
Vertex Sparsifiers and Abstract Rounding Algorithms

Moses Charikar∗

Princeton University
moses@cs.princeton.edu

Tom Leighton
MIT and Akamai Technologies, Inc

ftl@math.mit.edu

Shi Li∗

Princeton University
shili@cs.princeton.edu

Ankur Moitra†

MIT
moitra@mit.edu

Abstract—The notion of vertex sparsification (in particular
cut-sparsification) is introduced in [18], where it was shown
that for any graph G = (V,E) and any subset of k terminals
K ⊂ V , there is a polynomial time algorithm to construct a
graph H = (K,EH) on just the terminal set so that simultaneously
for all cuts (A,K − A), the value of the minimum cut in G
separating A from K−A is approximately the same as the value
of the corresponding cut in H. Then approximation algorithms
can be run directly on H as a proxy for running on G.

We give the first super-constant lower bounds for how
well a cut-sparsifier H can simultaneously approximate all
minimum cuts in G. We prove a lower bound of Ω(log1/4 k)
– this is polynomially-related to the known upper bound of
O(logk/ log logk). Independently, a similar lower bound is given
in [17]. This is an exponential improvement on the Ω(log logk)
bound given in [14] which in fact was for a stronger vertex
sparsification guarantee, and did not apply to cut sparsifiers.

Despite this negative result, we show that for many natural
optimization problems, we do not need to incur a multiplicative
penalty for our reduction. Roughly, we show that any rounding
algorithm which also works for the 0-extension relaxation can
be used to construct good vertex-sparsifiers for which the
optimization problem is easy. Using this, we obtain optimal
O(logk)-competitive Steiner oblivious routing schemes, which
generalize the results in [20]. We also demonstrate that for
a wide range of graph packing problems (which includes
maximum concurrent flow, maximum multiflow and multicast
routing, among others, as a special case), the integrality gap
of the linear program is always at most O(logk) times the
integrality gap restricted to trees. Lastly, we use our ideas to
give an efficient construction for vertex-sparsifiers that match
the current best existential results – this was previously open.
Our algorithm makes novel use of Earth-mover constraints.

Keywords-vertex sparsifier; approximation algorithms;

I. I

A. Background

The notion of vertex sparsification (in particular cut-
sparsification) is introduced in [18]: Given a graph G = (V,E)
and any subset of terminals K ⊂ V , the goal is to construct
a graph H = (K,EH) on just the terminal set so that simul-
taneously for all cuts (A,K −A), the value of the minimum
cut in G separating A from K−A is approximately the same
as the value of the corresponding cut in H. If for all cuts

∗This research was supported supported by NSF awards MSPA-MCS
0528414, CCF 0832797, and AF 0916218.
†This research was supported in part by a Fannie and John Hertz

Foundation Fellowship. Part of this work was done while the author was
visiting Princeton University.

(A,K−A), the the value of the cut in H is at least the value
of the corresponding minimum cut in G and is at most α
times this value, then we call H a cut-sparsifier of quality
α. Throughout this paper we will let |V | = n and |K| = k, and
we think of k << n.

The motivation for considering such questions is in ob-
taining approximation algorithms with guarantees that are
independent of the size of the graph. For many graph parti-
tioning and multicommodity flow questions, the value of the
optimum solution is determined (or can be approximated)
given just the values of the minimum cut separating A
from K − A in G (for every A ⊂ K). As a result the value
of the optimum solution is approximately preserved when
mapping the optimization problem to H. So approximation
algorithms can be run on H as a proxy for running directly
on G, and because the size (number of nodes) of H is k,
any approximation algorithm that achieves a poly(logn)-
approximation guarantee in general will achieve a poly(logk)
approximation guarantee when run on H (provided that the
quality α is also poly(logk)). Feasible solutions in H can
also be mapped back to feasible solutions in G for many
of these problems, so polynomial time constructions for
good cut-sparsifiers yield black box techniques for designing
approximation algorithms with guarantees poly(logk) (and
independent of the size of the graph).

In addition to being useful for designing approximation
algorithms with improved guarantees, the notion of cut-
sparsification is also a natural generalization of many meth-
ods in combinatorial optimization that attempt to preserve
certain cuts in G (as opposed to all minimum cuts) on
a simpler graph H - for example Gomory-Hu Trees, and
Mader’s Theorem. Here we consider a number of questions
related to cut-sparsification:

1) Is there a super-constant lower bound on the quality
of cut-sparsifiers? Do the best (or even near-best) cut-
sparsifiers necessarily result from a distribution on
contractions?

2) Do we really need to pay a price in the approximation
guarantee when applying vertex sparsification tech-
niques to an optimization problem?

3) Can we efficiently construct cut-sparsifiers with qual-
ity as good as the current best existential results?

We resolve all of these questions in this paper. In the

preceding subsections, we will describe what is currently
known about each of these questions, our results, and our
techniques.

B. Super-Constant Lower Bounds and Separations

In [18], it is proven that in general there are always
cut-sparsifiers H of quality O(logk/ log logk). In fact, if G
excludes any fixed minor then this bound improves to O(1).
Yet prior to this work, no super-constant lower bound was
known for the quality of cut-sparsifiers in general. We prove

Theorem 1. There is an infinite family of graphs that admits
no cut-sparsifiers of quality better than Ω(log1/4 k).

Independent of our work, Makarychev and Makarychev
obtained an Ω̃(log1/4 k) lower bound for cut-sparsifiers, and
an Ω̃(log1/2 k) lower bound for flow-sparsifiers, and this
nearly matches the current best integrality gap of the 0-
extension linear programming relaxation [12], [5]. [17] also
gives an exciting connection between vertex sparsification
and the lipschitz extendability of Banach spaces, which has
been an actively studied in functional analysis since the
1950s.

Some results are known in more general settings. In
particular, one could require that the graph H not only ap-
proximately preserve minimum cuts but also approximately
preserve the congestion of all multicommodity flows (with
demands endpoints restricted to be in the terminal set).
This notion of vertex-sparsification is referred to as flow-
sparsification (see [14]) and admits a similar definition of
quality. [14] gives a lower bound of Ω(log logk) for the
quality of flow-sparsifiers. However, this does not apply to
cut sparsifiers and in fact, for the example given in [14],
there is an O(1)-quality cut-sparsifier!

Our bound is polynomially related to the current best
existential upper-bound [18], which is O(logk/ log logk).
We note that in the current best existential upper bounds,
good vertex sparsifiers are actually generated as a convex
combination of contractions on the base graph G. As it
turns out, lower bounds against restricted vertex sparifiers
(i.e. generated from a convex combination of contractions)
follow immediately from integrality gaps for a natural LP
relaxation of the 0-extension problem. Yet what takes the
most work in proving quality lower bounds is removing an
assumption on how the best quality vertex sparsifier can be
generated.

In this paper, we also give the first super-constant sepa-
ration between contraction based vertex sparsification, and
unrestricted vertex sparsification:

Theorem 2. There is an infinite family of graphs so that the
quality of the best cut-sparsifier is asymptotically better than
the quality of the best cut-sparsifer that can be generated
through contractions.

The bound we obtain in the above theorem is polynomial

in log loglogk. Our approach may be of independent interest:
we use Bourgain’s Junta Theorem [4], and the Hypercontrac-
tive Inequality [3], [2] to analyze the quality of a particular
cut-sparsifier for a hypercube-like base graph G.

C. Abstract Integrality Gaps and Rounding Algorithms

As described earlier, running an approximation algorithm
on the sparsifier H = (K,EH) as a proxy for the graph
G = (V,E) pays an additional price in the approximation
guarantee that corresponds to how well H approximates G.
Here we consider the question of whether this loss can be
avoided.

As a motivating example, consider the problem of Steiner
oblivious routing [18]. Previous techniques for constructing
Steiner oblivious routing schemes [18], [14] first construct
a vertex sparsifier H for G, construct an oblivious routing
scheme in H and then map this back to a Steiner oblivious
routing scheme in G. Any such approach must pay a price
in the competitive ratio, and cannot achieve an O(logk)-
competitive guarantee because (for example) expanders do
not admit constant factor flow-sparsifiers [14].

So black box reductions pay a price in the competitive
ratio, yet here we present a technique for combining the
flow-sparsification techniques in [14] and the oblivious rout-
ing constructions in [20] into a single step, and we prove
that there are O(logk)-competitive Steiner oblivious routing
schemes, which is optimal. This result is a corollary of a
more general idea:

The constructions of flow-sparsifiers given in [14] (which
is an extension of the techniques in [18]) can be regarded as
a dual to the rounding algorithm in [8] for the 0-extension
problem. What we observe here is: Suppose we are given
a rounding algorithm that is used to round the fractional
solution of some relaxation to an integral solution for some
optimization problem. If this rounding algorithm also works
for the relaxation for the 0-extension problem given in [12]
(and also used in [5], [8]), then we can use the techniques
in [18], [14] to obtain stronger flow-sparsifiers which are
not only good quality flow-sparsifiers, but also for which
the optimization problem is easy. So in this way we do
not need to pay an additional price in the approximation
guarantee in order to replace the dependence on n with
a dependence on k. With these ideas in mind, what we
observe is that the rounding algorithm in [9] which embeds
metric spaces into distributions on dominating tree-metrics,
can also be used to round the 0-extension relaxation. This
allows us to construct flow-sparsifiers that have O(logk)
quality, and at the same time can be explicitly written as
a convex combination of 0-extensions that are tree-like. On
trees, oblivious routing is easy, and so this gives us a way
to simultaneously construct good flow-sparsifiers and good
oblivious routing schemes on the sparsifier in one step! This
upper bound was obtained independently in [7], who also

observe that one can ask for vertex sparsifiers to be simple,
as well as good approximations to the original graph.

Of course, the rounding algorithm in [9] for embedding
metric spaces into distributions on dominating tree-metrics is
a very common first step in rounding fractional relaxations of
graph partitioning, graph layout and clustering problems. So
for all problems that use this embedding as the main step, we
are able to replace the dependence on n with dependence on
k, and we do not introduce any additional poly-logarithmic
factors as in previous work! One can also interpret our result
as giving a generalization of the hierarchical decompositions
given in [20] for approximating the cuts in a graph G on
trees. We state our results more formally, below, and we
refer to such a statement as an A I G.

Definition 1. We call a fractional packing problem P a
graph packing problem if the goal of the dual (covering)
problem D is to minimize the ratio of the total units of
distance × capacity allocated in the graph divided by
some monotone increasing function of the distances between
terminals.

This definition is quite general, and captures maximum
concurrent flow, maximum multiflow, and multicast rout-
ing as special cases, in addition to many other common
optimization problems. The integral1 dual ID problems
are generalized sparsest cut, multicut and requirement cut
respectively.

Theorem 3. For any graph packing problem P, the maxi-
mum ratio of the integral dual to the fractional primal is at
most O(logk) times the maximum ratio restricted to trees.

For a packing problem that fits into this class, this theorem
allows us to reduce bounding the integrality gap in general
graphs to bounding the integrality gap on trees, which is
often substantially easier than for general graphs (i.e. for
the example problems given above). We believe that this
result helps to explain the ubiquity of the O(logk) bound
for the flow-cut gap for a wide range of multicommodity
flow problems.

We also give a polynomial time algorithm to reduce any
graph packing problem P to a corresponding problem on a
tree: Again, let K be the set of terminals.

Definition 2. Let OPT (P,G) be the optimal value of the
fractional graph packing problem P on the graph G.

Theorem 4. There is a polynomial time algorithm to
construct a distribution µ on (a polynomial number of)
trees on the terminal set K, s.t. ET←µ[OPT (P,T)] ≤
O(logk)OPT (P,G) and such that any valid integral dual

1The notion of what constitutes an integral solution depends on the
problem. In some cases, it translates to the distances are all 0 or 1, and
in other cases it can mean something else. The important point is that the
notion of integral just defines a class of admissible metrics, as opposed to
arbitrary metrics which can arise in the packing problem.

of cost C (for any tree T in the support of µ) can be
immediately transformed into a valid integral dual in G of
cost at most C.

As a corollary, given an approximation algorithm that
achieves an approximation ratio of C for the integral dual to
a graph packing problem on trees, we obtain an approxima-
tion algorithm with a guarantee of O(C logk) for general
graphs. We will refer to this last result as an A
R A.

D. Improved construction of flow-sparsifiers

We also give a polynomial time construction of
O(logk/ log logk) quality flow-sparsifiers (and consequently
cut-sparsifiers as well), which were previously only known
to exist, but finding a polynomial time construction was still
open. We accomplish this by performing a lifting (inspired
by Earth-mover constraints) on an appropriate linear pro-
gram. This lifting allows us to implicitly enforce a constraint
that previously was difficult to enforce, and required an
approximate separation oracle rather than an exact separation
oracle. Alternative constructions that achieve this bound
were also independently given in [17] and [7]. We give the
details in Section V.

II. P

A. Maximum concurrent flow

An instance of the maximum concurrent flow problem
consists of an undirected graph G = (V,E), a capacity func-
tion c : E → <+ that assigns a non-negative capacity to
each edge, and a set of demands {(si, ti, fi)} where si, ti ∈ V
and fi is a non-negative demand. We denote K = ∪i{si, ti}.
The maximum concurrent flow question asks, given such
an instance, what is the largest fraction of the demand
that can be simultaneously satisfied? This problem can be
formulated as a polynomial-sized linear program, and hence
can be solved in polynomial time. However, a more natural
formulation of the maximum concurrent flow problem can
be written using an exponential number of variables.

For any a,b ∈ V let Pa,b be the set of all (simple) paths
from a to b in G. Then the maximum concurrent flow
problem and the corresponding dual can be written as :

max λ min
∑

e d(e)c(e)
s.t. s.t.∑

P∈Psi ,ti
x(P) ≥ λ fi ∀P∈Psi ,ti

∑
e∈P d(e) ≥ D(si, ti)∑

P3e x(P) ≤ c(e)
∑

i D(si, ti) fi ≥ 1
x(P) ≥ 0 d(e) ≥ 0,D(si, ti) ≥ 0

For a maximum concurrent flow problem, let λ∗ denote
the optimum.

Let |K| = k. Then for a given set of demands {si, ti, fi},
we associate a vector ~f ∈ <(k

2) in which each coordinate
corresponds to a pair (x,y) ∈

(
K
2

)
and the value ~fx,y is defined

as the demand fi for the terminal pair si = x, ti = y. Also
given a capacitated graph H = (K,EH) we will write ~H ∈
<(k

2) for the demand vector in which each coordinate (which
corresponds to a pair a,b ∈ K) is set to the capacity of the
edge (a,b) ∈ EH .

Definition 3. We denote congG(~f) = 1
λ∗

Or equivalently congG(~f) is the minimum C s.t. ~f can be
routed in G and the total flow on any edge is at most C
times the capacity of the edge.

Throughout we will use the notation that graphs G1,G2
(on the same node set) are "summed" by taking the union
of their edge set (and allowing parallel edges).

B. Cut Sparsifiers

Suppose we are given an undirected, capacitated graph
G = (V,E) and a set K ⊂ V of terminals of size k.
Let h : 2V → <+ denote the cut function of G: h(A) =∑

(u,v)∈E s.t. u∈A,v∈V−A c(u,v). We define the function hK :
2K → <+ which we refer to as the terminal cut function
on K: hK(U) = minA⊂V s.t. A∩K=U h(A).

Definition 4. G′ is a cut-sparsifier for the graph G = (V,E)
and the terminal set K if G′ is a graph on just the terminal
set K (i.e. G′ = (K,E′)) and if the cut function h′ : 2K →<+

of G′ satisfies (for all U ⊂ K) hK(U) ≤ h′(U).

We can define a notion of quality for any particular cut-
sparsifier:

Definition 5. The quality of a cut-sparsifier G′ is defined
as maxU⊂Kh′(U)/hK(U).

C. 0-Extensions

Definition 6. f : V → K is a 0-extension if for all a ∈ K,
f (a) = a.

So a 0-extension f is a clustering of the nodes in V into
sets, with the property that each set contains exactly one
terminal.

Definition 7. Given a graph G = (V,E) and a set K ⊂ V, and
0-extension f , G f = (K,E f) is a capacitated graph in which
for all a,b ∈ K, the capacity c f (a,b) of edge (a,b) ∈ E f is∑

(u,v)∈E s.t. f (u)=a, f (v)=b

c(u,v)

D. Steiner Oblivious Routing

Given a graph G = (V,E) with capacity function c, and a
set of terminals K ⊂ V , a Steiner oblivious routing scheme is
a set of routings {Rs,t : s, t ∈ K}, where each routing Rs,t sends
1 unit flow from s to t. We say {Rs,t} has competitive ratio
α if for every set of demands {(si, ti, fi)} where si, ti ∈ K that
can be routed in G (with congestion 1), the routing

∑
i fiRsi,ti

has congestion at most α. This generalize the defintion of
oblivious routing schemes, in which case K = V .

III. L B C S

Consider the following construction for a graph G. Let
Y be the hypercube of size 2d for d = logk. Then for every
node ys ∈ Y (i.e. s ∈ {0,1}d), we add a terminal zs and connect
the terminal zs to ys using an edge of capacity

√
d. All the

edges in the hypercube are given capacity 1. We will use this
instance to show two lower bounds, one for cut-sparsifiers
generated from contractions, and one for unrestricted cut-
sparsifiers.

A. Lower bound for Cut Sparsifiers from 0-extensions

In this subsection, we give a particular relaxation for the
0-extension problem (when the input metric is `1). We show
a strong duality relation between the worst case integrality
gap for this relaxation, and the quality of the best cut-
sparsifier that can result from a distribution on contractions.
So lower bounds for cut-sparsifiers are as easy as integrality
gaps.

We also give an Ω(
√

d) integrality gap for this relaxation,
on the example above. A similar bound is actually implicit
in the work of [11] too. This integrality gap immediately
implies a lower bound for contraction-based cut-sparsifiers
for the above graph.

Given the graph G = (V,E) a set K ⊂ V of terminals, and a
semi-metric D on K the 0-extension problem [12] is defined
as:

Definition 8. The 0-Extension Problem is defined as

min
0-Extensions f

∑
(u,v)∈E

c(u,v)D(f (a), f (b))

We denote OPT (G,K,D) as the value of this optimum.

Definition 9. Let ∆U denote the cut-metric in which
∆U (u,v) = 1|U∩{u,v}|=1.

If we are given a semi-metric D which is `1, we can define
an (exponential) sized linear program that will be useful for
analyzing cut-sparsifiers that arise from contractions:

min
∑

U δ(U)h(U)
s.t.

∀t,t′∈K
∑

U δ(U)∆U (t, t′) = D(t, t′).

We will refer to this linear program as the Cut-Cut
Relaxation. For a particular instance (G,K,D) of the 0-
extension problem, we denote the optimal solution to this
linear program as OPTcc(G,K,D).

Definition 10. The Contraction Quality of G,K is the
minimum α such that there is a distribution on 0-extensions
γ and H =

∑
f γ(f)G f is a α quality cut-sparsifier.

Lemma 1. Let ν be the maximum integrality gap of the
Cut-Cut Relaxation for a particular graph G = (V,E), a
particular set K ⊂ V of terminals, over all `1 semi-metrics
D on K. Then the Contraction Quality of G,K is exactly ν.

Let α be the Contraction Quality of G,K. Then [18]
demonstrates that α ≤ ν. In the other direction: Suppose γ
is a distribution on 0-extensions s.t. H =

∑
f γ(f)G f is a

α-quality cut sparsifier. In a sense, because H is a good cut-
sparsifier γ is a good oblivious algorithm for the 0-extension
problem restricted to cut-metrics. This in turn implies that
γ is a good oblivious algorithm for convex combinations
of cut-metrics (i.e. `1 metrics) and this will imply a bound
on the integrality gap of the Cut-Cut Relaxation for the 0-
extension problem on G,K when the input metric is `1. We
defer the details to the full version of our paper.

Consider the following distance assignment to the edges
in our example graph given at the beginning of this section:
Each edge connecting a terminal to a node in the hypercube
- i.e. an edge of the form (zs,ys) is assigned distance

√
d

and every other edge in the graph is assigned distance 1.
Then let σ be the shortest path metric on V given these
edge distances.

Claim 1. σ is an `1 semi-metric on V, and in fact there is a
weighted combination of cuts s.t. σ(u,v) =

∑
U δ(U)∆U (u,v)

and
∑

U δ(U)h(U) = O(kd)

Yet if we take D equal to the restriction of σ on K, then
OPT (G,K,D) = Ω(kd3/2):

Lemma 2. OPT (G,K,D) = Ω(kd3/2)

The proof of this lemma is based on the small-set expan-
sion properties of the hypercube, and we defer a proof to
the full version of our paper.

B. Lower bounds for Arbitrary Cut sparsifiers

We will in fact use the above example graph G to give
a lower bound on the quality of any cut-sparisifer. We will
show that for this graph, no cut-sparsifier achieves quality
better than Ω(log1/4 k).

The particular example G that we gave above has many
symmetries - i.e. there are many automorphisms of K that
exactly preserve the terminal cut function hK . We can use
these automorphisms to symmetrize good cut-sparsifiers
without degrading the quality, and as a result we can assume
that the best cut-sparsifier is highly symmetric:

Claim 2. If α is the best quality cut-sparsifier for the above
graph G, then there is an α quality cut-sparsifier H in
which the capacity between two terminals zs and zt is only
dependent on the Hamming distance Hamm(s, t).

One can regard any cut-sparsifier (not just ones that result
from contractions) as a set of

(
k
2

)
variables, one for the

capacity of each edge in H. Then the constraints that H be
an α-quality cut-sparsifier are just a system of inequalities,
one for each subset A ⊂ K that enforces that the cut in
H is at least as large as the minimum cut in G (i.e.
h′(A)≥ hK(A)) and one enforcing that the cut is not too large
(i.e. h′(A) ≤ αhK(A)). Then in general, one can derive lower

bounds on the quality of cut-sparsifiers by showing that if
α is not large enough, then this system of inequalities is
infeasible meaning that there is not cut-sparsifier achieving
quality α. Unlike the above argument, this does not assume
anything about how the cut-sparsifier is generated.

Theorem 1. For α = Ω(log1/4 k), there is no cut-sparsifier H
for G which has quality at most α.

Proof (sketch): Assume that there is a cut-sparsifier H′

of quality at most α. Then using the above claim, there
is a cut-sparsifier H of quality at most α in which the
weight from a to b is only a function of Hamm(a,b). Then
for each i ∈ [d], we can define a variable wi as the total
weight of edges incident to any terminal of length i. I.e.
wi =

∑
b s.t. Hamm(a,b)=i cH(a,b).

For simplicity, here we will assume that all cuts in the
sparsifier H are at most the cost of the corresponding
minimum cut in G and at least 1

α times the corresponding
minimum cut. This of course is an identical set of constraints
that we get from dividing the standard definition that we use
in this paper for α-quality cut-sparsifiers by α.

We need to derive a contradiction from the system of
inequalities that characterize the set of α-quality cut sparsi-
fiers for G. As we noted, we will consider only the sub-cube
cuts (cuts in which U = {zs∪ ys|s1 = s2 = · · · s j = 0}) and the
Hamming ball U = {zs∪ ys|d(ys,y0) ≤ d

2 }, which we refer to
as the Majority Cut.

Consider the Majority Cut: There are Θ(k) terminals on
each side of the cut, and most terminals have Hamming
weight close to d

2 . In fact, we can sort the terminals by
Hamming weight and each weight level around Hamming
weight d

2 has roughly a Θ(1√
d

) fraction of the terminals. Any

terminal of Hamming weight d
2 −
√

i has roughly a constant
fraction of their weight wi crossing the cut in H, because
choosing a random terminal Hamming distance i from any
such terminal corresponds to flipping i coordinates at ran-
dom, and throughout this process there are almost an equal
number of 1s and 0s so this process is well-approximated by
a random walk starting at

√
i on the integers, which equally

likely moves forwards and backwards at each step for i total
steps, and asking the probability that the walk ends at a
negative integer.

In particular, for any terminal of Hamming weight d
2 −

t, the fraction of the weight wi that crosses the Majority
Cut is O(exp{− t2

i). So the total weight of length i edges
(i.e. edges connecting two terminals at Hamming distance i)
cut by the Majority Cut is O(wi|{zs|Hamm(s,0) ≥ d

2 −
√

i}|) =

O(wi
√

i/d)k because each weight close to the boundary of
the Majority cut contains roughly a Θ(1√

d
) fraction of the

terminals. So the total weight of edges crossing the Majority
Cut in H is O(k

∑d
i=1 wi

√
i/d)

And the total weight crossing the minimum cut in G
separating A = {zs|d(ys,y0) ≤ d

2 } from K−A is Θ(k
√

d). And

because the cuts in H are at least 1
α times the corresponding

minimum cut in G, this implies
∑d

i=1 wi
√

i/d ≥Ω(
√

d
α)

Next, we consider the set of sub-cube cuts. For j ∈ [d],
let A j = {zs|s1 = 0, s2 = 0, ..s j = 0}. Then the minimum cut in
G separating A j from K −A j is Θ(|A j|min(j,

√
d)), because

each node in the Hypercube which has the first j coordinates
as zero has j edges out of the sub-cube, and when j >

√
d,

we would instead choose cutting each terminal zs ∈ A j from
the graph directly by cutting the edge (ys,zs).

Also, for any terminal in A j, the fraction of length i
edges that cross the cut is approximately 1 − (1 − j

d)i =

Θ(min(i j
d ,1)). So the constraints that each cut in H be at most

the corresponding minimum cut in G give the inequalities∑d
i=1 min(i j

d ,1)wi ≤ O(min(j,
√

d))
We refer to the above constraint as B j. Multiply each B j

constraint by 1
j3/2

and adding up the constraints yields a
linear combination of the variables wi on the left-hand side.

The coefficient of any wi is
∑d−1

j=1
min(i j

d ,1)
j3/2

≥
∑d/i

j=1

i j
d

j3/2
.

And using the Integration Rule this is Ω(
√

i
d).

This implies that the coefficients of the constraint B
resulting from adding up 1

j3/2
times each B j for each wi

are at least as a constant times the coefficient of wi in the
Majority Cut Inequality. So we get

∑d−1
j=1

1
j3/2

min(j,
√

d) ≥

Ω
(∑d−1

j=1
1

j3/2
∑d

i=1 min(i j
d ,1)wi

)
≥Ω

(∑d
i=1 wi

√
i
d

)
≥Ω

(√
d
α

)
.

And we can evaluate the constant
∑d−1

j=1 j−3/2 min(j,
√

d) =∑√d
j=1 j−1/2 +

√
d
∑d−1

j=
√

d+1
j−3/2 using the Integration Rule,

this evaluates to O(d1/4). This implies O(d1/4) ≥
√

d
α and in

particular this implies α≥Ω(d1/4). So the quality of the best
cut-sparsifier for H is at least Ω(log1/4 k). �

This bound is not as good as the lower bound we obtained
earlier in the restricted case in which the cut-sparsifier is
generated from contractions. As we will demonstrate, there
are actually cut-sparsifiers that achieve quality o(

√
logk) for

G.

IV. N S C-S

Here we give a cut-sparsifier H that achieves quality
o(

√
logk) for the graph G given in Section III, which

is asymptotically better than the quality of the best cut-
sparsifier that can be generated from contractions. And so in
general restricting to convex combinations of 0-extensions
is sub-optimal. This is the first super-constant separation
between contraction-based vertex sparsification and unre-
stricted vertex sparsification.

In G, the minimum cut separating any singleton terminal
{zs} from K−{zs} is just the cut that deletes the edge (zs,ys).
So the capacity of this cut is

√
d. We want a good cut-

sparsifier to approximately preserve this cut, so the total
capacity incident to any terminal in H will also be

√
d.

We distribute this capacity incident to zs evenly among all
terminals that are Hamming distance (roughly)

√
d from zs.

This choice of ρ corresponds to flipping each bit in t with
probability Θ(1√

d
) when generating u from t. We prove that

the graph H has cuts at most the corresponding minimum-cut
in G. In fact, a stronger statement is true: ~H can be routed as
a flow in G with congestion O(1). We prove this fact in the
full version of our paper by explicitly constructing a good
routing scheme using a "canonical-paths" type argument.

So we know that the cuts in H are never larger than the
corresponding minimum cut in G, and all that remains is to
show that the cuts in H are never too small. We conjecture
that the quality of H is actually Θ(log1/4 k), and this seems
natural since the quality of H restricted to the Majority
Cut and the sub-cube cuts is actually Θ(log1/4 k), and often
the Boolean functions corresponding to these cuts serve
as extremal examples in the harmonic analysis of Boolean
functions. In fact, our lower bound on the quality of any
cut-sparsifier for G is based only on analyzing these cuts so
in a sense, our lower bound is tight given the choice of cuts
in G that we used to derive infeasibility in the system of
inequalities characterizing α-quality cut-sparsifiers.

We analyze the quality of H by relating the total capacity
of edges in H crossing the cut (A,K−A) to the spectrum of a
Boolean function (fA : {−1,+1}d→{−1,+1} s.t. fA(s) = +1 iff
zs ∈ A) associated with the cut. Intuitively, the total capacity
of edges crossing the cut (A,K−A) should be related to the
noise-sensitivity of the function fA because given a terminal
u ∈ K, choosing a random neighbor of u in H corresponds
roughly to flipping

√
d random coordinates in the binary

representation of u to obtain a neighbor v.
We use a case analysis centered around Bourgain’s Junta

Theorem [4], and the Hypercontractive Inequality [3], [2] to
establish that H has quality o(

√
logk): The minimum cut in

G separating A from K−A is at most O(
√

logk min(|A|, |K−
A|)) and we can use the Hypercontractive Inequality to
establish that H is a super-constant edge expander on any
set A of size o(|K|). So the ratio of the minimum cut in
G to the cut in H is o(

√
logk) for sets A of size o(|K|),

and we can reduce upper-bounding the quality of H to
analyzing approximately-balanced cuts. Yet we can apply
Bourgain’s Junta Theorem, along with the Fourier-theoretic
characterization of the cut function of H, to show that for
any approximately-balanced cut (A,K −A), either the cut is
close to a Junta and so the minimum cut in G is much
smaller than O(

√
logk min(|A|, |K − A|)), or the function fA

has a significant Fourier tail which will imply that the cut
function of H evaluated on A is ω(min(|A|, |K − A|)). This
would establish the desired quality upper-bound for H, and
we defer details to the full version of our paper.

V. I C L

In this section we give a polynomial time construction for
a flow-sparsifier that achieves quality at most the quality of

the best flow-sparsifier that can be realized as a distribution
over 0-extensions. Consequently this is a construction for
flow-sparsifiers (and thus also cut-sparsifiers) that achieve
quality O(logk

log logk). Given that the current best upper bounds
on the quality of flow and cut-sparsifiers are both achieved
through contractions, the constructive results we present
here match the best known existential bounds on quality.
All previous constructions [18], [14] need to sacrifice some
super-constant factor in order to actually construct cut or
flow-sparsifiers.

Our technique, we believe, is of independent interest:
we perform a lifting operation on an appropriate linear
program. This lifting operation generates a set of constraints
on H that is both stronger than the constraint that H be
a flow-sparsifier, and yet weaker than the constraint that
H can be written as a convex combination of 0-extension
graphs G f . On one hand, designing a separation oracle
becomes easier; while on the other hand, we can reasonably
expect to describe the set of feasible graphs H using only
polynomially many variables.

Theorem 5. Given an instance H = (G,K), there is a
polynomial (in n and k) time algorithm that outputs a
flow sparsifier H of quality α ≤ α′(H), where α′(H) is the
Contraction Quality of G,K.

Proof: We show that the following LP can
give a flow-sparsifier with the desired properties:
min α

s.t
congG(~w) ≤ α

wi, j =
∑

u,v∈V,u,v

c(u,v)xu,v
i, j ∀i, j ∈ K

xu,v
i, j = xv,u

j,i ∀u,v ∈ V,u , v, i, j ∈ K∑
j∈K

xu,v
i, j = xu

i ∀u,v ∈ V,u , v, i ∈ K∑
i∈K

xu
i = 1 ∀u ∈ V

xi
i = 1 ∀i ∈ K

xu,v
i, j ≥ 0 ∀u,v ∈ V,u , v, i, j ∈ K

Lemma 3. The value of the LP is at most α′(H).

Proof: Suppose γ is a distribution on 0-extensions s.t.
H =

∑
f γ(f)G f has quality at most α′(H). If we set xu,v

i, j
equal to the probability that f (u) = i and f (v) = j (when f is
sampled from γ), and set the remaining allocation variables
in the LP accordingly, this will define a feasible solution to
the LP with α ≤ α′(H).

There are qualitatively two types of constraints that are
associated with good flow-sparsifiers H: All flows routable
in H with congestion at most 1 must be routable in G with
congestion at most α. This constraint is equivalent to the
constraint that ~H can be routed in G with congestion at
most α.

The second set of constraints associated with good flow-

sparsifiers are that all flows routable in G with congestion
at most 1 can also be routed in H with congestion at
most 1. This constraint can also be written as an infinite
number of linear constraints on H, but no polynomial time
separation oracle is known for these constraints. Instead,
previous work relied on using oblivious routing guarantees
to get an approximate separation oracle for this problem.

The above linear program actually implicitly enforces
this constraint! Let the edge capacities in H be defined by{
wi, j : i, j ∈ K, i < j

}
for a feasible solution to the above LP.

Lemma 4. H is a flow-sparsifier

Proof: Let
{
fi, j : i, j ∈ K, i < j

}
be a multicommodity

flow that can be routed in G. By the LP duality, we have∑
u<v c(u,v)δ(u,v) ≥

∑
i< j fi, jδ(i, j) for every metric δ over

V . Let EMDδ be the Earth-mover distance between two
distributions according to the metric δ. Let δ′ be an arbitrary
metric over K. Then we can re-write

∑
i< j δ

′(i, j)wi, j as

∑
u<v

c(u,v)
∑
i, j

xu,v
i, j δ
′(i, j) ≥

∑
u<v

c(u,v)EMDδ′ (xu, xv).

Define δ(u,v) = EMDδ′ (xu, xv). Clearly, δ is a metric over
V and δ(i, j) = δ′(i, j) for every i, j ∈ K. Because f can be
routed in G, we have

∑
u<v

c(u,v)δ(u,v) ≥
∑
i< j

fi, jδ(i, j) =
∑
i< j

fi, jδ′(i, j)

Directly from the definition of H, we have the condition
that

∑
u<v c(u,v)

∑
i, j xu,v

i, j δ
′(i, j) =

∑
i< j δ

′(i, j)wi, j. Since δ′ is
an arbitrary metric over K, by strong duality f can also be
routed in H.

Of course the LP explicitly enforces the constraint that H
can be routed in G with congestion at most α, and hence
H has quality at most α. Also this LP can be solved in
polynomial time, and so this implies the theorem.

VI. A I G R A
In this section, we give a generalization of the hierarchical

decompositions constructed in [20]. This immediately yields
an O(logk)-competitive Steiner oblivious routing scheme,
which is optimal. Also, from our hierarchical decomposi-
tions we can recover the O(logk) bound on the flow-cut
gap for maximum concurrent flows given in [16] and [1].
Additionally, we can also give an O(logk) flow-cut gap
for the maximum multiflow problem, which was originally
given in [10]. This even yields an O(logk) flow-cut gap
for the relaxation for the requirement cut problem, which
is given in [19]. In fact, we will be able to give an abstract
framework to which the results in this section apply (and
yield O(logk) flow-cut gaps for), and in this sense we are
able to help explain why O(logk) is often the worst-case
ratio of the optimal integral cover compared to optimal
fractional packing in undirected graphs.

Philosophically, this section aims to answer the question:
Do we really need to pay a price in the approximation
guarantee for reducing to a graph on size k? In fact, as we
will see, there is often a way to combine both the reduction
to a graph of size k and the rounding algorithm needed to
bound the flow-cut gap into one step!

A. 0-Decomposition

We extend the notion of 0-extensions to a notion of 0-
decompositions. Intuitively, we would like to combine the
notion of a 0-extension with that of a decomposition tree.

Again, given a 0-extension f , we will denote G f as the
graph on K that results from contracting all sets of nodes
mapped to any single terminal. Then we will use c f to denote
the capacity function of this graph.

Definition 11. Given a tree T on K, and a 0-extension f , we
can generate a 0-decomposition G f ,T = (K,E f ,T) as follows:

The only edges present in G f ,T will be those in T , and for
any edge (a,b) ∈ E(T), let Ta,Tb be the subtrees containing
a,b respectively that result from deleting (a,b) from T.

Then c f ,T (a,b) (i.e. the capacity assigned to (a,b) in G f ,T
is: c f ,T (a,b) =

∑
u,v∈K and u∈Ta,v∈Tb

c f (u,v).

Let Λ denote the set of 0-extensions, and let Π denote the
set of trees on K.

Claim 3. For any distribution γ on Λ × Π, and for
any demand ~d ∈ <(K

2), congH(~d) ≤ congG(~d) where H =∑
f∈Λ,T∈Π γ(f ,T)G f ,T

Proof: Clearly for all f ,T , γ(f ,T)~d is feasible in
γ(f ,T)G f (because contracting edges only makes routing
flow easier), and so because G f ,T is a hierarchical decom-
position tree for G f , then it follows that γ(f ,T)~d is also
feasible in G f ,T .

Claim 4. Given any distribution γ on Λ × Π, let H =∑
f∈Λ,T∈Π γ(f ,T)G f ,T . Then sup

~d∈<(K
2)

congG(~d)
congH (~d)

= congG(~H)

Theorem 6. There is a polynomial time algorithm to con-
struct a distribution γ on Λ × Π such that congG(~H) =

O(logk) where H =
∑

f∈Λ,T∈Π γ(f ,T)G f ,T .

We want to show that there is a distribution γ on Λ×Π

such that congG(~H) = O(logk). This will yield a general-
ization of the results in [20]. In order to prove such a
distribution exists, we follow the plan given in [18] and [14]:
we set up a zero-sum game in such a way that a bound of
O(logk) on the game value will imply our desired structural
result.

This is precisely how (similar) zero-sum games are used
in [18] and [14] to prove that good cut-sparsifiers and flow-
sparsifiers exist, respectively. We defer the precise descrip-
tion of the game, and the analysis to the full version of the
paper but we want to highlight that the main difference is that
while previous work constructed good responses (and hence

bounds on the game value) based on rounding algorithms
due to [8] and [5] for the 0-extension problem, here we
slightly modify the rounding algorithm due to [9] in order
to generate good "tree-like" responses.

B. Applications

Also, as we noted, this gives us an alternate proof of the
main results in [16], [1] and [10]. We first give an abstract
framework into which these problems all fit:

Definition 1. We call a fractional packing problem P a graph
packing problem if the goal of the dual covering problem
D is to minimize the ratio of the total units of distance ×
capacity allocated in the graph divided by some monotone
increasing function of the distances between terminals.

Let ID denote the integral dual graph covering problem.
We can formally define ID by a family D of admissible
metrics over the terminals K. Then the goal of ID is to
find a metric δ ∈ D and a 0-extension f : V → K such that
the ratio of δ f × capacity divided by the monotone function
applied to δ f is minimized. Here, δ f is a metric over V such
that δ f (u,v) = δ(f (u), f (v)). To make this definition seem
more natural, we demonstrate that a number of well-studied
problems fit into this framework.

Example 1. [15], [16], [1] P: maximum concurrent flow;
ID: generalized sparsest cut

Here we are given some demand vector ~f ∈<(K
2), and the

goal is to maximize the value r such that r ~f is feasible in G.
Then the dual to this problem corresponds to minimizing the
total distance × capacity units, divided by

∑
(a,b) ~fa,bd(a,b),

where d is the induced semi-metric on K. The function in
the denominator is clearly a monotone increasing function
of the distances between pairs of terminals, and hence is
an example of what we call a graph packing problem.
The generalized sparsest cut problem corresponds to the
"integral" constraint on the dual, that the distance function
be a cut metric.

Example 2. [10] P: maximum multiflow; ID: multicut

Here we are given some pairs of terminals T ⊂
(

K
2

)
,

and the goal is to find a flow ~f that can be routed in
G that maximizes

∑
(a,b)∈T ~fa,b. The dual to this problem

corresponds to minimizing the total distance × capacity
units divided by min(a,b)∈T {d(a,b)}, again where where d
is the induced semi-metric on K. Also the function in the
denominator is again a monotone increasing function of the
distances between pairs of terminals, and hence is another
an example of what we call a graph packing problem. The
multicut problem corresponds to the "integral" constraint on
the dual that the distance function be a partition metric.

Example 3. ID: Steiner multi-cut

Example 4. ID: Steiner minimum-bisection

Example 5. [19] P: multicast routing; ID: requirement cut

This is another partitioning problem, and the input is
again a set of subsets {Ri}i. Each subset Ri is also given at
requirement ri, and the goal is to minimize the total capacity
removed from G, in order to ensure that each subset Ri is
contained in at least ri different components. Similarly to
the Steiner multi-cut problem, the standard relaxation for
this problem is to minimize the total amount of distance ×
capacity units allocated in G, s.t. for each i the minimum
spanning tree Ti (on the induced metric on K) on every
subset Ri has total distance at least ri. Let Πi be the set
of spanning trees on the subset Ri. Then we can again cast
this relaxation in the above framework because the goal is
to minimize the total distance × capacity units divided by
mini{

minT∈Πi
∑

(a,b)∈T d(a,b)
ri

}. The dual to this fractional covering
problem is actually a common encoding of multicast routing
problems, and so these problems as well are examples of
graph packing problems. Here the requirement cut problem
corresponds to the "integral" constraint that the distance
function be a partition metric.

In fact, one could imagine many other examples of inter-
esting problems that fit into this framework. One can regard
maximum multiflow as an unrooted problem of packing an
edge fractionally into a graph G, and the maximum concur-
rent flow problem is a rooted graph packing problem where
we are given a fixed graph on the terminals (corresponding
to the demand graph) and the goal is to pack as many copies
as we can into G (i.e. maximizing throughput). The dual to
the Steiner multi-cut is more interesting, and is actually a
combination of rooted and unrooted problems where we are
given subset Ri of terminals, and the goal is to maximize the
total spanning trees over the sets Ri that we pack into G. This
is a combination of a unrooted (each spanning tree on any
set Ri counts the same) and a rooted problem (once we fix
the Ri, we need a spanning tree on these terminals). Then
any other flow-problem that is combinatorially restricted can
also be seen to fit into this framework.

Using Theorem 6, we prove:

Theorem 4. There is a polynomial time algorithm to con-
struct a distribution µ on (a polynomial number of) trees on
the terminal set K, s.t.

ET←µ[OPT (P,T)] ≤ O(logk)OPT (P,G)

and such that any valid integral dual of cost C (for any tree
T in the support of µ) can be immediately transformed into
a valid integral dual in G of cost at most C.

We first demonstrate that the operations we need to
construct a 0-decomposition only make the dual to a graph
packing problem more difficult: Let ν(G,K) be the optimal
value of a dual to a graph packing problem on G = (V,E),
K ⊂ V .

Claim 5. Replacing any edge (u,v) of capacity c(u,v) with a
path u = p1, p2, ..., pr = v, deleting the edge (u,v) and adding
c(u,v) units of capacity along the path cannot decrease the
optimal value of the dual.

Proof: We can scale the distance function of the
optimal dual so that the monotone increasing function of
the distances between terminals is exactly 1. Then the
value of the dual is exactly the total capacity × distance
units allocated. If we maintain the same metric space on
the vertex set V , then the monotone increasing function
of terminal distances is still exactly 1 after replacing the
edge (u,v) by the path u = p1, p2, ..., pr = v. However this
replacement does change the cost (in terms of the total
distance × capacity units). Deleting the edge reduces the cost
by c(u,v)d(u,v), and augmenting along the path increases
the cost by c(u,v)

∑r−1
i=1 d(pi, pi+1) which, using the triangle

inequality, is at least c(u,v)d(u,v).

Claim 6. Suppose we contract two nodes u,v (s.t. not both
of u,v are terminals) - then the optimal value of the dual
does not decrease.

Proof: We can equivalently regard this operation as
placing an edge of infinite capacity connecting u and v, and
this operation clearly does not change the set of distance
functions for which the monotone increasing function of the
terminal distances is at least 1. And so this operation can
only increase the cost of the optimal dual solution.

We can obtain any 0-decomposition G f ,T from some
combination of these operations. So we get that for any f ,T :

Corollary 1. ν(G f ,T ,K) ≥ ν(G,K)

Let γ be the distribution on Λ × Π s.t. H =∑
f∈Λ,T∈Π γ(f ,T)G f ,T and congG(~H) ≤ O(logk).

Lemma 5. E(f ,T)←γ[ν(G f ,T ,K)] ≤ O(logk)ν(G,K).

Proof: We know that there is a metric d on V s.t.∑
(u,v) c(u,v)d(u,v) = ν(G,K) and that the monotone increas-

ing function of d (restricted to K) is at least 1.
We also know that there is a simultaneous routing of each

γ(f ,T)G f ,T in G so that the congestion on any edge in G is
O(logk). Then consider the routing of one such γ(f ,T)G f ,T
in this simultaneous routing. Each edge (a,b) ∈ E f ,T is routed
to some distribution on paths connecting a and b in G. In
total γ(f ,T)c f (a,b) flow is routed on some distribution on
paths, and consider a path p that carries C(p) total flow from
a to b in the routing of γ(f ,T)G f ,T . If the total distance along
this path is d(p), we increment the distance d f ,T on the edge
(a,b) in G f ,T by d(p)C(p)

γ(f ,T)c f ,T (a,b) , and we do this for all such
paths. We do this also for each (a,b) in G f ,T .

If d f ,T is the resulting semi-metric on G f ,T , then this
distance function dominates d restricted to K, because the
distance that we allocate to the edge (a,b) in G f ,T is a convex
combination of the distances along paths connecting a and

b in G, each of which is at least d(a,b).
So if we perform the above distance allocation for each

G f ,T , then each resulting d f ,T ,G f ,T pair satisfies the con-
dition that the monotone increasing function of terminal
distances (d f ,T) is at least 1. But how much distance ×
capacity units have we allocated in expectation?

E(f ,T)←γ[ν(G f ,T ,K)] ≤
∑
f ,T

γ(f ,T)
∑

(a,b)∈E f ,T

c f ,T (a,b)d f ,T (a,b)

We can re-write the above double sum as:∑
(a,b)∈E

f low ~H(e)d(a,b) ≤ congG(~H)
∑

(a,b)∈E

c(a,b)d(a,b)

≤ O(logk)ν(G,K)

And this implies:

Theorem 3. For any graph packing problem P, the maxi-
mum ratio of the integral dual to the fractional primal is at
most O(logk) times the maximum ratio restricted to trees.

And since we can actually construct such a distribution
on 0-decompositions in polynomial time using Theorem 6,
we obtain Theorem 4 which immediately implies that given
an approximation algorithm that achieves an approximation
ratio of C for the integral dual to a graph packing problem
on trees, we obtain an approximation algorithm with a
guarantee of O(C logk) for general graphs.

For example, this gives a generic algorithm that achieves
an O(logk) guarantee for both generalized sparsest cut and
multicut. The previous techniques for rounding a fractional
solution to generalized sparsest cut [16], [1] rely on metric
embedding results, and the techniques for rounding frac-
tional solutions to multicut [10] rely on purely combinato-
rial, region-growing arguments. Yet, through this theorem,
we can give a unified rounding algorithm that achieves an
O(logk) guarantee for both of these problems, and more gen-
erally for graph packing problems (whenever the integrality
gap restricted to trees is a constant).

O P

The main open problem is whether there exist Õ(
√

logk)-
quality cut-sparsifiers. In fact, there could be even better
quality cut-sparsifiers in general that beat the "0-Extension
Bound" in [18] and achieve quality o(

√
logk), which would

be a truly surprising result.

R

[1] Y. Aumann and Y. Rabani. An O(logk) approximate min-cut
max-flow theorem and approximation algorithm. SICOMP,
pages 291–301, 1998.

[2] W. Beckner. Inequalities in fourier analysis. Annals of
Mathematics, pages 159–182, 1975.

[3] A. Bonami. Etude des coefficients de foureir des fonctions
de lp(g). Annales de ”institut fourier, pages 335–402, 1970.

[4] J. Bourgain. On the distribution of the fourier spectrum of
boolean functions. Israel Journal of Mathematics, pages 269–
276, 2002.

[5] G. Calinescu, H. Karloff, and Y. Rabani. Approximation
algorithms for the 0-extension problem. SODA, pages 8–16,
2001.

[6] I. Dinur, E. Friedgut, G. Kindler, and R. O’Donnell. On
the fourier tails of bounded functions over the discrete cube.
Israel Journal of Mathematics, pages 389–412, 2007.

[7] M. Englert, A. Gupta, R. Krauthgamer, H. Räcke, I. Talgam-
Cohen, and K. Talwar. Vertex sparsifiers: new results from
old techniques APPROX, 2010, to appear.

[8] J. Fakcharoenphol, C. Harrelson, S. Rao, and K. Talwar.
An improved approximation algorithm for the 0-extension
problem. SODA, pages 257–265, 2003.

[9] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on
approximating arbitrary metrics by tree metrics. STOC, pages
448–455, 2003.

[10] N. Garg, V. Vazirani, and M. Yannakakis. Approximate
max-flow min-(multi)cut theorems and their applications.
SICOMP, 25:235–251, 1996.

[11] W. Johnson, J. Lindenstrauss, and G. Schechtman. Extensions
of lipschitz maps into banach spaces. Israel Journal of
Mathematics, pages 129–138, 1986.

[12] A. Karzanov. Minimum 0-extensions of graph metrics.
European Journal of Combinatorics, pages 71–101, 1998.

[13] S. Khot and A. Naor. Nonembeddability theorems via fourier
analysis. FOCS, pages 101–112, 2005.

[14] T. Leighton and A. Moitra. Extensions and limits to vertex
sparsification. STOC, pages 47–56, 2010.

[15] T. Leighton and S. Rao. Multicommodity max-flow min-
cut theorems and their use in designing approximation algo-
rithms. JACM, pages 787–832, 1999.

[16] N. Linial, E. London, and Y. Rabinovich. The geometry of
graphs and some of its algorithmic applications. Combina-
torica, 15:215–245, 1995.

[17] K. Makarychev and Y. Makarychev. Metric extension oper-
ators, vertex sparsifiers and lipschitz extendability. FOCS,
2010, this proceedings.

[18] A. Moitra. Approximation algorithms for multicommodity-
type problems with guarantees independent of the graph size.
FOCS, pages 3–12, 2009.

[19] V. Nagarajan and R. Ravi. Approximation algorithms for
requirement cut on graphs. APPROX, pages 209–220, 2005.

[20] H. Räcke. Optimal hierarchical decompositions for conges-
tion minimization in networks. STOC, pages 255–264, 2008.

