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Abstract— The problem central to sparse recovery and com-
pressive sensing is that of stable sparse recovery: we want a
distribution A of matrices A € R™*"™ such that, for any z € R"
and with probability 1—§ > 2/3 over A € A, there is an algorithm
to recover & from Az with

|& — x|, <C min
P k-sparse z’

lz =<'l )

for some constant C' > 1 and norm p.

The measurement complexity of this problem is well understood
for constant C' > 1. However, in a variety of applications it is
important to obtain C' = 1+-¢ for a small € > 0, and this complexity
is not well understood. We resolve the dependence on € in the
number of measurements required of a k-sparse recovery algorithm,
up to polylogarithmic factors for the central cases of p = 1 and
p = 2. Namely, we give new algorithms and lower bounds that
show the number of measurements required is k/e”/2polylog(n).
For p = 2, our bound of %klog(n/k) is tight up to constant
factors. We also give matching bounds when the output is required
to be k-sparse, in which case we achieve k/ePpolylog(n). This
shows the distinction between the complexity of sparse and non-
sparse outputs is fundamental.

1. INTRODUCTION

Over the last several years, substantial interest has been
generated in the problem of solving underdetermined linear
systems subject to a sparsity constraint. The field, known
as compressed sensing or sparse recovery, has applications
to a wide variety of fields that includes data stream algo-
rithms [16], medical or geological imaging [5], [11], and
genetics testing [17], [4]. The approach uses the power of
a sparsity constraint: a vector z’ is k-sparse if at most
k coefficients are non-zero. A standard formulation for
the problem is that of stable sparse recovery: we want a
distribution A of matrices A € R™*" such that, for any
x € R™ and with probability 1 —§ > 2/3 over A € A, there
is an algorithm to recover & from Ax with

|2 — ||, <C min
P k-sparse x’

|z —a'l, )

for some constant C' > 1 and norm p'. We call this a C-
approximate £y, [, recovery scheme with failure probability
6. We refer to the elements of Az as measurements.

It is known [5], [13] that such recovery schemes exist
for p € {1,2} with C = O(1) and m = O(klog 7).

'Some formulations allow the two norms to be different, in which case
C' is not constant. We only consider equal norms in this paper.
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Furthermore, it is known [10], [12] that any such recovery
scheme requires Q(klog, -~ %) measurements. This means
the measurement complexity is well understood for C =
1+ (1), but not for C' =1+ o(1).

A number of applications would like to have C' = 1+¢ for
small e. For example, a radio wave signal can be modeled
as x = x* 4+ w where z* is k-sparse (corresponding to a
signal over a narrow band) and the noise w is i.i.d. Gaussian
with [lw||, & D [|z*[|,, [18]. Then sparse recovery with C' =
14 a/D allows the recovery of a (1 — ) fraction of the true
signal z*. Since z* is concentrated in a small band while
w is located over a large region, it is often the case that
a/D < 1.

The difficulty of (1-+¢)-approximate recovery has seemed
to depend on whether the output 2’ is required to be k-
sparse or can have more than k elements in its support.
Having k-sparse output is important for some applications
(e.g. the aforementioned radio waves) but not for others
(e.g. imaging). Algorithms that output a k-sparse z’ have
used 6(€%klog n) measurements [6], [7], [8], [19]. In
contrast, [13] uses only ©(1klog(n/k)) measurements for
p =2 and outputs a non-k-sparse x’.

Our results: We show that the apparent distinction
between complexity of sparse and non-sparse outputs is
fundamental, for both p = 1 and p = 2. We show that
for sparse output, €2(k/e?) measurements are necessary,
matching the upper bounds up to a logn factor. For general
output and p = 2, we show Q(1klog(n/k)) measurements
are necessary, matching the upper bound up to a constant
factor. In the remaining case of general output and p = 1, we
show Q(k/+/€) measurements are necessary. We then give a
novel algorithm that uses O(logg%k log n) measurements,
beating the 1/e dependence given by all previous algorithms.
As a result, all our bounds are tight up to factors logarithmic
in n. The full results are shown in Figure 1.

In addition, for p = 2 and general output, we show that
thresholding the top 2k elements of a Count-Sketch [6] es-
timate gives (1 + ¢)-approximate recovery with @(%k logn)
measurements. This is interesting because it highlights the
distinction between sparse output and non-sparse output: [8]
showed that thresholding the top k elements of a Count-
Sketch estimate requires m = ©(%klogn). While [13]
achieves m = ©(1klog(n/k)) for the same regime, it only
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succeeds with constant probability while ours succeeds with
probability 1 — n~?(1); hence ours is the most efficient
known algorithm when 5— o(1),e =o(1), and k < n%.

Related work: Much of the work on sparse recovery
has relied on the Restricted Isometry Property [5]. None of
this work has been able to get better than 2-approximate
recovery, so there are relatively few papers achieving (1 +
€)-approximate recovery. The existing ones with O(k logn)
measurements are surveyed above (except for [14], which
has worse dependence on e than [7] for the same regime).

No general lower bounds were known in this setting but
a couple of works have studied the ¢, /¢, problem, where
every coordinate must be estimated with small error. This
problem is harder than ¢,/¢, sparse recovery with sparse
output. For p = 2, [19] showed that schemes using Gaussian
matrices A require m = Q(Z%klog(n/k)). For p = 1, [9]
showed that any sketch requires §2(k/e) bits (rather than
measurements).

Our techniques: For the upper bounds for non-sparse
output, we observe that the hard case for sparse output is
when the noise is fairly concentrated, in which the estimation
of the top k elements can have /¢ error. Our goal is to
recover enough mass from outside the top k£ elements to
cancel this error. The upper bound for p = 2 is a fairly
straightforward analysis of the top 2k elements of a Count-
Sketch data structure.

The upper bound for p = 1 proceeds by subsampling
the vector at rate 27° and performing a Count-Sketch with
size proportional to —=, for i € {0,1,...,0(log(1/e))}.
The intuition is that i the noise is well spread over many
(more than k/e%?) coordinates, then the 5 bound from
the first Count-Sketch gives a very good ¢; bound, so the
approximation is (1 €)-approximate. However, if the noise
is concentrated over a small number k/e¢ of coordinates,
then the error from the first Count-Sketch is proportional
to 1 + €“/2+1/4 But in this case, one of the subsamples
will only have O(k/e“/?=1/%) < k/\/€ of the coordinates
with large noise. We can then recover those coordinates
with the Count-Sketch for that subsample. Those coordinates
contain an €/2+1/4 fraction of the total noise, so recovering
them decreases the approximation error by exactly the error
induced from the first Count-Sketch.

Our results, along with existing upper bounds. Fairly minor restrictions on the relative magnitude of parameters apply; see the theorem statements

The lower bounds use substantially different techniques
for sparse output and for non-sparse output. For sparse
output, we use reductions from communication complexity
to show a lower bound in terms of bits. Then, as in [10],
we embed ©(logn) copies of this communication problem
into a single vector. This multiplies the bit complexity by
logn; we also show we can round Az to logn bits per
measurement without affecting recovery, giving a lower
bound in terms of measurements.

We illustrate the lower bound on bit complexity for sparse
output using k¥ = 1. Consider a vector « containing 1/eP
ones and zeros elsewhere, such that xo; + 22,41 = 1 for
all 4. For any i, set zp; = 22,41 = 1 and z; = 0 elsewhere.
Then successful (1+¢/3)-approximate sparse recovery from
A(x + z) returns 2 with supp(2) = supp(x) N {24, 2i + 1}.
Hence we can recover each bit of x with probability 1 — 4,
requiring €2(1/€P) bits?>. We can generalize this to k-sparse
output for Q(k/eP) bits, and to ¢ failure probability with
Q(<4 log 1). However, the two generalizations do not seem
to combine.

For non-sparse output, we split between ¢ and ¢1. In /o,
we consider A(x 4+ w) where x is sparse and w has uniform
Gaussian noise with ||wH§ ~ Hz||§ /€. Then each coordinate
of y = A(x + w) = Az + Aw is a Gaussian channel with
signal to noise ratio e. This channel has channel capacity e,
showing I(y; ) < em. Correct sparse recovery must either
get most of x or an € fraction of w; the latter requires m =
Q(en) and the former requires I(y;z) = Q(klog(n/k)).
This gives a tight ©(1k log(n/k)) result. Unfortunately, this
does not easily extend to /1, because it relies on the Gaussian
distribution being both stable and maximum entropy under
{5; the corresponding distributions in ¢; are not the same.

Therefore for ¢; non-sparse output, we have yet another
argument. The hard instances for k¥ = 1 must have one large
value (or else 0 is a valid output) but small other values
(or else the 2-sparse approximation is significantly better
than the 1-sparse approximation). Suppose x has one value
of size € and d values of size 1/d spread through a vector
of size d?. Then a (1 + ¢/2)-approximate recovery scheme
must either locate the large element or guess the locations

2For p = 1, we can actually set |[supp(z)| = 1/e and search among a
set of 1/e candidates. This gives Q(% log(1/€)) bits.



of the d values with Q(ed) more correct than incorrect. The
former requires 1/(de?) bits by the difficulty of a novel
version of the Gap-/,, problem. The latter requires ed bits
because it allows recovering an error correcting code. Setting
d = €3/2 balances the terms at e~ !/2 bits. Because some
of these reductions are very intricate, this extended abstract
does not manage to embed log n copies of the problem into a
single vector. As a result, we lose a log n factor in a universe
of size n = poly(k/e) when converting to measurement
complexity from bit complexity.

2. PRELIMINARIES

Notation: We use [n] to denote the set {1...n}. For
any set S C [n], we use S to denote the complement of
S, i.e., the set [n] \ S. For any z € R™, z; denotes the ith
coordinate of z, and zg denotes the vector 2’ € R™ given
by «} = x; if i € S, and z = 0 otherwise. We use supp(z)
to denote the support of z.

3. UPPER BOUNDS

The algorithms in this section are indifferent to permuta-
tion of the coordinates. Therefore, for simplicity of notation
in the analysis, we assume the coefficients of x are sorted
such that |z1| > |z2| > ... > |z,| > 0.

Count-Sketch: Both our upper bounds use the Count-
Sketch [6] data structure. The structure consists of clogn
hash tables of size O(q), for O(cqlogn) total space; it can
be represented as Az for a matrix A with O(cqlogn) rows.
Given Az, one can construct z* with

* 2 1 2
A

c

with failure probability n'=.

3.1. Non-sparse (s

It was shown in [8] that, if x* is the result of a Count-
Sketch with hash table size O(k/e?), then outputting the top
k elements of =* gives a (1+¢)-approximate ¢5 /{5 recovery
scheme. Here we show that a seemingly minor change—
selecting 2k elements rather than & elements—turns this into
a (1 + €2)-approximate /5 /{5 recovery scheme.

Theorem 3.1. Let & be the top 2k estimates from a Count-
Sketch structure with hash table size O(k/e¢). Then with
failure probability n=1),

&= ally < (1 + ) |fog]

Therefore, there is a 1 + e-approximate ls/l5 recovery
scheme with O(1klogn) rows.

Proof: Let the hash table size be O(ck/¢) for constant
¢, and let ™ be the vector of estimates for each coordinate.
Define S to be the indices of the largest 2k values in x*,

and F = meHQ

By (3), the standard analysis of Count-Sketch:

* 2 € 2
— < —F~.
e~ a2, < <

SO

2
lzs — |l — B

= ]
s 2 ||,

* 2 2 2
<@ = 2)sl3 + [2mnslls = =]
<I8) 1l = 212, + [Jzpns]ls — llzsywlls
2e 2 2
STE A+ [lzpps |y — zsvmll )

Let a = max;e[r)\s¥; and b = min;cg\[x) 74, and let
d = |[k] \ S|. The algorithm passes over an element of value
a to choose one of value b, so

a<b+2|z" —a|, <b+2,/—E.
ck

lzgps]ls = [lzsvml3
<da® — (k + d)b*

<d(b+ 2, /éE)Q — (k+d)b®
4
< — kb? 44y S dbE + —dE?
ck ck

€ 4e
< —k(b—2y/—=dE)* + —dE*(k —
< — k(b ck‘3d ) +ck2d (k—d)
4d(k — d)e
Si

ck?

and combining this with (4) gives

Then

EQSEEQ
C

3e

s = all; — B2 < —E?
c
or 3
€
5 — <14+ )E
g —all, < (1+50)
which proves the theorem for ¢ > 3/2. u

3.2. Non-sparse {1

Theorem 3.2. There exists a (1 + €)-approximate {1 /¢y

3
recovery scheme with O(%klog n) measurements and

failure probability e=**/Ve) 4 p=01),

Set f = /¢, so our goal is to get (1 + f2)-approximate
£1/¢; recovery with O(log?’%/fklog 1) measurements.

For intuition, consider I-sparse recovery of the follow-
ing vector z: let ¢ € [0,2] and set z; = 1/f° and
Ta,..., 014151+ € {£1}. Then we have

o, =177+



and by (3), a Count-Sketch with O(1/f)-sized hash tables
returns x* with

2% — x|, < \/J?HIT/J«}HZ A1/ = fre? meul

The reconstruction algorithm therefore cannot reliably find
any of the z; for ¢« > 1, and its error on x; is at least

fite/2 foH Hence the algorithm will not do better than

a flt¢/2_approximation.

However, consider what happens if we subsample an
f¢ fraction of the vector. The result probably has about
1/f non-zero values, so a O(1/f)-width Count-Sketch can
reconstruct it exactly. Putting this in our outrut improves the

overall ¢; error by about 1/f = f¢ me . Since ¢ < 2,
1

this more than cancels the f1t¢/2 meH error the initial
Count-Sketch makes on z;, giving an applroximation factor
better than 1.

This tells us that subsampling can help. We don’t need to
subsample at a scale below k/f (where we can reconstruct
well already) or above k/f3 (where the £ bound is small
enough already), but in the intermediate range we need to
subsample. Our algorithm subsamples at all log1/f? rates
in between these two endpoints, and combines the heavy
hitters from each.

First we analyze how subsampled Count-Sketch works.

Lemma 3.3. Suppose we subsample with probability p and
then apply Count-Sketch with ©(logn) rows and ©(q)-sized
hash tables. Let y be the subsample of x. Then with failure
probability e~ + 0= e recover a y* with

ly* =yl < MH?EWHQ

Proof: Recall the following form of the Chernoff
bound: if X, ...,X,, are independent with 0 < X; < M,
and p > E[>" X;], then

Prd X, > -

Let T' be the set of coordinates in the sample. Then

o~ Uu/M)

E[‘T N [%g](] = 3¢/2, 50
Pr [ N [g—q] > Qq} < e ),
2p
Suppose this event does not happen, so ’T N ]‘ < 2q. We
also have

1/2p ‘.’,CB(] .

LetY; =0ifi¢ T and Y; = 22 if i € T. Then

ZY

‘ [q/p

3q

2 2
—pH Tla/el Hg

For 7 > ;’—g we have

2p

2p 2
< el

giving by Chernoff that

Py Y > pH Tla7el H

But if this event does not happen, then

2
H%HQ < Z Z Y < p” [Q/F]H

€T, z> z>—

e—Ua/2)

By (3), using O(2q)-size hash tables gives a y* with
N 1
Iy* =l < 5= o], < VP74 o],

with failure probability n =) as desired. [ ]

Let r = 2log1/f. Our algorithm is as follows: for j €
{0,...,r}, we find and estimate the 2//2 largest elements
not found in previous j in a subsampled Count-Sketch with
probability p = 277 and hash size ¢ = ck/f for some
parameter ¢ = O(r?). We output £, the union of all these
estimates. Our goal is to show

2
el

For each level j, let S; be the 2//2k largest coordinates
in our estimate not found in S; U---US;_1. Let S = USj.

By Lemma 3.3, for each j we have (with failure probability
e K/ ) 4 =)y that

1 s < 15y 2 e,
<2 o]
and so

(& — x)S||1 = i ||(j; - QU)Sj H1
=0
e e

&= ol = |2, < O

(1—1/{

By standard arguments, the ¢, bound for Sy gives

ol < Nosally + K llos, — 250l < VR 277
(6)



Combining Equations (5) and (6) gives

I& = ally = ogg]|, ™

=@ = 2)slly + sl — |25 .,

=@ —2)slly + ||lzw]l, — ll2sll

||$SoH1)_Z||CESjH1
72 ) VIR [e sz

=& - 2)sll, + (lzw|l, -

<< 1
(1—1/\f)\f Ve
7ZHISJ‘H1

:O(\[ H Kieryril H ZHIS I, ®)

We would like to convert the first term to depend on the
{1 norm. For any u and s we have, by splitting into chunks

of size s, that
\/T
<\/5 o
2 s 117 IsMly

) S\/§|Us|

|

H“ﬁmms]

Along with the triangle inequality, this gives us that
VEF o], < VEF o]
+VEFY memwlkm H2

j=1

T

2
< 72|z
SO
I =2l = o],

1 - 1 <
<O [, + 2042 e
‘7:
=2 llas,lly ©
j=1

Define a; = k27/2 |9,/ ;|- The first term grows as f so it
is fine, but a; can grow as f27/2 > f2. We need to show that
they are canceled by the corresponding Ha:sj H 1 In particular,
we will show that ||z, ||, > Q(aj)—0O(279/2 f? me 1)
with high probability—at least wherever a; > ||al|; /(27).

Let U € [r] be the set of j with a; > ||a||, /(2r), so that
llar|l; > |lall, /2. We have

2 T
- Hx[%/f‘“’l - Z Hm[wk/f]mpﬁlk/ﬁ H2

kfz aj (10)

2
memHQ

s H Tiak/F7]

For j € U, we have

T
S a? < aj fall, < 2r?
i=j

so, along with (32 + 22)1/2 < y + 2, we turn Equation (10)
into

< Hx[%/fS] , T

- f3 2r
<\ % ], + kfY

When choosing S;, let T € [n] be the set of indices
chosen in the sample. Applying Lemma 3.3 the estimate
z* of x1 has

o —rle <\ 5z z; H v

H%J‘k/ﬂHQ

2r a;
% k H TR %ic k
f2 2r
ze & e, + 5 leasns]
forjeU.
Let Q = [27k/f]\ (SoU--- U Sj_1). We have |Q| >

2971k/f so E[|QNT|] > k/2f and |QNT| > k/Af
with failure probability e ~*(*//), Conditioned on |Q N T'| >
k/Af, since xp has at least |Q NT| > k/(4f) = 27/%k/4 >
29/2k /4 possible choices of value at least |zop,f|, =g
must have at least k2//2/4 elements at least |2y, ;| —
||z* — x|, . Therefore, for j € U,

k2972 o
=) w2y

1
HQCSJH1 =z _rﬁfz me

and therefore

Zst =2 lles; I,

jeu

>3 52 el +

1 2r
(1 =4/
410 avlly

1 2 — .
sy ;m]m |@2ik/]

Y
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— A=) |2k

T 2
2_4\@]( Hx[k/f‘]

Y
== 17! emrml,



Using (9) and (11) we get

I — 2l — [Jogg].
< <:f +0<\1[)> 72|,
+ Z < ﬁ ;> K272 [y

2
H‘”vc/fal <f H%H

2). Hence we use a total of ”’k:logn =

<f?

for some ¢ = O(r

log fl/ Ik log n measurements for 1 + f2-approximate 1 /{1
recovery.

For each j € {0,...,r} we had failure probability
e~ K/ 1) 1 =2 (from Lemma 3.3 and |Q NT| > k/2f).
By the union bound, our overall failure probability is at most

(log %)(Q—Q(k/f) + =20y < =/ 4 =00,

proving Theorem 3.2.

4. LOWER BOUNDS FOR NON-SPARSE OUTPUT AND p = 2

In this case, the lower bound follows fairly straightfor-
wardly from the Shannon-Hartley information capacity of a
Gaussian channel.

We will set up a communication game. Let F C {S C
[n] | |S| = k} be a family of k-sparse supports such that:

o |SAS'| >k for S # 5" € F,

o Prgerlie S]=k/n forall i € [n], and

o log|F| = Q(klog(n/k)).

This is possible; for example, a Reed-Solomon code on
[n/k]* has these properties.

Let X = {z € {0,£1}" | supp(z) € F}. Let w ~
N(0,a£1,) be iid. normal with variance ak/n in each
coordinate. Consider the following process:

Procedure: First, Alice chooses S € F uniformly
at random, then x € X uniformly at random subject to
supp(z) = S, then w ~ N(0,a£1,). She sets y = A(z+w)
and sends y to Bob. Bob performs sparse recovery on y to
recover ¢’ ~ x, rounds to X by & = argming¢y ||Z — /||,
and sets S’ = supp(Z). This gives a Markov chain S —
z—y—x — 5.

If sparse recovery works for any x 4+ w with probability
1 — 4 as a distribution over A, then there is some specific
A and random seed such that sparse recovery works with
probability 1 — é over = + w; let us choose this A and
the random seed, so that Alice and Bob run deterministic
algorithms on their inputs.

Lemma 4.1. 1(S;5’) = O(mlog(1 + i))

Proof: Let the columns of A” be v?, ™ We may
assume that the v* are orthonormal, because this can be
accomplished via a unitary transformation on Azx. Then

w) = (v',z) + w!, where
= N(0,ak/n) and

we have that y; = (vi,z +
wh ~ N(0,ak ||vz||§ /n)

E.[(v),2)’] = Bs[>_(v))’] = =
jes
Hence y; = z; + w) is a Gaussian channel with power
constraint E[z ]<k Hv ||2 and noise variance E[(w})?] =

ak ||v ||2 Hence by the Shannon-Hartley theorem this chan-
nel has information capacity

max I(z;y;) =C <

Vi

1 1
“log(1 4+ =).
5 og( +a>

By the data processing inequality for Markov chains and the
chain rule for entropy, this means

H(y|2) =

1(8;8") < I(zy) = H(y) —
( ‘Zwlv"
(

H(y) -
7w; 1)
wv <ZHUZ - H(w )
=Y Hy) — H(yi | z) =Y _ I(yi; %)

1

H(y—z|2)
—H(y)—Y H
=H(y)-Y H

IN

|

We will show that successful recovery either recovers

most of x, in which case I(S;5’) = Q(klog(n/k)), or

recovers an e fraction of w. First we show that recovering
w requires m = Q(en).

Lemma 4.2. Suppose w € R™ with w; ~ N(0,02) for
all i and n = Q(%log(1/5)), and A € R™™ for m <
den. Then any algorithm that finds w' from Aw must have
Jw' — w3 > (1—e) |w]|3 with probability at least 1—O(5).

Proof: Note that Aw merely gives the projection of w
onto m dimensions, giving no information about the other
n — m dimensions. Since w and the ¢5 norm are rotation
invariant, we may assume WLOG that A gives the projection
of w onto the first m dimensions, namely 7' = [m]. By the
norm concentration of Gaussians, with probability 1 — & we
have ||w||§ < (1 + €)no?, and by Markov with probability
1— 4§ we have |lwr|3 < eno?.

For any fixed value d, since w is uniform Gaussian and
wk is independent of w,

T
Pr([lw’ — wlly < d] < Prf|(w' —w)z; < d
< Prflwzl; < d.
Therefore
Prllw — wl; < (1 - 3€) [[w]3]
<Prf|w’ — wl; < (1 - 26)no?]
<Prffuz]; < (1-2€)n0?
<Prfwzl; < (1—e)(n—m)o?] <6



as desired. Rescaling € gives the result. ]

Lemma 4.3. Suppose n = Q(1/¢% + (k/¢)log(k/¢)) and
m = O(en). Then 1(S;S") = Q(klog(n/k)) for some a =
Q(1/e).

Proof: Consider the 2’ recovered from A(z + w), and
let T = S US’" Suppose that ||wHiO < O(%klogn) and
||w||§ /(ak) € [1 & €], as happens with probability at least
(say) 3/4. Then we claim that if recovery is successful, one
of the following must be true:

o = 2ll3 < 9 uwll; (13)
(1 —26) wl (14

o = wll; <

To show this, suppose ||/ —31:||2 > 96Hw||2 > 9||wT||§
(the last by |T'| = 2k = O(en/logn)). Then

2
(" = (& +w)rly > (2" = z]ly = [wrlly)?
2
> (2]|a" — |, /3)* > 4e[Jw]]; -
Because recovery is successful,
2 2
2" = (z +w)lly < (L+€) Jwll.
Therefore
2 2
(z +w)rlly = [l2" — (= +w)ll;
2
<(1+e)[lwly
2 2
HwT||2 < (1 -3e¢) ||U’H2
2
< (1 —2¢) [Jwll;

|2 — wrl; + [l —
| — w3 + de [l

/ ’2
o = wll; -

as desired. Thus with 3/4 probability, at least one of (13)
and (14) is true.

Suppose Equation (14) holds with at least 1/4 probability.
There must be some = and .S such that the same equation
holds with 1/4 probability. For this S, given 2’ we can
find T and thus 2. Hence for a uniform Gaussian W,

: /
given AwT we can compute A(z + wz) and recover z-

(1-¢ HWHQ By Lemma 4.2 this
) and m = Q(en) by

], <
is 1mp0851ble since n — |T| = Q(
assumption.

Therefore Equation (13) holds with at least 1/2 probabil-
ity, namely ||z/, — a°||§ < ¢ |Jwl)3 < 9e(1 — €)ak < k/2 for
appropriate «. But if the nearest £ € X to z is not equal to
xz,

' — 2|13
=|2I; + ||=% > ||t 112 (lz = &, = [Jo% — =[,)°
> (|2 ||s + (k — k/2)? >Hx I + |2 — 2|2 = ll2" — =3,

a contradiction. Hence S’ = S. But Fano’s inequality states
H(S]S") <1+ Pr[S" # S]log|F| and hence

1(S;8") = H(S)—H(S|S") > —1% log |F| = Qklog(n/k))

as desired. ]
Theorem 4.4. Any (1 + ¢€)-approximate {l5/ls recovery
\/kk;# and failure probability § < 1/2
requires m = Q(1klog(n/k)).

scheme with € >

Proof: Combine Lemmas 4.3 and 4.1 with oo = 1/e€ to

get m = QLB — O(Lklog(n/k)), m = Q(en), or
n = O(Lklog(k/e)). For € as in the theorem statement, the
first bound is controlling. ]

5. BIT COMPLEXITY TO MEASUREMENT COMPLEXITY

The remaining lower bounds proceed by reductions from
communication complexity. The following lemma (implicit
in [10]) shows that lower bounding the number of bits
for approximate recovery is sufficient to lower bound the
number of measurements. Let B (R) C R™ denote the ¢,
ball of radius R.

Definition 5.1. Let X C R" be a distribution with x; €
{-nd,...,n?} for all i € [n] and x € X. We define a
1 + e-approximate £y,/¢, sparse recovery bit scheme on
X with b bits, precision n~¢, and failure probability §
to be a deterministic pair of functions f: X — {0,1}°
and g: {0,1}* — R™ where f is linear so that f(a + b)
can be computed from f(a) and f(b). We require that, for
u € B (n~°) uniformly and x drawn from X, g(f(x)) is
a valid result of 1 + e-approximate recovery on x + u with
probability 1 — 4.

Lemma 5.2. A lower bound of Q2(b) bits for such a sparse
recovery bit scheme with p < 2 implies a lower bound of
Q(b/((14c+d)logn)) bits for regular (1+ €)-approximate
sparse recovery with failure probability 6 — 1/n.

Proof: Suppose we have a standard (14 €)-approximate
sparse recovery algorithm A with failure probability J using
m measurements Az. We will use this to construct a
(randomized) sparse recovery bit scheme using O(m(1 +
¢ + d)logn) bits and failure probability 6 + 1/n. Then
by averaging some deterministic sparse recovery bit scheme
performs better than average over the input distribution.

We may assume that A € R™*" has orthonormal rows
(otherwise, if A = UXV7T is its singular value decomposi-
tion, T UT A has this property and can be inverted before
applying the algorithm). When applied to the distribution
X + u for u uniform over By (n~¢), we may assume that
A and A are deterministic and fail with probability § over
their input.

Let A’ be A rounded to tlogn bits per entry for some
parameter ¢t. Let x be chosen from X. By Lemma 5.1 of [10],
for any = we have A’z = A(z — s) for some s with ||s]|; <
n22—tlogn HI 1> SO HS”p < n2.5—t ”x”p < n3.5+d—t_ Let
u € BJ(n®5+*") uniformly at random. With probability
at least 1 — 1/n, u € BJ((1 —1/n?)n55+9~t) because the
balls are similar so the ratio of volumes is (1—1/n?)" > 1—




1/n. In this case u+ s € B (n®5"4~"); hence the random
variable u and u+ s overlap in at least a 1 —1/n fraction of
their volumes, so x+ s+« and x+u have statistical distance
at most 1/n. Therefore A(A(x +u)) = A(A'z 4+ Au) with
probability at least 1 — 1/n.

Now, A’z uses only (t+d+ 1) logn bits per entry, so we
can set f(x) = A’z for b = m(t+d+ 1) log n. Then we set
9(y) = A(y+Au) for uniformly random v € BJ} (n®5+~t).
Setting t = 5.5+4d+c, this gives a sparse recovery bit scheme
using b = m(6.5 4+ 2d + ¢) log n. [ |

6. NON-SPARSE OUTPUT LOWER BOUND FOR p =1

First, we show that recovering the locations of an e
fraction of d ones in a vector of size n > d/e requires §2(ed)
bits. Then, we show high bit complexity of a distributional
product version of the Gap-{., problem. Finally, we create
a distribution for which successful sparse recovery must
solve one of the previous problems, giving a lower bound
in bit complexity. Lemma 5.2 converts the bit complexity to
measurement complexity.

6.1. {1 Lower bound for recovering noise bits

Definition 6.1. We say a set C C [q]? is a (d,q,€) code if
any two distinct ¢, € C agree in at most ed positions. We
say a set X C {0,1}9 represents C if X is C concatenated
with the trivial code [q] — {0,1}? given by i — e;.

Claim 6.2. For € > 2/q, there exist (d, q,€) codes C of size
qQ(ed) by the Gilbert-Varshamov bound (details in [10]).

Lemma 6.3. Let X C {0,1}9 represent a (d,q,¢€) code.
Suppose y € R satisfies |ly — x|, < (1 —€)||z|l;. Then
we can recover x uniquely from y.

Proof: We assume y; € [0,1] for all 4; thresholding

otherwise decreases ||y — x||,. We will show that there exists
no other z’ € X with ||y —z|; < (1 — €)||z|; thus

choosing the nearest element of X is a unique decoder.
Suppose otherwise, and let S = supp(z),T = supp(a’).
Then
(L= lzlly = lz =yl
= llzlly = llyslly + llyslly
lyslly = llysll, +ed

Since the same is true relative to =’ and 7', we have

lyslly + lyrlly = lysly + lvzll, + 2ed
2|lysarlly = 2llysorll;, + 2ed
lysarll, > ed
[SNT| > ed
This violates the distance of the code represented by X. H

Lemma 6.4. Let R = [s,cs] for some constant ¢ and
parameter s. Let X be a permutation independent distri-
bution over {0,1}" with ||z||; € R with probability p. If y

satisfies || —yll; < (1 — €)||z||, with probability p’ with
P —(1—=p)=QQ), then I(z;y) = Qeslog(n/s)).

Proof: For each integer ¢ € R, let X; C {0,1}"
represent an (i,n/i,€) code. Let p; = Proex[||z||, = . Let
Sy, be the set of permutations of [n]. Then the distribution
X' given by (a) choosing ¢ € R proportional to p;, (b)
choosing o € S,, uniformly, (c) choosing z; € X; uniformly,
and (d) outputting =’ = o(x;) is equal to the distribution
(v € X ||all, € R).

Now, because p’ > Pr[||z||; ¢ R]+(1), ' chosen from
X' satisfies ||2' — y||; < (1—¢)||2’||; withé > p' —(1—p)
probability. Therefore, with at least 6/2 probability, ¢ and
o are such that |[o(z;) —yl; < (1 — ¢€)|lo(z;)|, with
0/2 probability over uniform x; € X;. But given y with
ly — o(x:)|, small, we can compute y' = o~ !(y) with
lly" — x;||; equally small. Then by Lemma 6.3 we can re-
cover z; from y with probability /2 over x; € X;. Thus for
this ¢ and o, I(x;y | i,0) > Q(log | X;|) = Q(deslog(n/s))
by Fano’s inequality. But then I(z;y) = E;[I(z;y |
i,0)] = Q(6%eslog(n/s)) = Q(eslog(n/s)). |

6.2. Distributional Indexed Gap {

Consider the following communication game, which we
refer to as GapKOBO, studied in [2]. The legal instances

are pairs (z,y) of m-dimensional vectors, with z;,y; €
{0,1,2,..., B} for all ¢ such that

o NO instance: for all i, y; — x; € {0,1}, or
o YES instance: there is a unique i for which y;—x; = B,
and for all j # i, y; — x; € {0,1}.
The distributional communication complexity D, 5(f) of a
function f is the minimum over all deterministic protocols
computing f with error probability at most &, where the
probability is over inputs drawn from o.

Consider the distribution ¢ which chooses a random
i € [m]. Then for each j # 4, it chooses a random
d €{0,...,B} and (z;,y;) is uniform in {(d, d), (d,d+1)}.
For coordinate 4, (x;,y;) is uniform in {(0,0), (0, B)}.
Using similar arguments to those in [2], Jayram [15] showed
D, 5(GaplZB) = Q(m/B?) (this is reference [70] on p.182
of [1]) for ¢ less than a small constant.

We define the one-way distributional communication com-
plexity D;Téw“y( f) of a function f to be the smallest
distributional complexity of a protocol for f in which only
a single message is sent from Alice to Bob.

Definition 6.5 (Indexed Ind¢":” Problem). There are r pairs
of inputs (x1,yY), (z%,y?),...,(z",y") such that every pair
(2%, y%) is a legal instance of the GaplZ problem. Alice
is given x',... 2". Bob is given an index I € [r] and
yt,...,y". The goal is to decide whether (x,y') is a NO
or a YES instance of GaplZ .

Let ) be the distribution ¢” x U,., where U,. is the uniform
distribution on [r]. We bound D;:;way (Indls,)™B as follows.



For a function f, let f" denote the problem of computing
r instances of f. For a distribution ¢ on instances of f, let
Dé_ §"(f") denote the minimum communication cost of
a deterministic protocol computing a function f with error
probability at most § in each of the r copies of f, where

the inputs come from (".

Theorem 6.6. (special case of Corollary 2.5 of [3]) Assume
D, s(f) is larger than a large enough constant. Then

Dy i3 (F7) = QrDas ()
Theorem 6.7. For § less than a sufficiently small constant,

D, 5" (IndeP) = Q(62rm/ (B log)).

Proof: Consider a deterministic 1-way protocol II
for Ind¢%:B with error probability § on inputs drawn
from 7. Then for at least r/2 values ¢ € [r],
Pr[Ii(z, ... 2"yt ...,y" I) = GaplE(z,yf) | T =
i] > 1 —26. Fix a set S = {i1,...,4,/2} of indices with
this property. We build a deterministic 1-way protocol IT’
for f"/2 with input distribution ¢"/2 and error probability
at most 66 in each of the r/2 copies of f.

For each ¢ € [r] \ S, independently choose (z¢,y%) ~
o. For each j € [r/2], let Z; ! be the probability that
H(xl,...,x’”,yl,...,y I) = GapZB( i yl) given I =
i; and the choice of (z*,y*) for all £ € [r]\ S.

If we repeat this experiment independently s =
O(672logr) times, obtaining independent Z 1, ..., Z$ and
let Zj =3, Z}, then Pr[Z; > 5—5-30] > 1— 7 So there
exists a set of s = O(6~!logr) repetitions for which for
each j € [r/2], Z; > s — s - 36. We hardwire these into II’
to make the protocol deterministic.

Given inputs ((X1',..., X"/2), (Y',...,Y"/2)) ~ o"/?
to I, Alice and Bob run s executions of IT, each with 2%/ =
X7 and y% = Y7 for all j € [r/2], filling in the remaining
values using the hardwired inputs. Bob runs the algorithm
specified by II for each i; € S and each execution. His
output for (X7,Y7) is the majority of the outputs of the s
executions with index i;.

Fix an index ;. Let W be the number of repetitions for
which Gap/Z (X7,Y7) does not equal the output of II on
input i;, for a random (X7,Y7) ~ o. Then, E[W] < 3. By
a Markov bound, Pr[W > s/2] < 64, and so the coordinate
is correct with probability at least 1 — 64.

The communication of II' is a factor s = ©(52logr)
more than that of II. The theorem now follows by Theorem
6.6, using that D, 125(GaplZ) = Q(m/B?). ]

6.3. Lower bound for sparse recovery

Fix the parameters B = O(1/e'/?),r = k, m = 1/€%/2,
and n = k/e3. Given an instance (z!,y'),..., (2", y"), I of
Ind¢%B, we define the input signal z to a sparse recovery
problem. We allocate a set S° of m disjoint coordinates in
a universe of size n for each pair (2%,y%), and on these
coordinates place the vector y' — x?. The locations are

important for arguing the sparse recovery algorithm cannot
learn much information about the noise, and will be placed
uniformly at random.

Let p denote the induced distribution on z. Fix a (1 + ¢)-
approximate k-sparse recovery bit scheme Alg that takes b
bits as input and succeeds with probability at least 1 — §/2
over z ~ p for some small constant d. Let S be the set of top
k coordinates in z. Alg has the guarantee that if it succeeds
for z ~ p, then there exists a small u with ||lul, < n~2 so
that v = Alg(z) satisfies

lv—2z—ul, <(1+e¢) ” z+u) ﬂ]\SH1
< (146 [|2mps]l, + (2 +€)/n?

< (1+26) || 2pp s,

l[o =zl

and thus

(v = 2)slly + [|(v - (A +26)llzppsll (A5

sy <

Lemma 6.8. For B = O(1/¢'/2) sufficiently large, suppose
that Pr_,[||(v — 2)s|l1 < 10€ - ||zppslli] > 1 — 6. Then
Alg requires b = Q(k/(e'/? logk)).

Proof: We show how to use Alg to solve instances
of Ind¢:B with probability at least 1 — C' for some small
C, where the probability is over input instances to Ind¢%;
distributed according to 7, inducing the distribution p. The
lower bound will follow by Theorem 6.7. Since Alg is a
deterministic sparse recovery bit scheme, it receives a sketch
f(2) of the input signal z and runs an arbitrary recovery
algorithm g on f(z) to determine its output v = Alg(2).

Given z', x", for each ¢ = 1,2,...,r, Alice places
—a% on the appropriate coordinates in the block S* used in
defining z, obtaining a vector z4jice, and transmits f(zazice)
to Bob. Bob uses his inputs y',...,y" to place y* on the
appropriate coordinate in S*. He thus creates a vector zgop
for which zajice +2B0b = 2. Given f(zajice), Bob computes
f(z) from f(zajice) and f(zBop), then v = Alg(z). We
assume all coordinates of v are rounded to the real interval
[0, B], as this can only decrease the error.

We say that S° is bad if either

o there is no coordinate j in S* for which |vj| >

(x%,y") is a YES instance of Gap/%.Z, o

« there is a coordinate j in S for which |vj| > = yet

either (z ',y') is a NO instance of Gapﬁ’" 5 or j is not
the unique j* for which y] —zj. =B

The ¢;-error incurred by a bad block is at least B/2 — 1.
Hence, if there are ¢ bad blocks, the total error is at least
t(B/2—1), which must be smaller than 10¢ - | z[,,)\ g|[1 With
probability 1 — . Suppose this happens.

We bound ¢. All coordinates in zp,)\ s have value in the
m\slli < rm. Sot < 20erm/(B —2).
For B > 6, t < 30erm/B. Plugging in r, m and B, t < Ck,
where C' > 0 is a constant that can be made arbitrarily small
by increasing B = O(1/¢'/?).

yet

¥ foy)

ot




If a block S* is not bad, then it can be used to solve
Gap/ZP on (2%, y%) with probability 1. Bob declares that
(x%,y") is a YES instance if and only if there is a coordinate
j in S* for which |v;| > B/2.

Since Bob’s index I is uniform on the m coordinates
in Ind¢%:B, with probability at least 1 — C the players
solve Indﬁg;)B given that the ¢; error is small. Therefore
they solve Ind¢%.P with probability 1 — § — C' overall. By
Theorem 6.7, for C' and § sufficiently small Alg requires
Q(mr/(B?logr)) = Q(k/(¢/?log k)) bits. [ |

Lemma 6.9. Suppose Pr...,[||(v — 2)pp\sll1] < (1 —8e) -

lzimp\sll1] > 6/2. Then Alg requires b = Q(%klog(l/e)).

Proof: The distribution p consists of B(mr,1/2) ones
placed uniformly throughout the n coordinates, where
B(mr,1/2) denotes the binomial distribution with mr
events of 1/2 probability each. Therefore with proba-
bility at least 1 — §/4, the number of ones lies in
[0mr/8,(1 — §/8)mr]. Thus by Lemma 6.4, I(v;z) >
Q(emrlog(n/(mr))). Since the mutual information only
passes through a b-bit string, b = Q(emrlog(n/(mr))) as
well. [ ]

Theorem 6.10. Any (1 + €)-approximate {1/¢1 recovery
scheme with sufficiently small constant failure probability
0 must make Q(ﬁk/ log?(k/€)) measurements.

Proof: We will lower bound any ¢, /¢, sparse recovery
bit scheme Alg. If Alg succeeds, then in order to satisfy
inequality (15), we must either have ||(v — 2)g||1 < 10€ -
| 2mp\sll1 or we must have |[(v — 2)ppslli < (1 — 8e) -
| 2np\sll1- Since Alg succeeds with probability at least 1 —
0, it must either satisfy the hypothesis of Lemma 6.8 or
the hypothesis of Lemma 6.9. But by these two lemmas, it
follows that b = Q(ﬁk/ log k). Therefore by Lemma 5.2,
any (1 + €)-approximate ¢1/¢; sparse recovery algorithm
requires Q(ﬁk‘/ log?(k/€)) measurements. [ |

7. LOWER BOUNDS FOR k-SPARSE OUTPUT

Theorem 7.1. Any 1+e-approximate {1 /{1 recovery scheme
with k-sparse output and failure probability § requires m =
Q(%(klog% + log %)) for 32 < % < ne?/k.

Theorem 7.2. Any 1+e-approximate { /{s recovery scheme
with k-sparse output and failure probability § requires m =
QL (k+1ogS)), for 32 < 1 < ne?/k.

These two theorems correspond to four statements: one
for large k and one for small § for both ¢; and /5.

All are fairly similar to the framework of [10]: they use
a sparse recovery algorithm to robustly identify x from Ax
for = in some set X. This gives bit complexity log|X]|,
or measurement complexity log | X|/logn by Lemma 5.2.
They amplify the bit complexity to log | X | log n by showing
they can recover 7 from A(x; + %xg + .o+ %x@(logn))
for x1,...,Ze(ogn) € X and reducing from augmented

indexing. This gives a log|X| measurement lower bound.
Due to space constraints, we defer full proof to the full

paper.
Acknowledgment: We thank T.S. Jayram for helpful dis-
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