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Abstract—We consider the following general scheduling
problem: The input consists of n jobs, each with an arbitrary
release time, size, and a monotone function specifying the
cost incurred when the job is completed at a particular time.
The objective is to find a preemptive schedule of minimum
aggregate cost. This problem formulation is general enough to
include many natural scheduling objectives, such as weighted
flow, weighted tardiness, and sum of flow squared.

The main contribution of this paper is a random-
ized polynomial-time algorithm with an approximation ratio
O(log lognP ), where P is the maximum job size. We also
give an O(1) approximation in the special case when all jobs
have identical release times. Initially, we show how to reduce
this scheduling problem to a particular geometric set-cover
problem. We then consider a natural linear programming
formulation of this geometric set-cover problem, strengthened
by adding knapsack cover inequalities, and show that rounding
the solution of this linear program can be reduced to other
particular geometric set-cover problems. We then develop al-
gorithms for these sub-problems using the local ratio technique,
and Varadarajan’s quasi-uniform sampling technique.

This general algorithmic approach improves the best known
approximation ratios by at least an exponential factor (and
much more in some cases) for essentially all of the nontrivial
common special cases of this problem. We believe that this ge-
ometric interpretation of scheduling is of independent interest.

Keywords-Weighted Flow Time, Scheduling, Geometric Set
Cover

I. INTRODUCTION

We consider the following general offline scheduling
problem:

General Scheduling Problem (GSP): The input consists of
a collection of n jobs, and for each job j a positive integer
release time rj , a positive integer size pj , and a cost or
weight function wj(t) ≥ 0 for each t > rj (we are
purposely not precise about how these weight functions
are represented in the input). Jobs are to be scheduled
preemptively on one processor after their release times. If
job j completes at time t, then a cost of

∑t
s=rj+1 wj(t) is

incurred. The scheduling objective is to minimize the total
cost,

∑n
j=1

∑Cj

s=rj+1 wj(t), where Cj is the completion
time of job j.
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This general problem generalizes several natural schedul-
ing problems, for example:

Weighted Flow Time: If wj(t) = wj , where wj is some fixed
weight associated with job j, then the objective is weighted
flow time.
Flow Time Squared: If wj(t) = 2(t − rj) − 1, then the
objective is the sum of the squares of the flow times.
Weighted Tardiness: If wj(t) = 0 for t not greater than some
deadline dj , and wj(t) = wj for t greater than dj , then the
objective is weighted tardiness.

In general, this problem formulation can model any cost
objective function that is the sum of arbitrary cost functions
for individual jobs, provided these cost functions are non-
decreasing, i.e. it cannot hurt to finish a job earlier.

Flow time, which is the duration of time Cj − rj that
a job is in the system, is clearly the most natural and
most commonly used quality of service measure for a job
in the computer systems literature. Many commonly-used
and commonly-studied scheduling objectives are based on
combining the flow times of the individual jobs. However,
flow time is also considered a rather difficult measure to
work with mathematically. One reason for this is that even
slight perturbations to the instance, can lead to lead to
large changes in the optimum value. Despite much interest,
large gaps remain in our understanding for even basic flow
time based scheduling objectives. For example, for weighted
flow time, the best known approximation ratios achievable
by polynomial-time algorithms are essentially no better
than the poly-logarithmic competitive ratios achievable by
online algorithms. For weighted tardiness, and flow time
squared, no nontrivial approximation ratios were previously
known to be achievable. While in contrast, for all of these
three problems, even the possibility of a polynomial time
approximation scheme (PTAS) has not been ruled out. We
discuss the related previous work further in Section I-B.

A. Our Results

The main contribution of this paper is the design and
analysis of a randomized O(log log nP )-approximation al-
gorithm for GSP, where P is the maximum job size. In the
special case when all the release times are 0, we obtain
an O(1)-approximation algorithm. Let W = maxj,t wj(t)



be the maximum value attained by any weight function.
The running time of our algorithm is polynomial in n,
logP and logW , provided that we can in polynomial time
determine the times when a weight function doubles. This
is polynomial in the input size if the input must contain an
explicit representation of the largest possible weight.

The primary insight to obtain these results is to view the
scheduling problem geometrically. The initial step is to show
that GSP can be reduced (with only a constant factor loss
in the approximation ratio) to the following geometric set-
cover problem that we call R2C:

Definition of the R2C Problem: The input consists of a
collection of P points in two dimensional space, and for each
point p ∈ P an associated positive integer demand dp. Each
point p ∈ P is specified by its coordinates (xp, yp). Further
the input contains a collection R of axis-parallel rectangles,
each of them abutting the y-axis. That is, each rectangle
r ∈ R has the form (0, xr) × (y1r , y

2
r). In addition, each

rectangle r ∈ R has an associated positive integer capacity
cr and positive integer weight wr. The goal is to find a
minimum weight subset S ⊂ R of rectangles, such that for
each point p ∈ P , the total capacity of rectangles covering
p is at least dp, that is,

∑
r∈R:p∈R cr ≥ dp.

As we shall see later, job sizes will be mapped to rectangle
capacities in our reduction, so we will also use P to denote
the largest capacity of any rectangle. Our algorithm for R2C
starts with the natural linear programming (LP) relaxation of
the problem, strengthened by adding the so-called knapsack
cover inequalities. To round this LP solution, our algorithm
then proceeds in a way that is by now standard (see for
example [12]) in the applications of knapsack cover inequal-
ities. In the terminology of [12], we reduce the problem to
rounding an LP solution for the so-called priority set cover
version of the problem and in addition several set multi-
cover problems. These resulting problems are simpler as they
are uncapacitated.

In particular we proceed as follows. The algorithm first
picks rectangles that are selected by the LP solution to a
significant extent (i.e. xr ≥ β, for some fixed constant
β), and then considers the residual solution. The knapsack
cover inequalities guarantee that remaining LP variables for
a feasible solution to the residual instance. Since all variables
xr ≤ β in this solution, the capacities and demands can be
rounded to powers of 2, and the variables can be scaled by
a constant factor, so that each point’s demand is covered
several times over.

Points are then classified as heavy or light depending on
whether or not the optimal LP solution extensively covers
the point with rectangles whose capacity is larger than the
demand of the point. We reduce the problem of covering
the heavy points by rectangles with higher capacity to the
geometric cover problem R3U defined below. We show that

the instances of R3U that we obtain have boundaries with
low union complexity. In particular, the boundary of the
union of any k objects has a complexity of O(k logP ).
Using Varadarajan’s quasi-uniform sampling technique [23]
for approximating weighted set cover on geometric instances
with low union complexity, one can obtain a covering that is
an O(log logP )-approximation to fractional cover specified
by the LP solution.

Definition of the R3U Problem: The input consists of a
collection of P points in three dimensional space. Each
point p ∈ P is specified by its coordinates (xp, yp, zp).
Further the input contains a collection R of axis-parallel
right cuboids each of them abutting the xy and yz coordinate
planes. That is, each right cuboid r ∈ R has the form
(0, xr) × (y1r , y

2
r) × (0, zr). In addition, each right cuboid

r ∈ R has an associated positive integer weight wr. The
goal is to find a minimum weight subset S ⊂ R of cuboids
such that each point p ∈ P is covered by at least one cuboid.

We reduce the problem of covering the light points to
logP different instances, one for each possible job size, of
the weighted geometric multi-cover problem R2M defined
below. We then show how to use the local ratio technique
to obtain a solution for each instance of R2M that is
O(log lognP )-approximate with the cost in the optimal LP
solution for jobs of this size. Combining these solutions for
various sizes implies a solution for covering all light points
with cost O(log log nP ) times the LP cost.

Definition of the R2M Problem: The input consists of a
collection of P points in two dimensional space, and for each
point p ∈ P an associated positive integer demand dp. Each
point p ∈ P is specified by its coordinates (xp, yp). Further
the input contains a collection R of axis-parallel rectangles,
each of them abutting the y-axis. That is, each rectangle
r ∈ R has the form (0, xr) × (y1r , y

2
r). In addition, each

rectangle r ∈ R has an associated positive integer weight
wr. The goal is to find a minimum weight subset S ⊂ R of
rectangles, such that for each point p ∈ P , the number of
rectangles covering p is at least dp.

Identical Release Times: In the instances of R2C that arise
from our reduction from the general scheduling problem, in
the special case of identical release times, all the points lie
on a line, and the rectangles are one-dimensional intervals.
This is precisely the generalized caching problem, for which
a polynomial-time 4-approximation algorithm is known [5]
(see also [12], for a somewhat more systematic approach to
it). Thus we conclude that there is a polynomial-time O(1)-
approximation algorithm for GSP when all release times are
identical.

B. Related Results
Let us first consider weighted flow time. [2] gives an

online algorithm that is O(logW )-competitive, and a semi-
online algorithm (which means that the parameters P and



W must be known a priori to the online algorithm) that is
O(log nP )-competitive. [15] gives a semi-online algorithm
that is O(log2 P )-competitive. These online algorithms also
give the best known approximation ratios for polynomial
time algorithms. [14] gives a (1+ε)-approximation algorithm
that has running time nO((logP logW )/ε3). Thus, this gives
a quasi-polynomial time approximation scheme (QPTAS)
when both P and W are polynomially bounded in n.
Moreover, [14] also gives a QPTAS for the case when only
one of either P or W is polynomially bounded in n. In the
special case that the weights are the reciprocal of the job
sizes, and hence the objective is average stretch/slow-down,
then there is a polynomial time approximation scheme [8],
[14].

It is also known that the algorithm highest density first is
(1 + ε)-speed O(1)-competitive for weighted flow [7] and
flow squared [4]. No other approximation guarantees are
known for flow squared. An n− 1-approximation algorithm
is known for weighted tardiness if all jobs are released
at the same time [16], and nothing seems to be known
for arbitrary release dates. PTAS’s are known with the
additional restriction that there are only a constant number
of deadlines [18] or if jobs have unit size [19]. In general,
there has been other extensive work on flow time related
objectives and we refer the reader to [22] for a survey.

The goal in geometric set cover problems is to improve
the O(log n) set-cover bound using geometric structure. This
is an active area of research and various different techniques
have been developed. However, until recently most of these
techniques applied only to the unweighted case. A key idea is
the connection between set covers and ε-nets [9], where an ε-
net is a sub-collection of sets that covers all the points that lie
in at least an ε fraction of the input sets. For any geometric
problem, existence of ε-nets of size at most (1/ε)g(1/ε)
implies O(g(OPT ))-approximate solution for unweighted
set cover [9]. Thus, proving better bounds on sizes of ε-nets
(an active research of research is discrete geometry) directly
gives improved guarantees for unweighted set-cover. In a
surprising result, [17] related the guarantee for unweighted
set-cover to the union complexity of sets. If particular, if
the sets have union complexity O(nh(n)), which roughly
means that the number of points on the boundary of the
union of any collection of n sets is O(nh(n)), then one
can obtain an O(h(n)) approximation [17]. This was sub-
sequently improved to O(log(h(n)) [23]. In certain cases
these results also extend to the unweighted multi-cover case
[13]. However, these techniques do not apply to weighted
set cover problems: the problem is that these techniques
may sample some sets with much higher probability than
that specified by the LP relaxation. In a recent break-
through, Varadarajan gave a new quasi-uniform sampling
technique [24] that obtains a 2O(log∗ n) log(h(n)) approx-
imation for weighted geometric set cover problems with
union complexity O(nh(n)). In fact his result gives an

improved guarantee of O(log h(n)) if h(n) grows with n
(even very mildly such as log log · · · log n, where the log is
iterated O(1) times).

Organization: The paper is organized as follows. In sec-
tion II the reduction from GSP to R2C is given. In section
III we give the LP formulation of R2C and explain the
initial preprocessing of the LP solution. In section IV we
explain how to reduce part of the problem of rounding the
LP solution to an instance of the R3U problem. In section V
we explain how to reduce part of the problem of rounding
the LP solution to an instance of the R2M problem.

II. THE REDUCTION FROM GSP TO R2C

Our goal in this section is to prove Theorem 1. We
accomplish this by giving a reduction from GSP to R2C, and
then showing that this reduction increases the objective value
of the optimal solution by at most a factor of four (Lemma
2), and that this reduction doesn’t shrink the objective value
of the optimal solution (Lemma 3).

Theorem 1. A polynomial-time α-approximation algorithm
for R2C implies a polynomial-time 4α approximation algo-
rithm for GSP.

Definition of the Reduction from GSP to R2C: From an
arbitrary instance I of GSP, we explain how to create an
instance I ′ of R2C. Considering I, we say that a time
t > rj is of class k ≥ 1 with respect to job j if the
cost of finishing j at time t lies in [2k−1, 2k − 1], i.e.∑t
t′=1 wj(t

′) ∈ [2k−1, 2k−1]. We say that t is of class 0, if
the cost of finishing j at t is 0. Let Ijk denote the (possibly
empty) time interval of class k times with respect to job j.
Let T denote the set of all points that are endpoints of the
intervals of the form Ijk for some job j and class k. For each
time interval X of the form X = [t1, t2), where t1 < t2
and t1, t2 ∈ T , we create a point p in I ′ with demand
dp = max(0, P (X) − |X|) = max(0, P (X) − (t2 − t1)),
where P (X) denotes the total size of jobs that are released
during X , i.e. P (X) =

∑
j:rj∈[t1,t2) pj . For each job j in

I and k ≥ 0, we create a rectangle Rjk = [0, rj ] × Ijk in
I ′ with capacity pj and weight 2k − 1. We note that the
rectangles Rj0, R

j
1, . . . corresponding to the same job are

pairwise disjoint.
Without loss of generality, we may assume that the time

horizon is nP , otherwise the instance can be divided into
disjoint non-interacting subsets. Thus the maximum cost
for any job can be nPW , so k ≤ min(nP, log(nPW )).
This implies that we can assume that logW = O(nP )
and that |T | = O(n log(nPW )), i.e. polynomial in the
size of the input. Throughout the paper we will use m to
denote the number of points in the R2C problem. Clearly,
m = O(|T |2).



Lemma 2. If there is a feasible solution S to I with
objective value v, then there there is a feasible solution S′

to I ′ with objective value at most 4v.

Proof: For job j in I, let k(j) denote the class during
which j finishes in S (i.e. k(j) is the smallest integer such
that the cost incurred by j in S is ≤ 2k(j) − 1). Consider
the solution S′ obtained by choosing for each job j, the
intervals Ij0 , . . . , I

j
k(j). Clearly, each job contributes at most∑k(j)

i=0 2i − 1 ≤ 2(2k(j) − 1) ≤ 4 · 2k(j)−1, i.e. at most 4
times its contribution to S, and hence the total cost of S′ is
at most 4 times the cost of S.

It remains to show that S′ is feasible, i.e. for any point
p, the total capacity of rectangles covering p is at least dp.
Suppose p corresponds to the time interval X = [t1, t2)
from I. Let JX denote the jobs that arrive during X . For
each job j ∈ JX that completes after t2, there is exactly one
rectangle Rjk that covers p. Since S is a feasible schedule,
the total size of jobs in JX that can complete during X itself
cannot be more than |X| = t2−t1. Thus the jobs in JX that
do not complete during X must have a total size of at least
P (JX)− |X|, which is the covering requirement for p.

Lemma 3. If there is a feasible solution S′ to I ′ with
objective value v′, then there there is a feasible solution
S to I with objective value at most v.

Proof: For each job j, let h(j) denote the largest index
such that the rectangle Rjh(j) lies in S′. Let us set a deadline
dj for j as the right end point of Ijh(j).

We claim that there is a schedule S that completes each
job j by time dj . Consider the bipartite graph defined as
follows: We have time slots 1, 2, . . . , T on the right. For
each job j, we have pj vertices on the left, each of which is
connected to vertices rj , . . . , dj − 1 on the right. By Hall’s
theorem, a feasible schedule exists if and only if for any time
interval X , the total size of jobs that have both release times
and deadlines in X is at most |X|. Moreover, it suffices to
show such a result for intervals X of the form [ra, db), for
some jobs a and b. Equivalently, for any such time interval
X , the jobs j ∈ JX that are released during X and have dj
after the end of X , have a total size of at least P (JX)−|X|.

Note that by the definition of T , then there is a point p in
I ′ that corresponds to the interval X . Then by the feasibility
of S′, the total capacity of rectangles covering p in S′ is at
least P (JX)−|X|. And as all of these rectangles correspond
to different jobs in I (the rectangles corresponding to the
same job are pairwise disjoint), we are done.

In S the cost of j is at most 2h(j) − 1, since by the
definition of the rectangle Rjk the cost of finishing a job by
deadline dj is at most 2h(j)−1. Now, the cost incurred by j
in I ′ is at least 2h(j) − 1 (since the rectangle Rjh(j) already
has cost 2h(j)−1). This implies that the cost of S is at most
that of S′.

Identical Release times: Without loss generality, let rj = 0
for all j. In this case, the above reduction become simpler. In
particular, the first dimension corresponding to release time
becomes irrelevant and we obtain the following problem. For
each job j and k ≥ 0, there is an interval Ijk corresponding
to class k times with respect to j and has capacity pj and
weight 2k−1. All relevant intervals X are of the form [0, t]
for t ∈ T and have demand JX − |X| = D − t, where D
is the total size of all the jobs. For each such X = [0, t),
we introduce a point t with demand dt = D − t. The goal
is to find a minimum weight subcollection of intervals Ijk
such that covers the demand. This is a special case of the
following Generalized Caching Problem.

Generalized Caching Problem: The input consists of a
set of demands d(t) at various time steps t = 1, . . . , n. In
addition there is a collection of time intervals I, where each
interval I ∈ I has weight wI , size cI and span [sI , tI ] with
sI , tI ∈ {1, . . . , n}. The goal is to find a minimum weight
subset of intervals that covers the demand. That is, find the
minimum weight subset of intervals S ⊆ I such that∑

I∈S:t∈[sI ,tI ]

cI ≥ dt ∀t ∈ {1, . . . , n}.

A 4-approximation for this problem was obtained by Bar-
Noy et al. [5], based on the local-ratio technique. Their algo-
rithm can equivalently be viewed as a primal dual algorithm
applied to a linear program with knapsack cover inequalities
[6]. This immediately implies a 16-approximation for GSP
in the case of identical release times.

III. THE LP FORMULATION FOR R2C

The following is a natural integer programming formula-
tion for R2C. For each rectangle r ∈ R there is an indicator
variable xr specifying whether or not the rectangle r is
selected.

min
∑
r∈R

wrxr s.t.∑
r:p∈r

crxr ≥ dp ∀p ∈ P (1)

xr ∈ {0, 1} r ∈ R (2)

It is easily seen that the natural relaxation of this linear
program, where xr ∈ {0, 1} is replaced by xr ∈ [0, 1], has
a large integrality gap. In particular, this is true even when
P consist of a single point, in which case the problem is
equivalent to the knapsack cover problem [11]. Thus, we
strengthen this LP by adding knapsack cover inequalities
introduced in [11] have proved to be a useful tool to address
capacitated covering problems [1], [10], [20], [3], [12].



This gives the the following linear program:

min
∑
r∈R

wrxr s.t. (3)∑
r∈R\S:p∈r

min {cr,max(0, dp − c(S))}xr ≥

dp − c(S) ∀p ∈ P, S ⊆ R (4)
xr ∈ [0, 1] ∀r ∈ R (5)

Here c(S) denotes the total capacity of rectangles in S. The
constraints are valid for the following reason: For any subset
S, even if all the items in S are chosen, at least a demand
of dp − c(S) must be covered by remaining rectangles.
Moreover, truncating an item size to the residual capacity
does not affect the feasibility of an integral solution. Even
though there are exponentially many constraints per point,
a feasible (1 + ε)-approximate solution, for any constant
ε > 0, can be found using the Ellipsoid algorithm, see [11]
for details. Further only the cost incurs the (1 + ε) factor
loss, all the constraints are satisfied exactly. We will refer the
inequalities in line (4) as the knapsack cover inequalities.

Let x be some (1+ε)-approximate feasible solution to the
linear program for R2C in lines (3)-(5), and let OPT denote
x’s objective value.

We now apply some relatively standard steps to simplify
x. Let β be a small constant, β = 1/12 suffices. Let S
denote the set of rectangles for which xr ≥ β. We pick all
the rectangles in S, i.e. set xr = 1. Clearly, this cost of this
set is at most 1/β times the LP solution.

For each point p, let Sp = S ∩ {r : r ∈ R, p ∈ r} denote
the set of rectangles in S that cover p. Let us consider the
residual instance, where the set of rectangles is restricted to
R\S and the demand of a point is dp−c(Sp). If dp−c(Sp) ≤
0, then p is already covered by S and we discard it.

Since the solution x satisfied all the knapsack cover
inequalities for each point p and set S, and hence in
particular for every p and corresponding the set Sp, we have
that ∑

r∈R\Sp:p∈r

min {cr, dp − c(Sp)}xr ≥ dp − c(Sp)

Henceforth, this is the only fact we will use about the
solution x (in particular, we do not care that x satisfies
several other inequalities for each point p). Let us scale the
solution x restricted to R\S by 1/β times. Call this solution
x′. Note that since xr ≤ β, it still holds that x′r ∈ [0, 1].
Clearly, x′ satisfies∑

r∈R\Sp:p∈r

min{cr, dp − c(Sp)}x′r ≥
dp − c(Sp)

β

Let us define the new demand d′p of p as dp−c(Sp) rounded
up to the nearest integer power of 2. Similarly, defined a new

capacity c′r of each rectangle r to be cr rounded down to
the nearest integer power of 2. x′ still satisfies,∑

r∈R\Sp:p∈r

min{c′r, d′p}x′r ≥
d′p
4β

We call r a class i rectangle if c′r = 2i. Similarly, p is a
class i point if d′p = 2i. We call a point p heavy if is covered
by rectangles with class at least as high as that of p in the
LP solution, more precisely if:∑

r∈R′:c′r≥d′p

min(c′r, d
′
p)x
′
r ≥ d′p. (6)

Equivalently, p is heavy if∑
r∈R′:c′r≥d′p

x′r ≥ 1.

Otherwise we say that a point is light. Thus a light point
satisfies:∑

r∈R′:c′r≤d′p

c′rx
′
r ≥

(
1

4β
− 1

)
d′p =

(
1− 4β

4β

)
d′p (7)

We now have different algorithms for covering heavy and
light points.

IV. COVERING HEAVY POINTS

In this section we show how reduce the problem of cover-
ing the heavy points by larger class rectangles to R3U. We
then show that the resulting instances of R3U have low union
complexity. In particular any k cuboids in a resulting R3U
instance has union complexity O(k logP ). By Varadara-
jan’s quasi-uniform sampling technique [23] this gives a
solution that is an 2O(log∗m) log logP = O(log log nP )
approximation to the optimal fractional solution of this R3U
instance. As x′ gives a feasible fractional solution to this
R3U instance, this means that the cost of cuboids that the
algorithm selects is O(log log nP ) approximate with OPT.

The Problem of Covering the Heavy Points to R3U: The
reduction takes as inputs the instance I ′ for heavy points ob-
tained at the end of the previous section, and the LP solution
x′ and creates an instance A of R3U. For each heavy point
p = (x, y) ∈ I ′ with demand d′p, there is a point (x, y, d′p) in
A. For each rectangle r = [0, x]×[y1, y2] in I ′ with capacity
c′r, we define a right cuboid Rr = [0, x] × [y1, y2] × [0, c′r]
of weight wr.

It is clear that there is a one to one correspondence
between a covering of heavy points in I ′ by rectangles of no
smaller class and a covering of the points in A by cuboids.
Given a collection X of n geometric objects, the union
complexity of X is number of edges in the arrangement
of the boundary of X . For 3-dimensional objects, this is the
total number of vertices, edges and faces on the boundary



of X . In Lemma 4 and Lemma 5 we bound the union
complexity of cuboids in A.

Lemma 4. For any collection of k rectangles of the type
[0, r]× [s, t], the union complexity is O(k).

Proof: For each rectangle of the form [0, r]× [s, t] has
a side touching the y-axis. Let us view of union of k such
rectangles from (∞, 0). Consider the vertical faces on the
boundary of the union. For any two rectangles a and b, the
pattern abab or baba cannot appear. Thus the vertical faces
from a Davenport Schinzel sequence of order 2, which has
size at most 2k− 1 (see for example [21], chapter 7). Since
the number of vertices is O(1) times the number of faces,
the result follows.

Lemma 5. The union complexity of any k cuboids in R is
O(k logP ).

Proof: This directly follows from lemma 4 and noting
that the number of distinct heights is O(logP ). In particular,
since the heights of powers of 2, consider the slice of the
arrangement between z = 2i and z = 2i+1. This corresponds
to union of rectangles of the form [0, r]× [s, t].

Remark: We remark that the bound in lemma 5 is tight
for kind of cuboids we consider here.

The following result is implicit in [24].

Theorem 6 ([24]). There is a randomized polynomial-
time algorithm that, given a weighted geometric set cover
instance I where the union complexity of any k objects is
k ∗g(k), produces an set cover of weight at most a factor of
2O(log∗ |I|) log g(|I|) times the optimal fractional set cover.

If the function g(n) grows even very mildly with n, say
in particular that g(n) ≥ log log · · · log n, where the log is
iterated O(1) times, then the approximation guarantee above
is O(log g(|I|)).

Thus we can conclude that in polynomial time one find
rectangles in the R2C instance I ′ that covers all the heavy
points and that has weight at most O(log lognP ) times OPT.

V. COVERING LIGHT POINTS

In this section we show how to decompose the problem
of covering the light points to logP instances of R2M,
one instance B` for each possible rectangle capacity class
`. The decomposition ensures that an α approximation for
R2M implies an cover for light points in I ′ with cost O(α)
times OPT. We then give an obtain an O(log logm) =
O(log lognP ) approximation for an R2M instance on m
points. To do this, we relate the multi-cover problem to the
set cover problem (where all demands are 1) and show that
the set cover problem has a 2-approximation with respect
to the fractional solution. This implies that the cost of
rectangles that the algorithm selects for I ′ is O(log logm)
approximate with OPT.

Remark: Better results for the R2M problem can be
obtained by adapting Varadarajan’s quasi-uniform sampling
technique to multi-cover instances. However, we follow the
simpler approach here since it suffices for our purposes.

The Problem of Covering the Light Points to the instances
B` of R2M: The reduction takes as inputs the instance I ′ for
R2C (restricted to light points), and the LP solution x′ and
for each ` = 0, 1, 2, . . . creates an instance B` of R2M. The
points in B` are the same as the points in I ′. The demand
of a point p in B` is defined as d`p = b

∑
r:c′(r)=2` x

′
rc. The

rectangles in B` are precisely the class ` rectangles in I ′, i.e.
those of capacity exactly 2`. The weight of the rectangles
in B` are the the same as in I ′. The goal is to cover each
point p ∈ B` by d`p distinct rectangles.

Lemma 7. Consider the union S of the rectangles picked
in the solutions S` to the instances B`. Then S satisfies the
demand of all the light points in I ′.

Proof: Consider a particular point p and suppose it lies
in class i in I ′, i.e. its demand d′(p) = 2i. Then the extent
to which p is covered by

⋃
` S` is at least∑

`<i

2`d`p =
∑
`<i

2`b
∑

r:c′(r)=2` and p∈r

x′rc

≥
∑
`<i

2`((
∑

r:c′(r)=2` and p∈r

x′r)− 1)

≥

∑
`<i

2`
∑

r:c′(r)=2` and p∈r

x′r

− 2i

=

∑
`<i

2`
∑

r:c′(r)=2` and p∈r

x′r

− d′(p)
≥

(
1− 8β

4β

)
d′(p)

where last inequality follows from (7). Since β = 1/12, it
follows the each p is covered.

Henceforth we focus on a particular instance of R2M. Let
I be such an instance with n rectangles (sets) S1, . . . , Sn and
m points (elements) 1, . . . ,m. Let di denote the covering
requirement of i. We are given some fractional feasible
solution x, i.e. for each i

∑
j:i∈Sj

xj ≥ di and xj ∈ [0, 1]
for all Sj . The following lemma is standard.

Lemma 8. For any multi-cover problem, at the loss of an
O(1) factor in approximation ratio, we can assume that the
maximum demand d = maxi di is O(logm).

Proof: We pick each set Sj with probability
min(1, 2xj). The expected cost of the sets picked is at
most twice the LP cost. By standard Chernoff bounds, for
some large enough constant c each element with demand
di ≥ c logm is covered with probability at least 1− 1/m2.
In the residual instance, each uncovered element has demand



O(logm) and as xj ≤ 1 for each set, the LP solution
restricted to the unpicked sets is a feasible solution to the
residual instance.

The following lemma shows how a rounding procedure for
a set cover problem can be used for corresponding multi-
cover problem.

Lemma 9. An LP-based α approximation algorithm for a
weighted set cover problem can be used to obtain an α log d
approximation for any multi-cover variant of the problem
where d is the maximum demand of any element.

Proof: Let x be some feasible fractional solution to the
multi-cover problem. Our algorithm proceeds in d rounds,
and picking some sets in each round such that after d rounds,
each pi is covered by at least di distinct sets. Inductively,
assume that at beginning of round r each element has an
uncovered demand of at most d− r+1. This is clearly true
for r = 1. For round r = 1, . . . , d, we proceed as follows.
Consider the LP solution y(r) = x/(d − r + 1), restricted
to the sets not chosen thus far in previous rounds. Let Pr
be the elements with (current) demand exactly d − r + 1.
We claim that y(r) is a feasible fractional set cover solution
for Pr. If i ∈ Pr had requirement di initially, then it has
been covered ci = di− (d− r+1)) times thus far. As each
xj ≤ 1, the solution x restricted to sets not picked this far
still covers i to extent di − ci and hence y(r) must cover i
fractionally to extent at least (di − ci)/(d− r + 1) ≥ 1.

Let Cr denote the cover for Pr obtained by applying our
set cover rounding procedure to y(r). We return the solution
C1 ∪ . . .∪Cd. In this solution, each element i is covered at
least di times, and its cost is

∑d
r=1 α·cost(y(r)) ≤

∑d
r=1 α·

cost(x/(d− r + 1)) = α log d · cost(x).
We now give a 2 approximation for R2M using local

ratio. We refer the reader to [5] for a general description of
the technique. While we use local ratio below, our approxi-
mation can be easily made LP-based using the equivalence
between local ratio and the primal dual method [6].

Lemma 10. There is a 2-approximation for the R2M prob-
lem when all the demands are O(1).

Proof: The algorithm is a straight-forward application
of local ratio rule. We adopt the notation from all the local
ratio rule papers. Let w be the original weight function.
Consider the rightmost point p to be covered, that is the
point p with maximum x coordinate (if there are several,
pick one arbitrarily). Let z be the minimum weight of a
rectangle covering p. Define the weight function w1 = z
for rectangles that cover p, and 0 for the other rectangles.
Let w2 = w − w1 be the residual weight function. Recall
that the local ratio rule tentatively picks all the sets X
with w2 weight 0, removes the covered points and proceeds
recursively on the residual instance with function w2. Let S2

be the solution obtained recursively by the local ratio for the
residual instance. We then add all the rectangles in X and

perform the greedy-delete step, i.e. remove them arbitrarily
as long as solution is feasible.

As p must be covered, any optimum solution must incur a
w1 cost of z. It suffices to show that at most two rectangles
with non-zero w1 weight can be picked by the algorithm.
Suppose more than two are left after the delete step. But
as p is the rightmost point, any rectangle that covers p and
is different from the one with the topmost edge or the one
with the bottommost edge will be redundant.
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