any k, we can find a
minimum k-way cut in k2wO(w)|V (G)| time.

Proof: For a node t ∈ T , we let Gt be the subgraph
of G induced by the bags of the subtree descending from
t. We use a dynamic program that for each node t ∈ T
computes the following information: for every partition
P of Rt and every r < k, we compute the a minimal
(r+ |P |)-way cut D of Gt which respects the partition
P in the sense that for each A ∈ P , there is a component
H of Gt \ D with H ∩ Rt = A. In addition we have
r components not intersecting Rt. Since |Rt| ≤ w, the
number of such (P, r) is bounded by wwk. The root
node t of T will contain a minimum k-way cut of Gt =
G among the combinations (P, r) with |P |+ r = k.

We assume we have this information for each child
t′ and t′′ of t. A simple brute force solution goes as
follows. We try combining each solution (P ′, r′) for t′,
and (P ′′, r′′) for t′′ with each partition Q of Rt induced
by subgraphs of G|Rt. We can easily check if these
three objects are consistent, and if so, they represent
a solution for a (P, r) for t. For each (P, r) we keep
the smallest such solution. The number of combinations
to consider is (kww)

2
ww, and each can be checked in

O(w2) time, so the total time needed to compute the
information for t is k2wO(w).

It appears fairly easy to improve the bound in Lemma
22 to k22O(w)|V (G)| when the bounded tree-width
graph G is planar. The point is to only consider par-
titions over w vertices that are on the outer face of a
plane embedding, for these can only be partitioned in
2O(w) ways. This is essentially done by [18] but in a
way that appears a bit specialized for TSP. We found
several works on such geometric tree decompositions,
but the constructions address larger w and are not linear
in n. Anyhow, this is only a secondary issue for this
paper where w = O(1). The far more important part is
the results for general graphs in Theorem 1.

