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Abstract—We prove a quantitative version of the Gibbard-
Satterthwaite theorem. We show that a uniformly chosen voter
profile for a neutral social choice function f of q ≥ 4 alter-
natives and n voters will be manipulable with probability at
least 10−4ε2n−3q−30, where ε is the minimal statistical distance
between f and the family of dictator functions.

Our results extend those of [1], which were obtained for the
case of 3 alternatives, and imply that the approach of masking
manipulations behind computational hardness (as considered in
[2], [3], [4], [5], [6]) cannot hide manipulations completely.

Our proof is geometric. More specifically it extends the method
of canonical paths to show that the measure of the profiles that
lie on the interface of 3 or more outcomes is large. To the best
of our knowledge our result is the first isoperimetric result to
establish interface of more than two bodies.

I. INTRODUCTION

Social choice theory studies methods of collective decision
making, and their interplay with social welfare and individual
preference and behavior. Rigorous study of social choice dates
back to the 18’th century, when Condorcet discovered the fol-
lowing voting paradox: in a social ranking of three alternatives
that is determined by the majority vote, an ‘irrational’ circular
ranking may occur where a candidate A is preferred over a
candidate B, B is preferred over C, and C is preferred over
A. Social choice theory in its modern form was established
in the 1950’s with the discovery of Arrow’s impossibility
theorem [7], [8], which showed that all social ranking systems
that satisfy a few reasonable conditions must either obtain
irrational circular outcomes, or be dictatorships (a dictatorship
is a system where the ranking is determined by just one voter).

1) Manipulations.: Many of the results in the study of
social choice are negative, showing that certain desired prop-
erties of social choice schemes cannot be attained. One of the
hallmark examples of such theorems was proved by Gibbard

and Satterthwaite [9], [10]. Their theorem considers a voting
system where each of n voters rank q alternatives, and the
winner is determined according to some pre-defined social
choice function f : Lnq → [q] of all the voters’ rankings—here
Lq denotes the set of total orderings of the q alternatives.

We say that a social choice function is manipulable, if a
situation may occur where a voter who knows the rankings
given by other voters can change her own ranking in a way
that does not reflect her true preferences, but which leads to
an outcome that is more desirable to her. Formally

Definition I.1 (Manipulation point). For a ranking x ∈ Lq ,
write a

x
> b to denote that the alternative a is preferred by x

over b. A social choice function f : Lnq → [q] is manipulable
at x ∈ Lnq if there exist a y ∈ Lnq and i ∈ [n] such that x and
y only differ in the i’th coordinate and

f(y)
xi

> f(x) (1)

In this case we also say that x is a manipulation point of f ,
and that (x, y) is a manipulation pair for f . We say that f is
manipulable, if it is manipulable at some point x. We also say
that x is an r-manipulation point of f , if f has a manipulation
pair (x, y) such that y is obtained from x by permuting (at
most) r adjacent alternatives in one of the coordinates of x.

Gibbard and Satterthwaite proved that any social choice
function which attains three or more values, and whose out-
come does not depend on just one voter, must be manipulable.

Theorem I.2 (Gibbard-Satterthwaite [9], [10]). Any social
choice function f : Lnq → [q] which takes at least three values
and is not a dictator is manipulable.

The Gibbard-Satterthwaite theorem has contributed signifi-
cantly to the realization that it is unlikely to expect truthfulness



in the context of voting. In a way, this and other results
in social choice theory, contributed to the development of
mechanism design, a field centered around developing social
mechanisms that obtain desirable results even when each
member of the society acts selfishly.

2) Quantitative social choice.: Theorem I.2 is tight in
the sense that monotone social choice functions which are
dictators or only have two possible outcomes are indeed
non-manipulable (a function is non-monotone, and clearly
manipulable, if for some set of rankings a voter can change
the outcome from say a to b by moving a ahead of b in his
preference). It is interesting, however, to study manipulation
quantitatively, asking not just whether a function is manipula-
ble but how many manipulations occur in it. To state results
in quantitative social choice we need to define the distance
between social choice functions.

Definition I.3 (Distance between social choice functions).
The distance D(f, g) between two social choice functions
f, g : Lnq → [q] is defined as the fraction of inputs on which
they differ: D(f, g) = P[f(X) 6= g(X)], where X ∈ Lnq is
uniformly selected. For a class G of social functions, we write
D(f,G) = ming∈GD(f, g).

We also define some classes of functions that may not have
any manipulation points.

Definition I.4. We use the following three classes of functions,
defined for parameters n and q that remain implicit (when
used, the parameters will be obvious from the context):
• CONST will denote the constant functions f : Lnq → [q].
• DICTi will denote all functions f : Lnq → [q] that only

depend on the i:th coordinate. We will write DICT =
∪ni=1 DICTi.

• NONMANIP will denote all functions f : Lnq → [q] that
are either a dictator or take at most two values.

A. Our results

Our results only apply to social choice functions which are
neutral. A social choice function is neutral if it is invariant
under changes made to the names of the alternatives (see
Definition II.1 for a formal description). In our first main
result we show the following lower bound on the number of
manipulation points in a neutral social function:

Theorem I.5. Fix q ≥ 4 and let f : Lnq → [q] be a neutral
social choice function with D(f,DICT) ≥ ε. Then,

P(f is manipulable at X) ≥ ε2

2n3q6(q!)2
(2)

where X ∈ Lnq is selected uniformly.

Note that the result above directly implies the following:

Corollary I.6. Fix q ≥ 4 and let f : Lnq → [q] be a neutral
social choice function with D(f,DICT) ≥ ε. Then,

P((X,Y ) is a manipulable pair for f) ≥ ε2

2n4q6(q!)3
,

where X ∈ Lnq is selected uniformly, and Y is obtained
from X by uniformly selecting a coordinate i ∈ {1, .., n} and
resetting the i’th coordinate to a random preference.

The result above has super exponential dependency on the
number of alternatives q. A more refined analysis yields the
following theorem.

Theorem I.7 (main theorem). Fix q ≥ 4 and let f : Lnq → [q]
be a neutral social choice function with D(f,DICT) ≥ ε.
Then P(f is manipulable at X) is lower bounded by

P(X is a 4-manipulation point of f),

and

P(X is a 4-manipulation point of f) ≥ ε2

104n3q30
(3)

where X ∈ Lnq is uniformly selected.

A result similar to Theorem I.7 was obtained for the case
q = 3 in [1], but the result of [1] counted manipulation pairs
rather than manipulation points. Translating the bound on the
fraction of manipulation points in Theorem I.7 directly to the
case of pairs deteriorates the lower bound, inserting a factor of
q! in the denominator. However using the stronger bound on
the fraction of 4-manipulation points, a direct corollary lower
bounds the fraction of manipulation pairs of a certain kind
while keeping the polynomial dependency on q.

Corollary I.8 (manipulation pairs). Fix q ≥ 4 and let
f : Lnq → [q] be a neutral social choice function with
D(f,DICT) ≥ ε. Then,

P((X,Y ) is a manipulation pair for f) ≥ ε2

109n4q34
(4)

where X ∈ Lnq is uniformly selected, and Y is obtained
from X by uniformly selecting a coordinate i ∈ {1, .., n},
then selecting 4 adjacent alternatives in Xi and randomly
permuting them.

The case of large q, solved here, was left as the main
open problem in [1]. Their main motivation was that deriving
quantitative versions of Gibbard-Satterthwaite theorems with
polynomial dependency of q and n would indicate that from
the computational complexity point of view it is easy on
average to find manipulation points. This point is discussed
in more detail in the related work subsection.

Our lower bound for the number of manipulation points
deteriorates polynomially with the number of voters, n, and the
number q of alternatives. Some polynomial deterioration as a
function of n is necessary. This can be observed by considering
the plurality function pl : Lnq → [q], whose value is defined
to be the candidate which is top ranked by the largest number
of voters (break ties by picking the candidate which is top
ranked by the ’leftmost’ voter). It is easy to observe that a
point where no ties are formed is not a manipulation point
of pl, and that for any fixed q the fraction of points that do
contain ties is polynomially small in n. As for the dependency
on q—we do not know whether it is necessary.



B. History and related work

The Gibbard-Satterthwaite theorem presented a difficulty
in designing social choice functions, namely that of strategic
voting. A line of research aimed at overcoming these difficul-
ties suggested constructions of social choice functions where
it is computationally difficult for a voter to find beneficial
manipulation [11], [2], [3], [4]. However these constructions
considered worst case analysis—they did not rule out the
possibility that on average, finding a manipulation may be
easy. Indeed, some results showed that finding manipulations
is easy on average for certain restricted classes of social choice
functions [5], [6], [12] (see also the survey [13]).

Recently, a result of Friedgut, Kalai and Nisan [1] provided
a very general result, showing that in the case of a neutral
social choice function between 3 alternatives even a random
attempted manipulation is beneficial for a voter with non-
negligible probability. Adapted to our notation, the main result
of [1] can be stated as follows:

Theorem I.9 ([1]). There exists a constant C > 0 with the
following property. Let f : Ln3 → [3] be a neutral social choice
function with D(f,DICT) ≥ ε. Then,

P((X,Y ) is a manipulation pair for f) ≥ C ε
2

n
(5)

where X ∈ Ln3 is uniformly selected, and Y is obtained
from X by uniformly selecting a coordinate i ∈ {1, .., n} and
resetting the i’th coordinate to a random preference.

Choosing X , Y randomly as in Theorem I.9, the result
of [1] implies that a manipulation pair is obtained with non-
negligible probability (at most polynomially small in n), and
thus a manipulation pair can be found efficiently as long
as f can be efficiently evaluated. Note however that the
computational problem discussed above is different from the
problem considered in previous work [2], [3], [4], [5], [6],
where the complexity studied was that of finding a beneficial
manipulation for a specific voter, given the declared pref-
erences of all other voters – since [1] considers only three
alternatives, a voter with access to the social choice function
can easily try all permutations of the alternatives to find a
manipulation.

Corollary I.6 and Corollary I.8, which extend the result
of [1] to the case of 4 or more alternatives, are thus more
relevant with respect to the hardness of finding a manip-
ulation. They imply that in the case were votes are cast
uniformly at random, a random change of preference for a
random voter will yield a beneficial manipulation with non-
negligible probability–at most polynomially small in q and n
by Corollary I.8. Thus in the setup of [2], [3], [4], [5], [6],
with positive probability, a single voter with black-box access
to f can efficiently manipulate. This implies that approach of
masking manipulations behind computational hardness cannot
hide manipulations completely.

We note that there are other (independent) extensions of [1]
for more candidates. Xia and Conitzer [14] applied the proof

strategy of [1] to show that for some social choice functions
with n voters and a fixed number m of alternatives, starting
with a uniformly random voting profile and then randomly
resetting the ranking of one of the voters yields a manipulation
pair with probability Ω(1/n). Their proof requires a number of
properties of the social choice functions including anonymity
(the social choice outcome depends only on the number of
times each order was chosen), homogeneity (if each vote is
replaced by t identical votes the outcome remains the same),
canceling out (this condition related to neutrality - it says that
one can cancel any subset of the votes which contains each
order exactly once). Most importantly the results of Xia and
Conitzer require that certain outcomes are robust (will not
change if a small linear fraction of the voters cast a specific
order) and the result does not give bounds on the frequency of
manipulations in terms of m, the number of alternatives. The
later point implies that the results do not have implications for
the hardness of finding a manipulation in the setup of [2], [3],
[4], [5], [6].

We further note that Dobzinski and Procaccia [15] estab-
lished an analogous result for the case of two voters and any
number of candidates, under a comparably weak assumption
on the voting rule.

We would like to note work by Maus et al., see e.g.[16]
studied non-dictatorial functions with minimum manipulation
probability. The function in their construction are exponen-
tially close (in terms of n and q) to dictatorial functions.

Finally we mention work in quantitative social choice
related to Arrow’s theorem. Kalai [17] obtained a quantitative
version of Arrow’s theorem for 3 alternatives and neutral func-
tions. More recently Mossel [18] derived a general quantitative
Arrow’s theorem and sharper results were later obtained by
Keller [19]. While the result of [1] build on the quantitative
Arrow’s theorem established in [17], our results are not based
on a reduction from a quantitative Arrow’s theorem.

C. Techniques

The result of [1] are obtained by mixing combinatorial
techniques with discrete harmonic analysis. In contrast, our
techniques are purely geometric and combinatorial. In partic-
ular, we apply a variant of the a canonical path method to
prove isoperimetric bounds of ”second order”. These allow
to establish the existence of a large interface where 3 bodies
touch. As far as we know, our result is the first one to establish
such a bound in any context.

1) The canonical path method.: Before describing our
techniques, we briefly recall the canonical path method [20].
Given a graph G and a subset A of its vertices, a general
approach to proving a lower bound on the ’surface area’ of
A—namely the number of vertices in A that are attached by
an edge to a vertex outside of A—is as follows: for each pair
x, y of vertices in G such that x ∈ A and y 6∈ A, determine
a path in G between them, called the canonical path between
x and y. Since x is in A and y is not, there is at least one
surface vertex on each canonical path. So if one manages to
prove that each surface vertex lies on at most r canonical



paths, it immediately follows that the surface of A contains at
least |A|·|Ā|r vertices, giving the required lower bound on the
surface area of A.

2) Manipulation paths.: Think of the graph G having the
set Lnq of all ranking profiles as the vertex set, where the pair
(x, y) is an edge if x and y differ on at most one coordinate.
A social choice function f : Lnq → [q] naturally partitions the
vertices of G into q subsets. Our main interest is not in the
surface area of these subsets, however, but in the number of
manipulation points.

Our approach in the proof of Theorem I.5 is therefore
the following: we consider four subsets f−1(A), f−1(B),
f−1(C) and f−1(D), where the outcome is A,B,C and
D respectively. We first use elementary methods to show
that many edges in our graph lie on the interface between
f−1(A) and f−1(B), namely have one vertex from each of
the subsets. Similarly, many edges must lie on the interface
between f−1(C) and f−1(D).

We then define a so called manipulation path for each pair
of edges consisting of one edge on the interface between
f−1(A) and f−1(B), and one on the interface between
f−1(C) and f−1(D). The path (of edges) has the property
that it either stays in one interface or the other. If a path
”transitions” from the interface between f−1(A) and f−1(B)
and the interface between f−1(C) and f−1(D) then around
the transition point the function must obtain at least 3 values.
This realization allows us to apply the original Gibbard-
Satterthwaite theorem and associate a manipulation point with
the path. Much of the work is then devoted to bounding the
number of paths that can correspond to each manipulation
point.

3) A refined geometry.: To obtain the improved parameters
of Theorem I.7 we use a proof scheme similar to that of
Theorem I.5, however we use an underlying graph with a
different edge structure. Instead of connecting every pair
x, y ∈ Lnq of ranking profiles that differ in just one coordinate,
we connect x and y only if in the coordinate i in which they
differ, yi can be obtained from xi by a single transposition.
In the case where n = 1 this is the graph that’s studied in
the analysis of the adjacent transposition card shuffling [21],
[22]. The proof of the refined result requires to show that
geometric and combinatorial quantities such as boundaries
and manipulation points are roughly the same in the refined
graph as in the original graph on Lnq . This proof requires the
development of a number of techniques, in particular the study
of canonical paths under group actions.

D. Organization of the paper

In Section II we set some notations, definitions, and some
general observations. We prove Theorem I.5 in Sections III,
IV and V. Theorem I.7 is proved in Sections VI, VII, and
VIII. Finally, some open problems appear in Section IX.

II. SETUP AND NOTATION

1) Rankings.: We denote by Lq the set of rankings of q
alternatives. An element x ∈ Lq is a permutation of the set

[q]. The elements ranked at top by x is x(1), the second is
x(2) etc. Given another element y ∈ Lq , their composition yx
is the ranking where the element ranked at the top is y(x(1))
etc.

More generally we will also sometimes use LS to denote
the set of rankings of a set S.

Definition II.1 (neutral social choice functions). Let f : Lnq →
[q] be a social choice function. We say that f is neutral if for
every x ∈ Lnq and every y ∈ Lq , y(f(x)) = f(yx1, . . . , yxn).
Informally f is neutral if the names of the alternatives do not
matter when applying f .

2) Influences and Variance.: We call a function f : Lnq →
[q] a social choice function and define the influence of the i:th
coordinate on f as Infi(f) = P(f(X) 6= f(X(i))) where X is
uniform on Lnq and X(i) is obtained from X by re-randomizing
the i:th coordinate. Similarly we define the influence of the
i:th coordinate w.r.t. to a single alternative a ∈ [q] or a pair
of alternatives a, b ∈ [q] as

Infai (f) = P(f(X) = a, f(X(i)) 6= a)

and
Infa,bi (f) = P(f(X) = a, f(X(i)) = b)

respectively.
We also define the total influence of f as Inf(f) =∑n
i=1 Infi(f). The following relationship is obvious,

Proposition II.2. For any f : Lnq → [q],

Infi(f) =

q∑
a=1

Infai (f) =
∑

a,b∈[q]:a6=b

Infa,bi (f) (6)

The following standard proposition bounds the total influ-
ence with respect to a given candidate from below by the
variance with respect to that candidate.

Proposition II.3. For any f : Lnq → [q] and a ∈ [q],
n∑
i=1

Infai (f) ≥ Var[1{f(X)=a}] (7)

where X ∈ Lnq is uniformly selected.

Proof: Create a random walk X = X(0), . . . , X(n) = Y
from X by re-randomizing the i:th coordinate in the i:th step,
i.e. for i ∈ [n], X(i) ∈ Lnq is obtained by re-randomizing the
i:th coordinate of X(i−1). Letting g(x) = 1{f(x)=a} and using
that X,Y are independent and that if g(X) 6= g(Y ) then the
value of g has to change at some edge on the path we have

2Var[1{f(X)=a}] = 2Var g(X) = P(g(X) 6= g(Y )) ≤
≤ P(∪i∈[n]{g(X(i−1)) 6= g(X(i))})

≤
n∑
i=1

2 Infai (f)

Further, if a function is far from all constants all such
variances cannot be small:



Lemma II.4. For any f : Lnq → [q],

D(f,CONST) ≤ q

2

q∑
a=1

Var[1{f(X)=a}] (8)

Proof: For a ∈ [q], let µa = P(f(X) = a) and assume
w.l.o.g. that µ1 ≥ µ2 ≥ . . . ≥ µq . Then,

D(f,CONST) = (1− µ1) ≤ qµ1(1− µ1)

=
q

2

(
1− µ2

1 − (1− µ1)2
)
≤

≤ q

2

(
1−

q∑
a=1

µ2
a

)
=
q

2

q∑
a=1

µa − µ2
a

=
q

2

q∑
a=1

Var[1{f(X)=a}]

III. BOUNDARIES

Lemma III.1. Fix q ≥ 3 and f : Lnq → [q] satisfying
D(f,NONMANIP) ≥ ε. Then there exist distinct i, j ∈ [n]
and {a, b}, {c, d} ⊆ [q] such that c /∈ {a, b} and

Infa,bi (f) ≥ 2ε

nq2(q − 1)
and Infc,dj (f) ≥ 2ε

nq2(q − 1)
(9)

Proof: For a 6= b let

Aa,b =

{
i ∈ [n] | Infa,bi ≥

2ε

nq2(q − 1)

}
We first claim that for all {a, b} there exists {c, d} such

that {c, d} 6= {a, b} and Ac,d 6= ∅. Note that f being ε-far
from taking two values asserts that we can find a c /∈ {a, b}
such that 1 − ε

q ≥ P(f(X) = c) ≥ ε
q−2 ≥

ε
q . But then, by

Proposition II.3,∑
d6=c

n∑
i=1

Infc,di (f) =
n∑
i=1

Infci (f) ≥ Var[1{f(X)=c}] ≥

≥ ε(1− ε/q)
q

≥ ε(q − 1)

q2

hence there must exist some d 6= c and i ∈ [n] such that
Infc,di ≥ ε

nq2 ≥
2ε

nq2(q−1) , and thus Ac,d 6= ∅.
We next claim that

| ∪a,b Aa,b| ≥ 2 (10)

To see this, assume the contrary, i.e. ∪a,bAa,b ⊆ {i} for some
i ∈ [n]. Then for all j 6= i it holds that

Infj(f) =
∑
c,d

Infc,dj (f) <
q(q − 1)

2

2ε

nq2(q − 1)
=

ε

nq
(11)

For σ ∈ Lq , let fσ(x) = f(x1, . . . , xi−1, σ, xi+1, . . . , xn) and
note that for j 6= i,

Infj(f) =
1

q!

∑
σ∈Lq

Infj(fσ) (12)

while Infi(fσ) = 0. Hence, by (11), we have

ε > q
∑
j 6=i

Infj(f) =
q

q!

n∑
j=1

∑
σ

Infj(fσ)

≥ 2

q!

∑
σ

D(fσ,CONST) = 2D(f,DICTi)

where the second inequality follows from Lemma II.4 and
Proposition II.3. But this means that f is ε/2-close to a dicta-
tor, contradicting the assumption that D(f,NONMANIP) ≥
ε.

Hence (10) holds. Therefore we can either find i 6= j and
{a, b} 6= {c, d} such that i ∈ Aa,b and j ∈ Ac,d which proves
the theorem, or we must have |Aa,b| ≥ 2 for some {a, b} while
Ac,d = ∅ for any {c, d} 6= {a, b}. However, this contradicts
the first claim in the proof. The result follows.

As a simple corollary we have that assuming neutrality and
q ≥ 4 we may assume a, b, c, d are all distinct,

Corollary III.2. Fix q ≥ 4 and suppose f : Lnq → [q] is
neutral and satisfies D(f,DICT) ≥ ε. Then there exist distinct
i, j ∈ [n] and distinct a, b, c, d ∈ [q] such that

Infa,bi (f) ≥ ε

nq2(q − 1)
and Infc,dj (f) ≥ ε

nq2(q − 1)
(13)

Proof: Neutrality of f implies that f is 1 − 2/q ≥ 1/2
far from the set of functions taking at most 2 values. Since
ε ≤ 1 it follows that D(f,NONMANIP) ≥ ε/2 Moreover, by
neutrality, Infa,bi does not depend on {a, b} so we can choose
{a, b} and {c, d} non-intersecting.

IV. FIRST CONSTRUCTION OF MANIPULATION PATHS

Similar to the definition of influence, let us now define f ’s
boundary in the i:th direction w.r.t. the alternatives a, b ∈ [q]
as

Ba,bi (f) = {(x, y) | f(x) = a, f(y) = b,∀j 6= i : xj = yj}

The main idea of the proof is to define a canonical path
between every pair of points on Ba,bi and every pair of points
on Bc,dj in a way such that each canonical path passes through
a manipulation point while making sure that no manipulation
point can be passed by too many canonical paths. We call the
paths so constructed manipulation paths.

Let us start with defining the canonical paths in terms of one
voter. The main intuition behind the canonical paths is that in
order to remain on Ba,bi we require that we change rankings
without changing the relative order of a and b. Similarly, in
order to remain on Bc,dj we require that we change the ranking
without changing the relative order of c and d.

We now define the graph that we are working with:

Definition IV.1. The voting graph is the graph whose vertex
set is Lnq and whose edges are of the form x, y where xj = yj
for all j 6= i and xi 6= yi.

We begin our definition of a canonical path by considering
the case of one voter.



Definition IV.2. Fix q ≥ 4 and distinct a, b, c, d ∈ [q]. Then
the canonical path between x ∈ Lq and z ∈ Lq is x, y, z
where y is obtained from z by swapping a and b if necessary
in order to assure that a and b are in the same order as in x.
The first step from x to y is called a Type I move while the
second step from y to z is called a Type II move.

Note that Type I moves preserve the order of a and b while
Type II moves preserve the order of c and d. We can now
define the manipulation paths used in the first proof. These
paths go from points in Ba,bi to Bc,dj . To simplify notation we
assume that i = n−1 and j = n. The path is of length 2n and
is defined by first making all type I moves and then making
all type II moves.

Definition IV.3. Let f : Lnq → [q], (x, x′) ∈ Ba,bn−1 and
(z, z′) ∈ Bc,dn , for distinct a, b, c, d ∈ [q]. Then the canonical
path Γ between (x, x′) and (z, z′) is

(x, x′) = (x(0), x′(0)), . . . , (x(n−2), x′(n−2)),

, (z(n−2), z′(n−2)), . . . , (z(0), z′(0)) = (z, z′),

where only coordinate k is updated at the k:th first step and
the k:th last step, i.e. for all k and all s 6= k:

(x(k−1)
s , x′(k−1)

s ) = (x(k)
s , x′(k)

s ),

(z(k−1)
s , z′(k−1)

s ) = (z(k)
s , z′(k)

s ),

and
xk = x

(k−1)
k x

(k)
k = z

(k)
k z

(k−1)
k = zk

x′k = x
′(k−1)
k , x

′(k)
k = z

′(k)
k , z

′(k−1)
k = z′k

are the canonical paths in Definition IV.2.

V. MANIPULATION POINTS AND FIRST PROOF

Lemma V.1. For any f : Lnq → [q], distinct i, j ∈ [n] and
distinct a, b, c, d ∈ [q] there exists a mapping h : Ba,bi (f) ×
Bc,dj (f)→M where

M = {x ∈ Lnq | f is manipulable at x}

such that for any x ∈M

|h−1(x)| ≤ 2n(q!)n+4. (14)

Proof: Without loss of generality, let i = n − 1 and
j = n. Fix (x, x′) ∈ Ba,bi and (z, z′) ∈ Bc,dj . Any edge on
the canonical path between (x, x′) and (z, z′) connects two
pairs of points. The left-most pair takes the values (a, b) since
f(x) = a and f(x′) = b while the right-most pair takes the
values (c, d). We claim that somewhere on the path there will
be an edge (u, u′), (v, v′) such that either

I. at least one of u, u′, v, v′ is a manipulation point.
II. f takes on at least three values on the points u, u′, v, v′.

To see this note that at least one of three things must happen:
1) Somewhere along the first half of the path the values of

the pair changes from (a, b) to something else. If the first
value changes to b then f(x(k)) = a and f(x(k+1)) = b,
but since the order of a, b are preserved under Type I

moves either x(k) or x(k+1) must be a manipulation point.
A similar logic applies when the second value changes
to a. Otherwise, one of the values are not in {a, b} and
therefore f takes on at least three values on the two pairs
of this edge.

2) Somewhere along the second half of the path - starting
from the end - the values of the pair changes from (c, d)
to something else. If the first value changes to d or the
second value changes to c we have a manipulation point
since the order of c, d are preserved under Type II moves.
Otherwise, one of the values are not in {c, d}.

3) The middle edge (x(n−2), x′(n−2)), (z(n−2), z′(n−2))
connects a pair with values (a, b) and a pair with values
(c, d).

Let (u, u′), (v, v′) be the first edge where one of I. or II.
holds and note that u, u′, v, v′ agree in all but two coordinates,
either {n− 1, k}, {n, k} or {n, n− 1} depending on whether
the edge (u, u′), (v, v′) is on the first part of the path, the
second part or is the middle edge.

We now claim that we can find a manipulation point y such
that u, u′, v, v′ and y agree in all but two coordinates. We will
let h((x, x′), (z, z′)) be this y.

For case I. this is obvious and we can let y be the any of
u, u′, v, v which is a manipulation point.

For case II., by applying the Gibbard-Satterthwaite theorem
(Th. I.2) on the restriction of f to the two coordinates on which
u, u′, v, v′ differ we can identify a manipulation point y ∈ Lnq
which only differ from u, u′, v, v′ on these two coordinates
and also is a manipulation point of the original function f (if
there is more than one possible manipulation point we can just
pick say the lexicographically smallest one).

It remains to count the number of inverses of a manipulation
point y associated with the edge (u, u′), (v, v′) which can be
any of the 2n−3 edges of the canonical path. Given the edge
number and y, there are only (q!)2 possibilities for u. Given
u and the edge number there are only (q!)n possibilities for
x and z. To see this note that for each k ∈ [n] we must have
either

• uk = xk. In this case there are q! possibilities for zk.
• uk = zk. In this case there are q! possibilities for xk.
• xk, uk, zk is the canonical path from Definition IV.2

between xk and zk. Then there are q!
2 possibilities for

xk and 2 possibilities for zk.

Finally, given x and z there are at most (q!)2 possibilities for
x′ and z′. Overall we have:

|h−1(y)| ≤ (2n− 3)(q!)n+4 (15)

Proof of Theorem I.5: By Corollary III.2 we can find
distinct i, j ∈ [n] and distinct a, b, c, d ∈ [q] such that

min(|Ba,bi (f)|, |Bc,dj (f)|) ≥ ε

nq2(q − 1)
(q!)n+1 (16)



Applying Lemma V.1 we see that

|M | ≥
|Ba,bi (f)×Bc,dj (f)|

2n(q!)n+4

≥ ε2

2n3q4(q − 1)2(q!)2
(q!)n ≥ ε2

2n3q6(q!)2
(q!)n

Hence,

P(f is manipulable at X) ≥ ε2

2n3q6(q!)2
(17)

Note that our only use of the neutrality condition was to
derive (16). The proof of the theorem shows that in order for
manipulation to hold with high probability it suffices to relax
the neutrality condition and require only (16).

VI. CANONICAL PATHS AND GROUP ACTIONS

In order to derive the more refined result, we will need
to consider in more detail the properties of the permutation
group Lq with respect to adjacent transpositions. Again we
use canonical paths arguments. We state the arguments in a
more general setup. The proofs of the claims in this section
are omitted from the extended abstract.

Definition VI.1. Let L be a set.
• Let PL(`) denote the set of paths of length at most ` in
L and PL = ∪`∈NPL(l) the set of paths of finite length.

• Let L1, L2 ⊆ L. A canonical path map on L from L1

to L2 of length ` is a map Γ: L1 × L2 → PL(`) which
satisfies that Γ(x, y) begins at x and ends at y for all
(x, y) ∈ L1 × L2.

• Given a canonical path map Γ: L1 × L2 → PL(`) and
0 ≤ i ≤ ` we define the inverse image mapping of the
i’th vertex, Γ−1

i : L→ 2L1×L2 as

Γ−1
i (z) = {(x, y) | length(Γ(x, y)) ≥ i,Γ(x, y)i = z}.

Further, we let

Γ−1(z) = ∪`i=0Γ−1
i (z)

• Given a group H acting on L we say that a canonical
path map Γ: L1×L2 → PL(`) is H-invariant if HL1 =
L1 and HL2 = L2 and

Γ(hx, hy) = hΓ(x, y),

for all h ∈ H and all (x, y) ∈ L1 × L2.

We will use the following proposition. Recall that a group
H acting on L is called fixed-point-free if for all x ∈ L and
all h ∈ H different than the identity it holds that hx 6= x.

Proposition VI.2. Let H be a fixed-point-free group acting
on L and let Γ: L1 × L2 → PL(`) be a canonical path map
that is H-invariant. Then for all z ∈ L and 0 ≤ i ≤ l it holds
that

|Γ−1
i (z)| ≤ |L1||L2|

|H|
(18)

and
|Γ−1(z)| ≤ (`+ 1)|L1||L2|

|H|
(19)

Two applications of the result above will be given for
adjacent transpositions.

Definition VI.3. Given two elements a, b ∈ [q] the adjacent
transposition [a : b] between them is defined as follows. If
x ∈ Lq has a and b adjacent, then [a : b]x is obtained from
x be exchanging a and b. Otherwise, [a : b]x = x.

We let T denote the set of all q(q− 1)/2 adjacent transpo-
sitions. Given z ∈ T , we define

Infa,b;zi (f) = P(f(X) = a, f(X(i)) = b) (20)

Infa;z
i (f) = P(f(X) = a, f(X(i)) 6= a) (21)

Infa,b;Ti (f) =
∑
z∈T

Infa,b;zi (f) (22)

where X(i) is obtained from X by re-randomizing the i:th
coordinate Xi in the following way: with probability 1/2 we
keep it as Xi and otherwise we replace it by zXi.

Finally for x ∈ Lnq we will let [a : b]i x denote the element
obtained by applying [a : b] on the i:th coordinate of x while
leaving all other coordinates unchanged.

Proposition VI.4. There exists a canonical path map Γ: Lq×
Lq → PLq

(`) of length at most ` = q(q− 1)/2 < q2/2, all of
whose edges are adjacent transpositions such that for all z it
holds that:

|Γ−1(z)| ≤ q2q!

2
(23)

Corollary VI.5. For any f : Lnq → [q], a ∈ [q] and i ∈ [n] it
holds that ∑

z∈T
Infa;z

i (f) ≥ 1

q2
Infai (f), (24)

where T is the set of all adjacent transpositions.

A second application of Proposition VI.4 is the following.

Proposition VI.6. Fix two elements a, b ∈ [q] and let B ⊆ Lq
denote the set of all permutations where a is ranked above b.
Then there exists a canonical path map Γ : B×B → PB(q2)
consisting of adjacent transpositions such that all permuta-
tions along the path satisfy that a is ranked above b. Moreover
for all z it holds that:

|Γ−1(z)| ≤ q4q!

VII. REFINED BOUNDARIES

Similarly to the previous construction we now define the
i:th a-b boundary Ba,b;zi (f) with respect to an adjacent swap
z ∈ T as

{(x, y) | f(x) = a, f(y) = b, xi = zyi,∀j 6= i : xj = yj},

and the boundary with respect to arbitrary adjacent swaps on
the i:th coordinate as

Ba,b;Ti (f) =
⋃
z∈T

Ba,b;zi (f)



Note that for a 6= b,

Infa,b;zi (f) =
1

2
P(f(X) = a, f(zX) = b) (25)

=
1

2

|Ba,b;zi (f)|
(q!)n

(26)

We remark that the proofs of the claims in this section are
omitted from the extended abstract.

A. Manipulation points on refined boundaries

The following two lemmas identify manipulation points on
these boundaries.

Lemma VII.1. Fix f : Lnq → [q], distinct a, b ∈ [q] and
(x, y) ∈ Ba,b;Ti . Then either xi = [a : b]yi or one of x and y
is a 2-manipulation point for f .

Lemma VII.2. Fix f : Lnq → [q] and points x, y, z ∈ Lnq such
that (x, y) ∈ Ba,b;Ti (z, y) ∈ Bc,b;Tj where a, b, c are distinct
and i 6= j. Then there exists a 3 - manipulation point w ∈ Łnq
for f such that wk = yk for k /∈ {i, j} and wi is equal to xi
or yi except that the position of c may be shifted arbitrarily
and wj is equal to zj or yj except that the position of a may
be shifted arbitrarily.

B. Large Refined Boundaries

Now we possess the right tools to prove the analogue of
Lemma III.1 for refined boundaries.

Lemma VII.3. Fix q ≥ 3 and f : Lnq → [q] satisfying
D(f,NONMANIP) ≥ ε. Let X be uniformly selected from
Lnq . Then either,

P(f is 2-manipulable at X) ≥ 4ε

nq7
(27)

or there exist distinct i, j ∈ [n] and {a, b}, {c, d} ⊆ [q] such
that c /∈ {a, b} and

Inf
a,b;[a:b]
i (f) ≥ 2ε

nq7
and Inf

c,d;[c:d]
j (f) ≥ 2ε

nq7
, (28)

As a corollary we have that assuming neutrality and q ≥ 4
we may assume a, b, c, d are all distinct,

Corollary VII.4. Fix q ≥ 4 and suppose f : Lnq → [q] is
neutral and satisfies D(f,DICT) ≥ ε. Let X be uniformly
selected from Lnq . Then either,

P(f is 2-manipulable at X) ≥ 2ε

nq7
(29)

or there exist distinct i, j ∈ [n] and distinct a, b, c, d ∈ [q] such
that

Inf
a,b;[a:b]
i (f) ≥ ε

nq7
and Inf

c,d;[c:d]
j (f) ≥ ε

nq7
, (30)

VIII. REFINED CONSTRUCTION OF MANIPULATION PATHS

We now present the second construction of manipulation
paths. In this construction edges along the path will consist of
adjacent transpositions instead of general permutations as in
the previous construction. Again we construct manipulation
paths between every edge on B

a,b;[a:b]
i and every edge on

B
c,d;[c:d]
j in a way such that each canonical path passes through

(or “close” to) a manipulation point while making sure that
no manipulation point can be passed by too many canonical
paths. We call the paths so constructed refined manipulation
paths. The main goal in the current construction compared to
the previous one is to have better dependency on q, i.e. the
number of inverse images of each manipulation point should
be poly(n)poly(q)q! instead of 2n(q!)4q! as in the previous
construction. The proofs of the claims in this section are
omitted from the extended abstract.

Let us first give two canonical paths on single coordinates
that will be used as building blocks when constructing the
refined canonical paths:

Proposition VIII.1. Fix four elements a, b, c, d ∈ [q]. Then
there exists a canonical path map Γ: Lq×Lq → PLq

(q2 +2q)
with the following properties:
• Γ is a concatenation of two paths I and Π.
• The edges in I are arbitrary adjacent transpositions

except [a : b], thus keeping the order of a and b fixed.
• The edges in Π are arbitrary adjacent transpositions

except [c : d], thus keeping the order of c and d fixed.
• For every y ∈ Lq there are exactly q! pairs (x, z) ∈
Lq × Lq for which the last vertex of I (first vertex of Π)
in the path Γ(x, z) is equal to y.

• For all y ∈ Lq and i ≥ 0 we have |Γ−1
i (y)| ≤ q4q!

Proposition VIII.2. Fix four elements a, b, c, d ∈ [q]. Let

X = {x ∈ Lq | a, b are adjacent in x},

Then there exists a canonical path map Γ: X × Lq →
PLq

(q2 + 2q) with the following properties:
• Γ is a concatenation of three paths I, ∆ and Π.
• All edges in I are adjacent transpositions not involving a

and b, thus keeping the rank of a and b fixed.
• The edges in Π are arbitrary adjacent transpositions

except [c : d], thus keeping the order of c and d fixed.
• ∆ consists of a single edge which is a reordering of a

block of exactly the 4 elements a, b, c, d.
• For every y ∈ Lq there are at most 2q3q! pairs (x, z) ∈
Lq×Lq for which the last vertex of I in the path Γ(x, z)
is equal to y. The same holds for the first vertex of Π.

• For all y ∈ Lq and i ≥ 0 we have |Γ−1
i (y)| ≤ 2q3q!

We are now ready to define the canonical path from
B
a,b;[a:b]
i (f) to B

c,d;[c:d]
j (f). This path is over (Lnq )2. If we

only consider the first element of each such pair, then the
path can informally be described as being constructed by
concatenating three paths I, ∆ and Π where I is constructed
by updating one coordinate at a time, using the path I of



Proposition VIII.1 for each coordinate k /∈ {i, j}, using
the path I from Proposition VIII.2 for coordinate i and
finally for coordinate j using the reverse of the path Π of
Proposition VIII.2 where the role of elements a, b have been
interchanged with that of c, d. The path ∆ do the middle step
from Proposition VIII.1 for both i and j. The path Π then
updates each coordinate again using the remaining part of each
path above.

Proposition VIII.3. Fix four distinct elements a, b, c, d ∈ [q]
and distinct i, j ∈ [n]. Let

X = {(x, x′) ∈ (Lnq )2 | x′ = [a : b]i x , x
′ 6= x}

and

Z = {(z, z′) ∈ (Lnq )2 | z′ = [c : d]j z , z
′ 6= z}

Then there exists a canonical path map Γ: X × Z →
P(Ln

q )2(2n(q2 + 2)) with the following properties:

• Γ is a concatenation of three paths I, ∆ and Π.
• I stays in X and for all edges ((v, v′), (w,w′)) in I both

(v, w) and (v′, w′) consist of single adjacent transposi-
tions that preserve the order of a and b in each coordinate
and keep the rank of a and b fixed in coordinate i.

• Π stays in Z and for all edges ((v, v′), (w,w′)) in
Π both (v, w) and (v′, w′) consist of single adjacent
transpositions that preserve the order of c and d in
each coordinate and keep the rank of c and d fixed in
coordinate j.

• ∆ consists of a single edge ((v, v′), (w,w′)) such that
v, v′, w, w′ are all equal up to a reordering of a block of
elements a, b, c, d in coordinates i and j.

• For any (v, v′) ∈ (Lnq )2 we have |Γ−1
((v, v′))| ≤

7nq12(q!)n

A. Proof of Theorem I.7

Our main claim is the following

Lemma VIII.4. For any f : Lnq → [q], distinct i, j ∈ [n] and
distinct a, b, c, d ∈ [q] there exists a mapping h : B

a,b;[a:b]
i (f)×

B
c,d;[c:d]
j (f)→M where

M = {x ∈ Lnq | f is 4-manipulable at x}

such that for any x ∈M

|h−1(x)| ≤ 104nq16(q!)n (31)

Proof: Fix (x, x′) ∈ B
a,b;[a:b]
i (f) and (z, z′) ∈

B
c,d;[c:d]
i (f). Then there exist a refined canonical path Γ =

Γ((x, x′), (z, z′)) (being a concatenation of three paths I, ∆
and Π) satisfying the properties of Proposition VIII.3. We now
claim the following:

Claim: Somewhere on this path there will be a vertex (v, v′)
such that v is close to a 4-manipulation point y, in the sense
that it differs from y in at most 2 coordinates, and in each
of those two coordinates it only differs by a reordering of
the elements a, b, c and d and an arbitrary shifting of a single
element in [q].

We will take h((x, x′), (z, z′)) to be an arbitrary 4-
manipulation point y satisfying the closeness requirement in
the claim for some vertex on the path.

Now note that along this path at least one of the following
three things must happen:

1) Somewhere along the first part I of the path there is an
edge ((v, v′), (w,w′)) such that (f(v), f(v′)) = (a, b)
but (f(w), f(w′)) 6= (a, b).

2) Somewhere along the second part Π of the path there is
an edge ((v, v′), (w,w′)) such that (f(v), f(v′)) 6= (c, d)
but (f(w), f(w′)) = (c, d).

3) Let ((v, v′), (w,w′)) be the single edge in ∆. Then
(f(v), f(v′)) = (a, b) and (f(w), f(w′)) = (c, d).

We argue that the claim follows in each of these cases:
1) If e := f(w) 6= a, Lemma VII.1 implies that w = [a :

e]kv for some k ∈ [n] (else v or w is a 2-manipulation
point, yielding the claim). Since the order of a and b
is preserved in all coordinates in I we must have e 6=
b. Further k 6= i, since the rank of a is preserved in
coordinate i in this part of the path. Thus (v, v′) ∈ Ba,b;Ti

and (v, w) ∈ Ba,e;Tk and Lemma VII.2 implies that there
is a 3-manipulation point y which only differ from v, v′, w
and w′ in coordinates i and k. Furthermore, yk is equal
to vk or wk except that the position of b may have been
shifted arbitrarily, and yi is equal to vi = wi or v′i =
w′i except that the position of e may have been shifted
arbitrarily. Thus it is either close to v or w, in the sense
of the claim.
The other possibility is that e := f(w′) 6= b, for which the
claim follows by an analogous argument (remembering
that v and v′ only differ by an adjacent swap of a, b).

2) The claim again follows analogously to the previous case.
3) In this case Proposition VIII.3 guarantees that v, v′, w, w′

only differ by a reordering of adjacent blocks of elements
a, b, c, d in coordinates i and j. Thus we may define a
new social choice function f ′ : L2

{a,b,c,d} → {a, b, c, d}
by letting f ′(u) = f(g(u)) where g(u) ∈ Lnq is obtained
from v by simply reordering the two blocks of elements
a, b, c, d in coordinates i and j so that they match u1 and
u2 respectively. Note that this reordering can be done
using adjacent transpositions involving a, b, c and d only.
Hence by Lemma VII.1, ∀u : f(g(u)) ∈ {a, b, c, d}, or
else one of the intermediate points under this reordering
using adjacent transpositions must be a 2-manipulation
point, yielding the claim.
So we may assume that f ′ is well-defined, i.e. takes
values in {a, b, c, d}. However since f ′ takes on all
four values and is not a dictator, Gibbard-Satterthwaite
(Theorem I.2) implies that f ′ must have a manipulation
point u but then g(u) must be a 4-manipulation point of
f , proving the claim.

Now fix y ∈ M . In order to count |h−1(y)| note that there
can be at most (4!q2)2 values of v satisfying the closeness
requirement to y given in the claim. Given v there are only 2
possibilities for the vertex (v, v′) (depending on whether the



vertex is in I or in Π). Further, by Proposition VIII.3 their can
be at most 7nq12(q!)n canonical paths containing any specific
vertex. Thus,

|h−1(y)| ≤ 2(4!q2)27nq12(q!)n ≤ 104nq16(q!)n (32)

Proof of Theorem I.7: By Corollary VII.4, either we are
done or we can find distinct i, j ∈ [n] and distinct a, b, c, d ∈
[q] such that, by (25),

|Ba,b;[a:b]
i (f)| ≥ 2ε

nq7
(q!)n and |Bc,d;[c:d]

j (f)| ≥ 2ε

nq7
(q!)n

(33)
Let M = {x ∈ Lnq | f is 4-manipulable at x}. Applying
Lemma VIII.4 we see that

|M | ≥
|Ba,b;[a:b]
i (f)×Bc,d;[c:d]

j (f)|
104nq16(q!)n

≥ 4ε2

104n3q30
(q!)n (34)

Hence,

P(f is 4-manipulable at X) ≥ ε2

104n3q30
(35)

IX. OPEN PROBLEMS

We list a few natural open problems that arise from our
work.
• In Corollary I.8 we prove that a random pair x, y is a

manipulation point with non-negligible probability, if y
is obtained from x by a random change in 4 adjacent
alternatives, applied to a random coordinate. For the case
where y is obtained from x by simply re-randomizing one
of the coordinates, which is the one considered in [1],
we only have a lower bound where q! appears in the
denominator (see Corollary I.6). It would be interesting
to prove a polynomial lower bound in the latter case.

• As is often the case with arguments involving canonical
paths, we suspect that the parameters we obtained are
not tight. It would be interesting to find the correct
tight bounds. In particular, we are not even sure that the
lower bound on the number of manipulation points must
decrease with q—the correct bound may even increase as
a function of q for neutral functions.

• Our results, as well as those of [1], apply only to
neutral functions. Can one prove a quantitative Gibbard-
Satterthwaite theorem for non-neutral functions?

• It would also be interesting to consider the Gibbard-
Satterthwaite theorem quantitatively for non-uniform dis-
tributions over preferences.
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