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Abstract—It is widely suspected that Erdős-Rényi random
graphs are a source of hard instances for clique problems. Giv-
ing further evidence for this belief, we prove the first average-
case hardness result for the k-clique problem on monotone
circuits. Specifically, we show that no monotone circuit of size
O(nk/4) solves the k-clique problem with high probability
on G(n, p) for two sufficiently far-apart threshold functions
p(n) (for instance n−2/(k−1) and 2n−2/(k−1)). Moreover, the
exponent k/4 in this result is tight up to an additive constant.

One technical contribution of this paper is the introduction
of quasi-sunflowers, a new relaxation of sunflowers in which
petals may overlap slightly on average. A “quasi-sunflower
lemma” (à la the Erdős-Rado sunflower lemma) leads to our
novel lower bounds within Razborov’s method of approxima-
tions.

Keywords-clique; monotone circuits; average-case complex-
ity; quasi-sunflowers

I. INTRODUCTION

In this paper, we study the average-case complexity of
k-CLIQUE on monotone circuits. By k-CLIQUE, we mean
the decision problem of testing whether an n-vertex graph
G contains a clique (= complete subgraph) of fixed con-
stant size k. The worst-case monotone complexity of k-
CLIQUE has been well-known since the mid-80’s: Razborov
[13] proved a lower bound of ω(nk/ log2k n) (improved to
ω(nk/ logk n) by Alon and Boppana [1]), while the brute-
force algorithm (a monotone DNF) gives an upper bound of
O(nk). However, the average-case complexity of k-CLIQUE
has been a mystery until recently. In a previous work [15],
we proved a lower bound of ω(nk/4) for the average-case
complexity of k-CLIQUE on AC0 circuits (= constant-depth
polynomial-size circuits with gates of unbounded fan-in).
This lower bound was shown to be nearly tight by Amano
[3], who gave circuits of size nk/4+O(1) and depth O(k)
solving k-CLIQUE in the average-case. In this paper, we
prove a similar ω(nk/4) average-case lower bound for k-
CLIQUE on monotone circuits (which, moreover, is also
tight).

But what is the “average case” for k-CLIQUE? For any
monotone graph property P (such as k-CLIQUE), there is
a natural class of distributions to consider: Erdős-Rényi
random graphs G(n, p) where p(n) is a threshold function
for P . (That is, G(n, p) is the random graph on n vertices
in which edges are independently present with probability
p(n), where Pr[G(n, p) ∈ P] is bounded away from 0 and
1.) Our results in [15] and the present paper support an
intuition that random graphs at the threshold are a source

of hard instances for clique problems.1 This intuition goes
back to a question raised by Karp [12] in ‘76. Karp observed
that, while the balanced random graph G(n, 1/2) is known
to have maximum clique size ∼2 logn, the greedy algorithm
with high probability only finds a clique of size ∼ log n.
Karp asked whether any polynomial algorithm almost surely
finds a clique of size (1 + ε) log n for some constant
ε > 0. Despite having received considerable attention over
the years, this question remains wide open today.

We point out that Karp’s question “scales down” to
G(n, p) where p(n) = Θ(n−2/(k−1)) is a threshold function
for k-CLIQUE. Here the maximum clique size is almost
surely k or k − 1, yet most of the time the greedy al-
gorithm only finds a clique of size bk/2c or dk/2e. Not
coincidentally, G(n, p) has the most expected cliques of
sizes bk/2c or dk/2e (see §VI). We remark that for every
ε ∈ [0, 1

2 ], we can find a clique of size ∼( 1
2 + ε)k with

high probability simply by running the greedy algorithm
nε

2k+O(1) times. In particular, for ε = 1
2 this gives an upper

bound of nk/4+O(1) on the average-case complexity of k-
CLIQUE (effectively by finding all cliques in G(n, p)).2 As
we show, this upper bound can be implemented on monotone
circuits. More interesting: our lower bound (stated precisely
in §III) shows that this naive algorithm is best possible for
monotone circuits which sole k-CLIQUE at two threshold
functions such as n−2/(k−1) and 2n−2/(k−1).

Outline: In §II we give some basic definitions and state
a few background lemma. We then formally state our results
in §III. In §IV we discuss Razborov’s lower bound and the
approximation method. In §V we introduce a new relaxation
of sunflowers called quasi-sunflowers and prove a “Quasi-
sunflower Lemma” (similar to the Erdős-Rado Sunflower
Lemma), which may be of independent interest. In §VI we
divide the subgraphs of Kk into three “sizes”. In §VII we
define a closure operation in the lattice of monotone graph
functions (in the style of the approximation method). Our
main theorems are proved in §VIII and §IX. We state our
conclusions in §X.

1Similar beliefs about random SAT at the threshold are common in
statistical physics.

2There are also deterministic algorithms, such as the Bron-Kerbosch
algorithm [6], which solve the MAXCLIQUE problem on a graph G in
time poly(n)×#{cliques in G} by exhaustively finding all cliques.



II. PRELIMINARIES

Let k > 5 be an arbitrary, but fixed, integer. Let n be a
positive number and let [n] = {1, . . . , n}. All asymptotic
statements and notation (O(·), o(·), Ω(·), etc.) refer to
growing n. The hidden constants in this asymptotic notation
are universal (in particular, independent of k). Expressions
with high probability (w.h.p.) and almost surely (a.s.) mean
with probability tending to 1 as n→∞.

For a set X and integer t > 0,
(
X
t

)
denotes the set of

t-element subsets of X .
log(·) is the base-2 logarithm and ln(·) is the natural

logarithm.

A. Graphs and patterns

Graphs in this paper are finite simple graphs. Formally, a
graph is a pair G = (VG, EG) where VG is a finite set and
EG ⊆

(
VG
2

)
. We denote by G n the set of graphs with vertex

set [n]. By default graphs are elements of G n. By distinction,
we refer to constant-size graphs with no isolated vertices as
patterns.

For both graphs and patterns, ∪ is the union operation
and ⊆ is the subgraph/subpattern relation. For ` ∈ N, K`

denotes the complete pattern with vertex set {1, . . . , `} and
edge set

({1,...,`}
2

)
. An `-clique in a graph G is a set of `

vertices with all
(
`
2

)
possible edges present between.

B. Monotone functions and minterms

By graph function we always mean a function from G n to
{0, 1}. A graph function f is monotone if f(G1) 6 f(G2)
whenever G1 is a subgraph of G2.

A graph H is a minterm of monotone graph function f
if f(H) = 1 and f(H ′) = 0 for every proper subgraph
H ′ ⊂ H . For a pattern P , a minterm H is a P -minterm
if the induced pattern on the non-isolated vertices of H is
isomorphic to P . The set of minterms (resp. P -minterms)
of f is denoted M(f) (resp. M(f, P )).

C. Monotone circuits

A monotone circuit on m variables is an acyclic directed
graph C with m sources (called inputs) and one sink (called
the output). Non-source nodes in C (called gates) have in-
degree 2 are labelled either ∧ or ∨. C computes a monotone
function {0, 1}m → {0, 1} in the natural way.

For m =
(
n
2

)
, we view C as computing a monotone graph

function (via a natural bijection between G n and {0, 1}(
n
2)).

The value of C on a graph G is denoted C(G).M(C) (resp.
M(C, P )) denotes the set of minterms (resp. P -minterms)
of the function computed by C.

The size of a monotone circuit is the number of gates it
contains. The monotone complexity of a monotone function
f : {0, 1}m → {0, 1} is the size of the smallest monotone
circuit that computes f .

D. Probability

We consistently represent random objects by boldface
symbols (G, W , etc.). For a set X and p ∈ [0, 1], notation
W ⊆p X expresses that W is a random subset of X where
each x ∈ X belongs to W independently with probability
p. Po(λ) is the Poisson distribution with mean λ. dTV is
total variation distance (= 1/2 of the `1-distance between
two distributions).

For a function p : N→ [0, 1], G ∼ G(n, p) is the Erdős-
Rényi random graph on n vertices in which each element
of
(
[n]
2

)
is an edge independently with probability p(n) (i.e.,

VG = [n] and EG ⊆p
(
[n]
2

)
).

We denote by Kk (= Kk(n)) the random planted k-
clique on n vertices (i.e., VKk

= [n] and EKk
=
(
U
2

)
where

U is uniform random k-element subset of [n]).
For background, we state two basic lemmas on k-cliques

in G(n, p). (For proofs and additional background, see any
of [2], [5], [10].) The first lemma says that Θ(n−2/(k−1)) is
precisely the class of threshold functions p(n).

Lemma 1. If p(n) = o(n−2/(k−1)) then w.h.p. G(n, p) is
k-clique-free. If p(n) = ω(n−2/(k−1)) then w.h.p. G(n, p)
contains a k-clique.

The second lemma concerns random graphs G(n, p) at
threshold functions p(n) ∼ cn−2/(k−1). In particular, it
includes the fact that the number of k-cliques in G(n, p)
is asymptotically Poisson.

Lemma 2. Denote by κ(G) the number of k-cliques in a
graph G. Fix c > 0 and let G ∼ G(n, cn−2/(k−1)) and
Kk ∼ Plant(n,Kk) and X ∼ Po(c(

k
2)/k!). For t ∈ N, let

Gt ∼ G(n, cn−2/(k−1)) conditioned on κ(Gt) = t. Then

dTV(κ(G),X) = o(1),
dTV(Gt+1,Gt ∪Kk) = o(1),

lim
n→∞

dTV(κ(G), κ(G ∪Kk)) = dTV(X,X + 1) < 1.

Later on we will also need Janson’s inequality (which we
state in §V).

III. OUR RESULTS

Let p = n−2/(k−1) (to fix a particular threshold function)
and δ = k−2 (just think of δ as a sufficiently small
constant). Let G−, G, G+ be independent Erdős-Rényi
random graphs:

G− ∼ G(n, p1+δ), G ∼ G(n, p), G+ ∼ G(n, p1−δ).

By Lemma 1, w.h.p. G− is k-clique-free and G+ contains a
k-clique. That is, with respect to the property of containing
a k-clique, G− and G+ and subcritical and supercritical.

Our main theorem is a lower bound for monotone circuits
which solve k-CLIQUE w.h.p. on both G and G ∪G−.

Theorem 3. No monotone circuit of size O(nk/4) solves
k-CLIQUE w.h.p. on both G and G ∪G−.



Note that G ∪ G− is an Erdős-Rényi random graph
G(n, p̃) where p̃ = p+(1−p)p1+δ , which is also a threshold
function for k-CLIQUE. Moreover, since p̃ = p + o(p), the
numbers of k-cliques in G and G∪G− are asymptotically
equivalent Poisson random variables (by Lemma 2).3

Remark 4. Theorem 3 implies that no monotone circuit
of size O(nk/4) solves k-CLIQUE w.h.p. on both G(n, p)
and G(n, 2p). This follows from the observation that if
monotone graph functions f and g agrees w.h.p. on both
G(n, p1) and G(n, p2) for p1, p2 : N → [0, 1] such that
p1(n) 6 p2(n), then f and g also agree w.h.p. on G(n, q)
for every q : N → [0, 1] such that p1(n) 6 q(n) 6 p2(n).
By the same observation, Theorem 3 may be stated as an
average-case hardness result on a single distribution G(n, q)
where q equals p with probability 1/2 and p̃ with probability
(or, alternatively, where q is uniformly distributed in [p, p̃]).

It would be nice to reduce or eliminate the “gap” of p̃−
p ∼ p1+δ between threshold functions p and p̃ in Theorem 3,
in order to get an average-case hardness result for monotone
circuits at a single threshold (like the lower bound of [15] for
AC0 circuits). We conjecture that the gap can be eliminated
entirely (in §X). However, there is reason to believe that
this gap is hard to close, since the single-threshold version
of Theorem 3 seems to require techniques that go beyond
the approximation method.4

Preliminary to Theorem 3, we prove the following lower
bound:

Theorem 5. If C is a monotone circuit of size O(nk/4)
such that E[C(Kk)] = 1 − o(1), then E[C(G−)] = 1 −
exp(−Ω(nδ)).

Theorem 5 should be compared with the following fact
(a consequence of Janson’s inequality).

Fact 6. If f is a monotone graph function such that
E[f(Kk)] = 1− o(1), then E[f(G+)] = 1− exp(−Ω(nδ))
(irrespective of the monotone circuit complexity of f ).

Note that subcritical G− is replaced by supercritical G+

in Fact 6.
The full version of this paper contains two additional

results (omitted here due to length constraints):
• We strengthen Theorems 3 and 5 by removing the fan-in 2

restriction on monotone circuits (that is, we get the same
ω(nk/4) lower bounds for monotone circuits with

∧
and∨

gates of unbounded fan-in).
• We construct monotone circuits of size nk/4+O(1) and

depth 3k that solve k-CLIQUE w.h.p. on G(n, p) for all
functions p : N→ [0, 1]. This shows that k/4 is tight up to

3Notwithstanding, the total variation distance between random graphs G
and G ∪G− is 1− o(1).

4What about the random graph with exactly d
`n

2

´
pe edges? Note that

the monotone complexity of k-CLIQUE on this distribution is polynomially
equivalent to the non-monotone complexity, since we are deal with a slice
function.

an additive constant in Theorem 3. Moreover, in view of
Theorem 7, it demonstrates a gap between the worst-case
and average-case monotone complexity of k-CLIQUE.

IV. RAZBOROV’S APPROXIMATION METHOD

In a seminal paper [13], Razborov proved the first lower
bounds on the monotone complexity of k-CLIQUE.

Theorem 7. k-CLIQUE has monotone circuit complexity
ω(nk/ log2k n).5

Razborov in fact shows something stronger. Let H be the
uniform random complete (k− 1)-partite graph with vertex
set [n] (that is, EH = {{i, j} ∈

(
[n]
2

)
: π(i) 6= π(j)}

for uniform random function π : [n] → {1, . . . , k}). The
following result is also from [13] (note the similarity to
Theorem 5):

Theorem 8. If C is a monotone circuit of size
O(nk/ log2k n) such that E[C(Kk)] = 1 − o(1), then
E[C(H)] = 1− o(1).6

The technique introduced in [13] to prove Theorem 8 is
known as the approximation method. (Note: The following
summary is for background only. Our lower bounds do
not explicitly follow this framework.) The idea of the
approximation method is to replace the lattice (M,∧,∨) of
monotone functions {0, 1}m → {0, 1} with a smaller lattice
(M,∧,∨) where M ⊂M such that

• M contains the function x 7→ xi for every i ∈ {1, . . . ,m},
and

• ∧ and ∨ are the g.l.b. and l.u.b. operations in M with
respect to the natural partial order on functions (i.e., f 6 g
iff f(x) 6 g(x) for all x ∈ {0, 1}m).

For every monotone circuit C on m variables, there is a
corresponding {∧,∨}-circuit C in which the ∧ and ∨ gates
are replaced by ∧ and ∨ gates. Note that C computes a
function in M.

Let ∆0 and ∆1 be two distributions on {0, 1}m (e.g.,
the random graphs H and Kk from Theorem 8). Suppose
our goal is to prove that no monotone circuit C of size S
separates ∆0 and ∆1 in the sense that E[C(∆0)] = o(1) and
E[C(∆1)] = 1− o(1). Then it suffices to show that:

1) no function f ∈ M satisfies E[f(∆0)] = o(1) and
E[f(∆1)] = 1− o(1),

2) for all f, g ∈M,

E[(f ∨ g)(∆0)]− E[(f ∨ g)(∆0)] = o(1/S),
E[(f ∧ g)(∆1)]− E[(f ∧ g)(∆1)] = o(1/S).

5This bound is for constant k. [13] also gives lower bounds for k which
depends on n.

6Moreover, if C is a monotone circuit of size nk−Ω(1) such that
E[C(Kk)] = 1− o(1), then E[C(H)] = 1− exp(−nΩ(1)).



By bounding “local errors” in this way, (2) shows that for
any C of size S,

E[C(∆0)] 6 E[C(∆0)] + o(1),

E[C(∆1)] > E[C(∆1)]− o(1).

It follows that C cannot satisfy both E[C(∆0)] = o(1) and
E[C(∆1)] = 1− o(1).

Of course, being able to show (1) and (2) for given ∆0 and
∆1 depends on a clever choice of the lattice M. To prove
Theorem 8, Razborov defines a lattice M where the l.u.b.
operation ∨ involves “plucking” large sunflowers among the
minterms of the function f ∨ g. (For a full description of
M, see [13] or [1].)

Our proof of Theorem 5 does not precisely follow this
framework. Rather, we work with a “one-sided version” of
the approximation method (via a closure operation cl : M→
M defined in §VII). The difference is merely a matter of
exposition: our proof could easily be formulated in terms of
an approximating lattice M.

V. QUASI-SUNFLOWERS

In this section we introduce a new relaxation of sunflowers
called quasi-sunflowers (parameterized by p ∈ [0, 1] and
γ > 0). Like sunflowers, quasi-sunflowers are special
hypergraphs. Some definitions: A hypergraph is a family
F of subsets of a set X (i.e., F ⊆ ℘(X)). Elements of F
are called hyperedges. For an integer s > 1, F is s-uniform
if every hyperedge has size s (i.e., F ⊆

(
X
s

)
).

A sunflower is a hypergraph F such that the intersection
of any two distinct hyperedges coincides with the intersec-
tion

⋂
F (=

⋂
U∈F U ) of all hyperedges. The set

⋂
F is

called the core and sets U \
⋂
F where U ∈ F are called

petals (note that petals are mutually disjoint). An essential
fact about sunflowers is:

Fact 9 (Erdős-Rado Sunflower Lemma [7]). Every s-
uniform hypergraph F of size > s!(N − 1)s contains a
sunflower of size N .

Quasi-sunflowers are a relaxation of sunflowers in which
petals may overlap slightly on average. While other variants
of sunflowers are studied in extremal combinatorics (see
Ch. 7 of [11]), the following definition appears to be new.

Definition 10. Let F be a hypergraph on a set X and let
Y ⊆

⋂
F . For p ∈ [0, 1] and γ > 0, we say that F is (p, γ)-

quasi-sunflower over Y if for the random set W ⊆p X ,

Pr
[
W ∪ Y contains a hyperedge of F

]
> 1− e−γ .

Observation 11. Let F ⊆
(
X
s

)
be an s-uniform sunflower of

size n. Then F is a (p, nps)-quasi-sunflower for every p ∈
[0, 1]. To see this, let Y =

⋂
F and note that for W ⊆p X ,

the probability that W ∪ Y contains a hyperedge of F is

1− (1− ps−|Y |)n > 1− exp(nps−|Y |) > 1− exp(nps).

For small p, this γ = nps is nearly tight if Y = ∅, but (as
we will see) is far from tight if Y 6= ∅.

We suspect that wherever s-uniform sunflowers are used
in monotone circuit lower bounds (e.g., [1], [4], [13]), one
could just as well work with (1/2, N/2s)-quasi-sunflowers
instead. That is, Definition 10 captures the essential property
of sunflowers for these applications. Perhaps one even gets
stronger bounds (as we do in this paper) by virtue of the
following result.

Theorem 12 (“Quasi-sunflower lemma”). For all p ∈ [0, 1]
and γ > 1 and s > 1, every s-uniform hypergraph of size
> s!(2.47γ/p)s contains a (p, γ)-quasi-sunflower.

Remark 13. It follows from Fact 9 and Obs. 11 that
every s-uniform hypergraph of size > s!(γ/ps)s contains
a (p, γ)-quasi-sunflower (namely, a sunflower of size γ/ps).
Theorem 12 is a significant quantitative improvement of this
observation.

In order to prove Theorem 12, we need a probabilistic
result known as Janson’s inequality [9] (also see Ch. 2 of
[10] and Ch. 8 of [2] for background.)

Lemma 14 (Janson’s Inequality). Let F be a hypergraph on
a set X . Let W be a random subset of X such that events
x ∈W for x ∈ X are mutually independent (for example,
W ⊆p X). Define µ and ∆ by

µ =
∑
U∈F

Pr
[
U ⊆W

]
,

∆ =
∑

U,V ∈F :
U 6=V, U ∩V 6= ∅

Pr
[
U ∪ V ⊆W

]
.

Then Pr

[ ∧
U∈F

U * W

]
6 exp

(
−min

{
µ

2
,
µ2

2∆

})
.

Our proof of Theorem 12 uses Janson’s inequality within
an inductive argument that resembles proofs of the Erdős-
Rado Sunflower Lemma.

Proof of “Quasi-sunflower Lemma” (Theorem 12):
Consider the sequence `1, `2, . . . defined by `1 = 1 and
`s = 2

∑s−1
t=1

(
s
t

)
`t for s > 2. We have `s 6 s! ln−s(3/2) (<

s!2.47s) by induction: for s > 2, assuming `t 6 t! ln−t(3/2)
for every t ∈ {1, . . . , s− 1}, we have

`s 6 2
s−1∑
t=1

(
s

t

)
t! ln−t(3/2)

= 2

(
s−1∑
t=1

lns−t(3/2)
(s− t)!

)
s! ln−s(3/2)

6 2

(
−1 +

∞∑
j=0

lnj(3/2)
j!

)
s! ln−s(3/2)

= s! ln−s(3/2).



Suppose F is an s-uniform hypergraph of size >
`s(γ/p)s. Arguing by induction on s, we claim that F
contains an (p, γ)-quasi-sunflower (proving the theorem). In
the base case where s = 1, let W ⊆p X and note that events
U ⊆W for U ∈ F are mutually independent. Therefore,

Pr

[ ∧
U∈F

U * W

]
= (1− p)|F| 6 (1− p)γ/p 6 e−γ ,

so F itself is a (p, γ)-quasi-sunflower over the empty set.
For the induction step, let s > 2 and assume the claim

holds for t ∈ {1, . . . , s − 1}. For every A ⊆ X with 1 6
|A| 6 s− 1, let

FA = {U \A : U ∈ F such that A ⊆ U}.

Note that FA is an (s− |A|)-uniform hypergraph. We now
consider two cases.

First Case: Suppose there exist t ∈ {1, . . . , s− 1} and
A ∈

(
X
t

)
such that |FA| > `s−t(γ/p)s−t. By the induction

hypothesis, FA contains a (p, γ)-quasi-sunflower F ′ over
some Y ′ ⊆

⋂
F ′. Note that {U ∪ A : U ∈ F ′} ⊆ F is a

(p, γ)-quasi-sunflower over Y ′ ∪A.

Second Case: Suppose |FA| 6 `s−t(γ/p)s−t for all
t ∈ {1, . . . , s−1} and A ∈

(
X
t

)
. We will show that F itself

is a (p, γ)-quasi-sunflower over the empty set. Let W ⊆p X
and define µ and ∆ exactly as in the statement of Janson’s
inequality (Lemma 14), which says:

Pr

[ ∧
U∈F

U * W

]
6 exp

(
−min

{
µ

2
,
µ2

2∆

})
.

Thus, it suffices to show that min{µ/2, µ2/2∆} > γ.
Clearly µ = |F|ps since Pr[U ⊆ W ] = ps for every

U ∈ F . Since |F| > `s(γ/p)s and `s > 2 (as s > 1) and
γs > γ (as γ > 1), we have µ/2 > γ.

It remains to show that µ2/2∆ > γ. For every t ∈
{1, . . . , s− 1}, we have

∑
A∈(Xt ) |FA| =

(
s
t

)
|F| since each

hyperedge in F is counted
(
s
t

)
times in this summation.

Therefore,

∑
A∈(Xt )

|FA|2 6 |F|
∑

A∈(Xt )
|FA|

6 µ

(
s

t

)
`s−tγ

s−tpt−2s

(using |F| = µp−s and |FA| 6 `s−t(γ/p)s−t). Noting that
Pr
[
U ∪V ⊆W

]
= p2s−|U∩V | for all U, V ∈ F , we bound

∆ as follows:

∆ =
∑
A⊆X :

16|A|6s−1

∑
U,V ∈F :
U∩V=A

Pr
[
U ∪ V ⊆W

]

6
s−1∑
t=1

( ∑
A∈(Xt )

|FA|2
)
p2s−t

6 µ
s−1∑
t=1

(
s

t

)
`s−tγ

s−t

6 µγs−1
s−1∑
t=1

(
s

t

)
`t (using γt 6 γs−1)

=
µγs−1`s

2
(by definition of `s).

Completing the proof, we have

µ2

2∆
>

µ

γs−1`s
=
|F|ps

γs−1`s
> γ.

VI. SMALL, MEDIUM, LARGE

Let G ∼ G(n,Θ(n−2/(k−1))) be a random graph at a
threshold function for containing k-cliques. It is instructive
to calculate the expected number of `-cliques in G for ` ∈
{0, . . . , k}:

E[# of `-cliques in G] = Θ
(
n`−

2
k−1 (`2)

)
.

Letting λ = `/k, we have

`− 2
k − 1

(
`

2

)
= λ(1− λ)k +O(1).

Note that λ(1−λ)k is maximal with value k/4 for λ = 1/2.
(Indeed, `− 2

k−1

(
`
2

)
is maximal for ` ∈ {bk/2c, dk/2e}.)

The fact that G has many cliques of “intermediate” size
∼ k/2 and few cliques of size 6 εk or > (1−ε)k for small
ε > 0 motivates the following definition. (The large number
of “intermediate” subgraphs plays an important part in our
lower bounds.)

Definition 15. A pattern P is:
• small if |VP | < k/2,
• medium if |VP | > k/2 and there exist small patterns

P1 and P2 such that P = P1 ∪ P2, and
• large otherwise.

A graph is small, medium or large according to the induced
pattern on its non-isolated vertices.

A key fact to keep in mind is that the union of two small
patterns/graphs is small or medium (but never large). Note
that the complete pattern K` is small if ` < k/2 and large
otherwise (but never medium). An important example of
medium pattern is

P = Kdk/2e − {a single edge}.



Note that P is the union of two overlapping copies of the
small pattern Kdk/2e−1. In fact, this pattern P gives the
optimal bound in the following lemma.

Lemma 16. For every medium pattern P ,

|VP | −
2

k − 1
|EP | >

k + 1
4

+
2

k − 1
.

Proof: Let P be a medium pattern which minimizes
|VP | − 2

k−1 |EP |. By definition of medium, P is the union
of two small patterns P1 and P2. We can assume that P1

and P2 are complete, since we only decrease |VP1∪P2 | −
2

k−1 |EP1∪P2 | by replacing P1 and P2 with the (also small)
complete patterns with the same vertices. Let a = |VP |,
b = |VP1 |, c = |VP2 | and note that

|VP | − 2
k−1 |EP | = a− 2

k−1 (
(
b
2

)
+
(
c
2

)
−
(
b+c−a

2

)
).

First, suppose k = 2t+1 is odd. Integers a, b, c satisfy 1 6
b, c 6 t and t+1 6 a 6 b+c. Relaxing integrality, let α, β, γ
be reals minimizing α− 1

t (
(
β
2

)
+
(
γ
2

)
−
(
β+γ−α

2

)
) subject to

1 6 β, γ 6 t and t+1 6 α 6 β+γ. Note that β = γ since,
if not, by replacing β and γ with their mean (β + γ)/2
we reduce the objective function while still satisfying the
constraints. Thus, our task becomes minimizing f(α, β) =
α+ 1

t

(
2β−α

2

)
− 2

t

(
β
2

)
subject to 1 6 β 6 t and t+ 1 6 α 6

2β. Since d
dαf(α, β) > 0 and d

dβ f(α, β) < 0 for all α, β
satisfying these constraints, it follows that α = t + 1 and
β = t. Therefore,

|VP | − 2
k−1 |EP | > f(t+ 1, t) = t+1

2 + 1
t = k+1

4 + 2
k−1 .

In the case where k is even, we get |VP | − 2
k−1 |EP | >

k+1
4 + 9

4(k−1) > k+1
4 + 2

k−1 by a similar calculation.

Remark 17. k/4 in Lemma 16 is precisely the k/4 that
appears in the exponent of nk/4 in our main theorems. In
fact, Lemma 16 also accounts for the exponent of nk/4 in the
lower bound from [15] on the average-case complexity of k-
CLIQUE on bounded-depth circuits. It is interesting that the
same “bottleneck” arises in the distinct settings of bounded-
depth circuits and monotone circuits.

VII. THE APPROXIMATION VIA A CLOSURE OPERATION

In this section we define a closure operation in the
lattice of monotone graph functions. Closed functions will
be combinatorially “nice” in the sense of having few P -
minterms for small and medium patterns P (Lemma 27).
Remark 18. This is essentially one half of Razborov’s
approximation method. Typically, one also defines a “trun-
cation” operator which cuts out large minterms. Although
we find it more natural to work with a one-sided version of
the approximation method, our proof can be translated into
Razborov’s original framework (as described in §IV).

Recall that we have fixed p = n−2/(k−1) (a threshold
function for the existence of k-cliques) and δ = k−2 (just
think of δ as “sufficiently small”). Also recall that G ∼

G(n, p) (at the k-clique threshold) and G− ∼ G(n, p1+δ)
(below the k-clique threshold, i.e., G− is almost surely k-
clique-free).

Definition 19. A monotone graph function f : G n → {0, 1}
is closed if for every small-or-medium graph H ,

E[f(G− ∪H)] > 1− e−n
δ

=⇒ f(H) = 1.

Observation 20. If f and g are both closed, then so is f ∧g.

Definition 21. For a monotone graph function f , we denote
by cl(f) the unique minimal closed function such that f 6
cl(f), called the closure of f .

Note that cl(f) is well-defined in view of Obs. 20 and
the fact that the constant function 1 is closed.

Remark 22. cl(·), viewed as an operation on the set of
monotone graph functions, is a closure operation in the usual
sense. That is, it is increasing (f 6 cl(f)), monotone (if f 6
g then cl(f) 6 cl(g)) and idempotent (cl(cl(f)) = cl(f)).

Definition 23. We denote by ∨ the operation on monotone
graph functions defined by f ∨ g = cl(f ∨ g). For a mono-
tone circuit C, we denote by C denote the corresponding
circuit with basis {∧,∨} in which the ∨-gates in C are
replaced by ∨-gates. For nodes ν in C, we denote by ν
the corresponding node in C.

Note that cl(C) (i.e., cl(f) where f is the function
computed by C) is not necessarily the same function as C,
although C is indeed a closed function satisfying C 6 C
(i.e., C(G) 6 C(G) for all graphs G).

Lemma 24. For every monotone graph function f ,

Pr
[
f(G−) 6= (cl(f))(G−)

]
6 2k

2
nke−n

δ

.

Proof: We claim that there exist t ∈ N and small-
or-medium graphs H1, . . . ,Ht and monotone functions
f0, . . . , ft : G n → {0, 1} such that

• f0 = f ,
• E[fi−1(G− ∪Hi)] ∈ [1− e−nδ , 1),
• fi = fi−1 ∨ IndHi where IndHi : G n → {0, 1} is the

function IndHi(G) = 1 iff Hi ⊆ G,
• ft is closed.

To see this, note that we can generate such a sequence (a
priori indefinitely) simply by choosing any suitable Hi+1 so
long as fi is not closed. This process eventually terminates,
since each small or medium graph H appears at most once
in the sequence H1, H2, . . . . In particular,

t 6 |{small and medium graphs in G n}| 6 2k
2
nk.

An inductive argument shows that fi 6 cl(f) for i =
1, . . . , t. In particular ft 6 cl(f). Since ft is closed, this



means that ft = cl(f). We now have

Pr
[
f(G−) 6= (cl(f))(G−)

]
6
∑t
i=1 Pr

[
fi−1(G−) 6= fi(G−)

]
=
∑t
i=1 Pr

[
fi−1(G−) = 0 and Hi ⊆ G−

]
6
∑t
i=1 Pr

[
fi−1(G− ∪Hi) = 0

]
6 2k

2
nke−n

δ

.

The next two lemmas follow immediately from
Lemma 24.

Lemma 25. For every monotone graph function f ,
M(cl(f)) \M(f) contains only small and medium graphs.

Proof: The proof of Lemma 24 shows that there exist
small-or-medium graphs H1, . . . ,Ht such that cl(f) = f ∨∨t
i=1 IndHi . Thus, M(cl(f)) ⊆M(f) ∪ {H1, . . . ,Ht}.

Lemma 26. For every monotone circuit C of size
exp(o(nδ)), E[C(G−)]− E[C(G−)] = exp(−Ω(nδ)).

Proof: For any graph H , note that if C(H) 6= C(H)
then there exists an ∨-gate ν with children µ1 and µ2 in
C such that ν(H) 6= (µ1 ∨ µ2)(H) (equivalently: f(H) 6=
(cl(f))(H) where f is the function µ1∨µ2). It follows that

E[C(G−)]− E[C(G−)] = Pr
[
C(G−) 6= C(G−)

]
6

∑
∨-gates ν in C with
children µ1 and µ2

Pr
[
ν(G−) 6= (µ1 ∨ µ2)(G−)

]
6 size(C)2k

2
nke−n

δ

(by Lemma 24)

= exp(−Ω(nδ)).

The last lemma of this section gives an essential property
of closed functions (using Theorem 12 on quasi-sunflowers).

Lemma 27. A closed monotone graph function has at most
kk

2
(nδ/p1+δ)|EP | P -minterms for every small or medium

pattern P .

Proof: Let f be a closed monotone graph function and
let P be a small or medium pattern. Toward a contradiction,
assume that |M(f, P )| > kk

2
(nδ/p1+δ)|EP |. Let X =

(
[n]
2

)
and consider the |EP |-uniform hypergraph F ⊆

(
X
|EP |

)
defined by F = {EF : F ∈ M(f, P )}. Since |EP | 6 k2/4
(i.e., no medium pattern has more than k2/4 edges), we have
|EP |!2.47|EP | 6 kk

2
and hence

|F| = |M(f, P )| > |EP |!2.47|EP |(nδ/p1+δ)|EP |.

By Theorem 12, there exists a (p1+δ, nδ)-quasi-sunflower
F0 ⊆ F over some Y ⊆

⋂
F . Let H be the graph with

edge set EH = Y . Let W ⊆p1+δ X and note that W has

the same distribution as EG− . We have

E[f(G− ∪H)] > Pr
[
G− ∪H contains a P -minterm of f

]
> Pr

[
W ∪ Y contains a hyperedge of F0

]
> 1− e−n

δ

.

Since f is closed and H is small or medium, it follows that
f(H) = 1. Note that H has fewer than |EP | edges, so in
particular H is a proper subgraph of some F ∈ M(f, P )
such that EF ∈ F0. However, this contradicts the fact that
F is a minterm of f .

VIII. K VS. G−

In the previous section, we defined a closure operation
cl(·) on monotone graph functions and an operation C 7→ C
transforming a monotone circuit C into a {∧,∨}-circuit C.
In this section, we prove Theorem 5. We begin by noting a
basic fact about minterms.

Observation 28. For all monotone graph functions f and g,

M(f ∨ g) ⊆M(f) ∪M(g),
M(f ∧ g) ⊆ {F ∪G : F ∈M(f), G ∈M(g)}.

That is, every minterm of f ∨ g is a minterm of f or a
minterm of g and every minterm of f ∧ g is the union of a
minterm of f and a minterm of g.

Lemma 29. For every monotone circuit C and graph H ∈
M(C,Kk), there exist a gate ν in C and a medium subgraph
H ′ of H such that H ′ ∈M(ν).

Proof: Suppose H ∈ M(C,Kk). Let H = {subgraphs
of H} and A = {small graphs} and B = {medium graphs}.
Toward a contradiction, assume that M(ν) ∩ H ∩ B = ∅
for every gate ν in C. We will show, by induction on ν,
that M(ν) ∩ H ⊆ A for every node ν in C. This yields a
contradiction, since H belongs to (M(νout)∩H)\A where
νout is the output gate of C.

In the base case when ν is an input node labelled by either
0 or 1 or the indicator function for some edge e ∈

(
[n]
2

)
,

M(ν) is respectively either the empty set or {the empty
graph} or {the graph with only edge e}. In any case, all
minterms of ν are small. Since ν = ν, M(ν) ∩H ⊆ A.

For the induction step, let ν be a gate in C with children
µ1 and µ2 and assume that M(µi)∩H ⊆ A for i ∈ {1, 2}.
If ν is an ∧-gate, then

M(ν) ∩H =M(µ1 ∧ µ2) ∩H (we now use Obs. 28)
= {F1 ∪ F2 : F1 ∈M(µ1), F2 ∈M(µ2)} ∩ H
= {F1 ∪ F2 : F1 ∈M(µ1) ∩H, F2 ∈M(µ2) ∩H}
⊆ {F1 ∪ F2 : F1, F2 ∈ A} (since M(µi) ∩H ⊆ A)
⊆ A ∪ B (union of two smalls cannot be large)
⊆ A (since M(ν) ∩H ∩ B = ∅).



Finally, if ν is a ∨-gate, then

M(ν) ∩H =M(µ1 ∨ µ2) ∩H
=M(cl(µ1 ∨ µ2)) ∩H
⊆
(
M(µ1 ∨ µ2) ∪ A ∪ B

)
∩H (Lemma 25)

⊆
(
M(µ1) ∪M(µ2) ∪ A ∪ B

)
∩H (Obs. 28)

⊆ A ∪ B (since M(µi) ∩H ⊆ A for i ∈ {1, 2})
⊆ A (since M(ν) ∩H ∩ B = ∅).

Lemma 30. For every monotone circuit C, there exists a
medium pattern P such that

|M(C,Kk)| 6 (2k)k
2
nk−|VP |(nδ/p1+δ)|EP |size(C).

Proof: By Lemma 29, for each H ∈ M(C,Kk), there
exists a gate µH in C and a medium subgraph H ′ of H such
that H ′ ∈ M(µH). Fix choices of µH and H ′ for all H ∈
M(C,Kk). For every gate ν in C and medium pattern P , let
t(ν, P ) = |{H ∈M(C,Kk) : µH = ν, H ′ ∈M(ν, P )}|.

By a simple counting argument, there exist ν and P such
that

|M(C,Kk)|
size(C)|{medium patterns up to isom.}|

6 t(ν, P ).

For each H ′ ∈M(ν, P ), there are at most nk−|VP | different
H ∈M(C,Kk) of which H ′ is a subgraph. It follows that

t(ν, P ) 6 nk−|VP ||M(ν, P )|.

Since ν is closed and P is medium, Lemma 27 implies

|M(ν, P )| 6 kk
2
(nδ/p1+δ)|EP |.

The result follows by combining these three inequalities,
together with the bound 2k

2
on the number of medium

patterns up to isomorphism.
Onto the main result:

Proof of Theorem 5: Suppose f : G n → {0, 1} is
computed by monotone circuits of size O(nk/4) and satisfies
E[f(Kk)] = 1 − o(1). We must show that E[f(G−)] =
1− exp(−Ω(nδ)).

Let C be the circuit computing f . By Lemma 26,

E[f(G−)]− E[C(G−)] = Pr[f(G−) 6= C(G−)]

= exp(−Ω(nδ)).

Therefore, it suffices to show that E[C(G−)] = 1. We will
assume that E[C(G−)] 6= 1 and derive a contradiction.

We claim that |M(C,Kk)| = (1 − o(1))
(
n
k

)
. To show

this, we consider the pattern Q = Kk − {single edge} and
let H ∼ Plant(n,Q). Since E[C(Kk)] > E[f(Kk)] =
1 − o(1), it is enough to show that E[C(H)] = o(1) (i.e.,
these two inequalities imply that almost every planted k-
clique is a minterm of C). The argument goes as follows:
if we assume that E[C(H)] = Ω(1), then Pr[C(G−)] =

1 − exp(Ω(n1/k)) > 1 − exp(nδ) for sufficiently large
n (recall that δ = k−2) by an straightforward application
of Janson’s inequality (Lemma 14); but since C is closed,
it follows that C(the empty graph) = 1 (contradicting
E[C(G−)] 6= 1).

We now invoke Lemma 30, which gives us a medium
pattern P such that

size(C) >
|M(C,Kk)|

(2k)k2nk−|VP |(nδ/p1+δ)|EP |

= (1− o(1))
(
n

k

)
n|VP |(p1+δ/nδ)|EP |

nk(2k)k2

= Ω

(
n|VP |−( 2

k−1 (1+δ)+δ)|EP |

kk(2k)k2

)
(using p = n−2/(k−1)). Recall that δ = 1/k2 and note
that |EP | < k2/4 (obs: among medium patterns, the dis-
joint union of two bk−1

2 c-cliques has the most edges). By
Lemma 16, |VP | − 2

k−1 |EP | >
k
4 + 1

4 + 2
k−1 . We have:

|VP | − ( 2
k−1 (1 + δ) + δ)|EP |
> |VP | − 2

k−1 |EP | −
1
4 (1 + 2

k−1 ) > k
4 + 1

k .

Therefore, size(C) = Ω
(
n(k/4)+(1/k)/kk(2k)k

2)
. But since

k is a constant, this contradicts the hypothesis that C has
size O(nk/4).

IX. G ∪K VS. G ∪G−

In this section, we prove Theorem 3 using Theorem 5
together with the following lemma.

Lemma 31. Let G0 ∼ G(n, p) and condition on G0 being
k-clique-free.

1) If f solves k-CLIQUE w.h.p. on G, then

E[f(G0 ∪Kk)] = 1− o(1).

2) If f solves k-CLIQUE w.h.p. on G ∪G−, then

E[f(G0 ∪G−)] = o(1).

Proof: Denote by κ(G) the number of k-cliques in a
graph G.

For (1): Suppose f solves k-CLIQUE w.h.p. on G. This
means, in particular, that E[f(G) | κ(G) = 1] = 1 − o(1).
Let G1 ∼ G(n, p) conditioned on κ(G1) = 1. Note that
E[f(G1)] = 1 − o(1) (using the fact that Pr[κ(G) = 1] =
Ω(1)). By Lemma 2, random graphs G0∪Kk and G1 have
total variation distance o(1). Therefore, w.h.p. E[f(G0 ∪
Kk)] = 1− o(1).

For (2): Suppose f solves k-CLIQUE w.h.p. on G∪G−.
In particular,

(†) E[f(G ∪G−) | κ(G ∪G−) = 0] = o(1).

Since G ∼ G(n, p) and G∪G− ∼ G(n, p+ o(p)), random
variables κ(G) and κ(G ∪G−) converge in distribution to



the same Poisson distribution by Lemma 2. In particular, we
have

(‡) Pr[κ(G) = 0] = (1 + o(1)) Pr[κ(G ∪G−) = 0].

Thus, we have

E[f(G0 ∪G−)] = Pr[f(G ∪G−) = 1 | κ(G) = 0]

=
Pr[f(G ∪G−) = 1 & κ(G) = 0]

Pr[κ(G) = 0]

>
Pr[f(G ∪G−) = 1 & κ(G ∪G−) = 0]

Pr[κ(G) = 0]
(‡)
=

Pr[f(G ∪G−) = 1 & κ(G ∪G−) = 0]
(1 + o(1)) Pr[κ(G ∪G−) = 0]

= (1− o(1)) Pr[f(G ∪G−) = 1 | κ(G ∪G−) = 0]
(†)
= 1− o(1).

(Under the assumption that f is monotone, (2) can also be
proved using the Holley inequality.)

Proof of Theorem 3: Let C be a monotone circuit of
size O(nk/4). Toward a contradiction, assume that C solves
k-CLIQUE w.h.p. on both G and G ∪G−. For a graph G,
let CG be the circuit obtained from C by substituting 1 for
each input corresponding to an edge in G. Note that CG

computes the function CG(H) = C(G ∪H).
Let G0 ∼ G(n, p) conditioned on G0 being k-clique-free.

Lemma 31 implies that for every constant ε > 0,

Pr
G0

[
E

G−

[
CG0(Kk)

]
> 1− ε

]
= o(1),

Pr
G0

[
E

Kk

[
CG0(G−)

]
6 ε

]
= 1− o(1).

It follows that there is a sequence of monotone circuits
of size O(nk/4) (namely, CG0 for almost every G0) with
expected value 1− o(1) on Kk and o(1) on G−. However,
Theorem 5 says this is impossible, giving the desired con-
tradiction.

X. FUTURE DIRECTIONS

The main question left open by this work is whether the
ω(nk/4) lower bound of Theorem 3 applies to monotone
circuits which solve k-CLIQUE w.h.p. at a single threshold.
We conjecture that it does.

Conjecture 32. No monotone circuit of size O(nk/4) solves
k-CLIQUE w.h.p. on G(n, n−2/(k−1)).

Theorem 3 strongly suggests that this conjecture should
be true. However, the approximation method seems to break
down when the distributions on positive and negative inputs
are brought so closely together.

Finally, it would be interesting to find other applications
of quasi-sunflowers. Given the many demonstrated uses of
sunflowers, it may be that quasi-sunflowers lead to better
results in some cases.
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