
Subexponential Algorithms for Unique Games and Related Problems

Sanjeev Arora
Computer Science Dept and CCI

Princeton University
Princeton, NJ USA

email: arora@princeton.edu

Boaz Barak∗
Microsoft Research and

Princeton University
email: boaz@microsoft.com

David Steurer∗
Microsoft Research

Cambridge, MA USA
email: dsteurer@cs.princeton.edu

Abstract—We give a subexponential time approximation
algorithm for the Unique Games problem. The algorithms run
in time that is exponential in an arbitrarily small polynomial
of the input size, nε. The approximation guarantee depends
on ε, but not on the alphabet size or the number of variables.
We also obtain a subexponential algorithms with improved
approximations for Small-SetExpansion and Multicut. For Max
Cut, Sparsest Cut, and Vertex Cover, we give subexponential
algorithms with improved approximations on some interesting
subclasses of instances.

Khot’s Unique Games Conjecture (UGC) states that it is
NP-hard to achieve approximation guarantees such as ours for
the Unique Games. While our results stop short of refuting the
UGC, they do suggest that Unique Games is significantly easier
than NP-hard problems such as Max 3Sat, Max 3Lin, Label
Cover and more, that are believed not to have a subexponential
algorithm achieving a non-trivial approximation ratio.

The main component in our algorithms is a new result on
graph decomposition that may have other applications. Namely
we show that for every ε > 0 and every regular n-vertex
graph G, by changing at most ε fraction of G’s edges, one can
break G into disjoint parts so that the stochastic adjacency
matrix of the induced graph on each part has at most nε
eigenvalues larger than 1− η, where η depends polynomially
on ε.

Keywords-Approximation Algorithms, Unique Games, Subex-
ponential Algorithms, Spectral Methods, Eigenvalues, Graph
Decompositions, Constraint Satisfaction Problems.

I. Introduction

Among the important open questions of computational
complexity, Khot’s Unique Games Conjecture (UGC) [20] is
one of the very few that looks like it could “go either way.”
The conjecture states that for a certain constraint satisfaction
problem, called Unique Games, it is NP-hard to distinguish
between instances that are almost satisfiable — at least 1 − ε
of the constraints can be satisfied — and almost completely
unsatisfiable — at most ε of the constraints can be satisfied.
(See Section V for a formal definition.)

A sequence of works have shown that this conjecture has
several important implications (see Khot [21] for a compre-
hensive survey and bibliography) in particular showing that
for many important computational problems, the currently

∗ Research done while at the Department of Computer Science and Center
for Computational Intractability, Princeton University.

approximation algorithms have optimal approximation guar-
antees. Perhaps most strikingly, Raghavendra [32] showed
that the UGC, if true, implies that every constraint satisfaction
problem (CSP) has an associated sharp approximation thresh-
old τ: for every ε > 0 one can achieve a τ− ε approximation
in polynomial (and in fact even quasilinear [36]) time, but
obtaining a τ + ε approximation is NP-hard. But of course,
these profound implications by themselves need not be
any evidence for truth of the Unique Games Conjecture.
The deeper reason for belief in UGC is that in trying to
design algorithms for it using current techniques, such as
semidefinite programs (SDPs), one seems to run into the
same bottlenecks as for all the other problems alluded to
above, and indeed there are results showing limitations of
SDPs in solving Unique Games [23], [33], [22]. Moreover,
recently it was shown that solving UniqueGames is at least as
hard as some other hard-looking problem — the Small-Set
Expansion problem [34]. Another reason one might believe
the UniqueGames problem is hard is that it shares a superficial
similarity with Label Cover, a problem known to be NP-hard
to approximate. Our work shows that the two problems have
in fact quite different complexity.

We give a subexponential algorithm for Unique Games as
well as Small-Set Expansion, as explained in the next two
theorems. (Sometimes “subexponential” is meant to refer to
exp(no(1)) time, which we do not obtain when ε is a fixed
constant. If we did, that would disprove the UGC under the
ETH assumption explained below.)

Theorem I.1 (See Theorem V.1). There is some absolute
constant α > 0 and an exp(knε

α

)-time algorithm that given
a (1− ε)-satisfiable unique game of alphabet size1 k, outputs
an assignment satisfying 1 − εα fraction of the constraints.

Theorem I.2 (See Theorem II.1). There is some absolute
constant α > 0 and an exp(nε

α

/δ)-time algorithm that given
ε, δ > 0 and a graph that has a set of measure at most δ and
edge expansion at most ε, finds a set of measure at most δ
and edge expansion at most εα.

1The alphabet size of a unique game is the number of symbols that each
variable can be assigned. In the context of the UGC one can think of ε
as some arbitrarily small constant, and k as some arbitrarily large constant
depending on ε.

(Our results for small set expansion are slightly better
quantitatively; see Theorem II.1 for more details.) In fact,
our algorithm for Unique Games is obtained by extending
the algorithm for Small-Set Expansion, thus giving more
evidence for the connection between these two problems.

What do these results imply for the status of the UGC? In a
nutshell, they still don’t rule out the UGC, but imply that (1)
unique-game hardness results cannot be used to establish full
exponential hardness of a computational problem regardless
of the truth of the UGC, and (2) even if the UGC is true
then (assuming 3-Sat has fully exponential complexity) the
corresponding reduction from 3-Sat to Unique Games would
have to run in n1/ε0.01

time, where ε is the completeness
parameter of the Unique Games instance; in particular the
UGC cannot be proved via a gadget reduction from Label
Cover of the type pioneered by Håstad [18].

Thus Unique Games is qualitatively different from many
NP-complete problems, which seem to require fully ex-
ponential time, as pointed out by Stearns and Hunt [35]
and Impagliazzo, Paturi and Zane [19]. The latter paper
formulated the Exponential Time Hypothesis (ETH) — there
is no exp(o(n)) algorithm for solving n-variable 3-Sat — and
showed that it implies that many computational problems
such as Clique, k-Colorability, and Vertex Cover require
2Ω(n) time as well. (Here, n refers not to the input size but
the size of the solution when represented as a string.)

In fact, there are very few problems whose complexity
is known to be subexponential but believed not to be
polynomial — two famous examples are Factoring and Graph
Isomorphism problems, which can be solved in time roughly
exp(n1/3) [27] and exp(

√
n log n) [29] respectively.2 Because

of this paucity of counterexamples, researchers’ intuition
has been that “natural” problems exhibit a dichotomy —
they are either in P or require fully exponential time (i.e.,
have essentially no nontrivial algorithms). For example the
algebraic dichotomy conjecture of Bulatov, Jeavons and
Krokhin [6] (see also [26]) says that under the ETH every
constraint satisfaction problem is either in P or requires 2Ω(n)

time. Fixed parameter intractability also tries to formalize
the same phenomenon in another way.

Accumulating evidence in recent years suggested that a
similar dichotomy might hold for approximation. To give an
example, it is now known (due to efficient-PCP constructions,
the last one by Moshkovitz and Raz [30]) that ETH implies
that achieving 7/8 + ε-approximation to Max 3-Sat requires
2n1−o(1)

time for every fixed ε > 0, and similar statements
are true for Max-3Lin, and Label Cover. Thus it would
be natural to interpret the spate of recent UGC-hardness

2Of course there also exist NP-hard problems with subexponential
algorithms (e.g. finding an nε-clique / n1−ε approximation for clique). There
are also examples without brute force search such as subset sum on n
integers of

√
n bits, and log1.99 n approximation to the group Steiner tree

problem (these were pointed out to us by Russell Impagliazzo and Anupam
Gupta respectively; see [10] as reference for the group Steiner tree problem).

results, especially Raghavendra’s result for all CSPs, as
suggesting that the same is true for many natural classes
of NP-hard optimization problems such as CSPs: there are
no approximation algorithms for these problems that run
in subexponential time but achieve a better approximation
ratio than current polynomial time algorithms. Our results
show that this interpretation would be incorrect and in
fact is inconsistent with the UGC since Unique Games
itself — an important example of a constraint satisfaction
problem in Raghavendra’s class — has a subexponential time
approximation algorithm that beats the polynomial time
algorithms if the UGC is true. Similarly our result also
refutes the NP-hardness of variants of the UGC, such as
those considered by Chawla et al. [8], where the completeness
parameter ε is a function tending to 0 with the input length.
(Curiously, our subexponential algorithm really depends on
completeness parameter being close to 1; the result of Feige
and Reichman [13] mentioned above rules out under the
ETH a subexponential approximation algorithm for games
with completeness bounded away from 1.)

While (with the exception of the Multi Cut problem) our
ideas do not yet apply to problems “downstream of Unique
Games” (e.g., Max Cut), we do indicate in the full version
of this paper how to get better algorithms on subfamilies of
interesting instances for some of these problems.

A. Comparison with prior algorithms for Unique Games

Several works have given algorithms for approximating
Unique Games. Most of these can be broadly divided into two
categories: (1) polynomial-time algorithms giving relaxed
notions of approximation (i.e., deteriorating as the alphabet
size grows) for all instances [20], [38], [16], [7], [11] and (2)
polynomial-time algorithms for certain families of instances
such games whose constraint graphs are random graphs,
graphs with expansion properties, and random geometric
graphs [4], [25], [5], [3], [24]. An outlier to these categories
is the recent work of Arora, Impagliazzo, Matthews, and
Steurer [3] that gave an exp(2−Ω(1/ε)n) algorithm for unique
games that are 1 − ε satisfiable.

Compared to papers from the first category, our algorithms
run in subexponential as opposed to polynomial time, but
give an approximation guarantee that is independent of the
alphabet size. At the moment the constant α in Theorem I.1 is
about 1/6, and although it could perhaps be optimized further,
there are some obstacles in making it smaller than 1/2, which
means that for very small alphabet size our approximation
guarantee will be worse than that of [7], that gave an
algorithm that on input a k-alphabet (1−ε)-satisfiable unique
game, outputs a solution satisfying 1 − O(

√
ε log k) fraction

of the constraints.

B. Overview: Threshold rank and decompositions

Our basic approach for the Unique Games algorithm is
divide and conquer (similarly to [38] and [3]): Partition the

constraint graph of the Unique Games instance into disjoint
blocks, throw out all constraints corresponding to edges that
go between blocks, and solve independently within each
block. However, the underlying “divide” step involves a new
notion of graph decomposition, which we now explain.

Consider the adjacency matrix of an undirected regular
graph G, whose every row/column is scaled to 1. (In other
words, a symmetric stochastic matrix.) Our algorithm will
use the fact that graphs with only a few eigenvalues close
to 1 are “simple” because exhaustive enumeration in the
subspace spanned by the corresponding eigenvalues will
quickly give a good-enough solution, as explained below.
Thus “complex” graphs are those with many eigenvalues
close to 1. The core of our result is a new way of
partitioning every graph into parts that are “simple.” This
decomposition result seems different from existing notions
of partitions such as Szemerédi’s regularity lemma [37],
low-width cut decomposition of matrices [14], low-diameter
decompositions [28] and padded decompositions [17]. The
first two of the above notions really only apply to dense or
pseudo-dense graphs, not all graphs. The latter two apply
to all graphs but involve a “penalty term” of O(log n) that
is too expensive in our setting (see discussion following
Theorem I.4).

For τ ∈ [0, 1) let the τ-threshold rank of G, denoted
rankτ(G), be the number (with multiplicities) of eigenvalues
λ of G satisfying |λ| > τ. Thus rank0(G) coincides with
the usual rank of the matrix G, i.e., number of non-zero
eigenvalues. We will usually be interested in τ close to 1, say
0.9. The higher the parameter rankτ(G), the “more complex”
G is for us. Unlike many existing notions of “rank” or
“complexity”, rankτ(G) is small –actually, 1 — for a random
graph, and more generally is 1 for any good expander. This
should not be viewed as a bug in the definition: after all,
expander graphs and random graphs are easy instances for
problems such as UniqueGames [4] and Small-Set Expansion.
In fact, very recently Kolla [24], extended [25]’s proof of
this result to give an algorithm for unique games that runs in
time exponential in the threshold rank of the corresponding
constraint graph (assuming a certain bound on the `∞ norm of
the eigenvectors).3 Our algorithm uses a very simple version
of the key step in [24], [25], see Section II-A.

Relating threshold rank and small-set expansion: The
basic result underlying our graph decomposition algorithm is
the following inequality that relates the threshold rank and

3 Specifically, Kolla and Tulsiani [25] gave an algorithm that finds a
satisfying assignment in time exponential in the threshold rank of the label
extended graph of the unique game (see Section V, [25, § 6], [24, Thm
5]) and used it to obtain a polynomial time algorithm for unique games on
expanders. [24] showed that in certain cases bounds on the threshold rank of
the constraint graph translate into bounds on the threshold rank of the label
extended graph, hence allowing to use the [25] algorithm in these cases as
well. In this work we observe a more general, though quantitatively worse,
relation between the threshold ranks of the label-extended and constraint
graphs, see Corollary V.3.

small set expansion:

Theorem I.3 (Rank/expansion tradeoff, see Theorem II.3).
If G is an n vertex regular graph in which every set S of at
most s vertices has edge expansion at least 0.1 (i.e., at least
0.1 fraction of S ’s edges go to [n] \ S), then

rank1−ε(G) · s 6 n1+O(ε) .

Furthermore, there is a polynomial-time algorithm that given
any graph G will recover a set of size n1+O(ε)/rank1−ε(G)
with edge expansion at most 0.1.

This result can be seen as a generalization of Cheeger’s
inequality [9], [1]. The usual Cheeger’s inequality would
yield a non-expanding set in the graph if there is even a
single eigenvalue close to 1, but this set might be as large
as half the vertices, while we obtain a set that (up to nO(ε)

slackness) of measure inversely proportional to the number
of large eigenvalues. Theorem I.3 directly implies a simple
“win-win” algorithm for the small set expansion problem.
Either the (1 − ε)-threshold rank is larger than ncε for some
large constant c, in which case we can find a very small (say
of size less than n1−ε) non-expanding set in polynomial time.
Or, in the spirit of [25], [24], we can do in exp(nO(ε)-time
a brute force enumeration over the span of the eigenvectors
with eigenvalues larger than 1 − ε, and we are guaranteed to
find if some non-expanding set S exists in the graph then
we will recover S (up to a small error) via this enumeration,
see Theorem II.2.

Threshold-rank decomposition: By applying Theo-
rem I.3 repeatedly and recursively, we obtain our decompo-
sition result:

Theorem I.4 (Threshold-rank decomposition theorem, see
Theorem IV.1). There is a constant c and a polynomial-time
algorithm that given an n vertex regular graph G and ε > 0,
partitions the vertices of G to sets A1, . . . , Aq such that the
induced4 graph Gi on Ai satisfies rank1−εc (Gi) 6 nε and
at most a ε fraction of G’s edges have their endpoints in
different sets of this partition.

Key to this decomposition is the advantage Theorem I.3
has over Cheeger’s inequality. Since every application of
Cheeger’s Inequality might leave us with half the vertices,
one generally needs Ω(log n) recursion depth to get a
partition where each block has, say, size

√
n. This could

end up removing all the edges unless ε = O(1/ log n). In
contrast, using Theorem I.3 (or rather its more precise variant
Theorem II.3) we can get to such a partition with using a
constant (depending on ε) depth of recursion.

Our UniqueGames algorithm is obtained from Theorem I.4
as follows. Given a Unique Games instance, we apply
Theorem I.4 to partition it (after removing a small fraction

4The notion of “induced graph” we use involves “regularizing” the graph
via self-loops, see Section IV for the precise definition.

of the constraints) into disjoint parts each having small rank.
We then look at the label extended graph corresponding to
every part. (This is the graph that contains a “cloud” of k
vertices for every variable of a k-alphabet unique game, and
there is a matching between pairs of clouds according to
the corresponding permutation, see Section V.) We use the
previously known observation that a satisfying assignment
corresponds to a non-expanding set in the label extended
graph, and combine it with a new observation (Lemma V.2)
relating the threshold rank of the label extended graph and
the corresponding constraint graph. The result then follows
by enumerating the span of the top eigenvectors (suitably
discretized) to recover (up to some small noise) the satisfying
assignment in every part.

Proof of the rank/expansion relation: Now we give some
intuition behind Theorem I.3, which underlies all this. Let
λ1, λ2, . . . , λn denote the graph’s eigenvalues. Let us pick
τ = 1 − η for a small enough η and suppose m = rankτ(G).
Then (the 2k-th power of) the Schatten 2k-norm Tr(G2k) =∑

i6n|λi|2k is at least m(1 − η)2k. On the other hand, Tr(G2k)
is also equal to

∑
i6n‖Gkei‖22, where ei is the unit vector

whose only nonzero coordinate is the i-th. But ‖Gkei‖22 simply
expresses the collision probability of a k-step random walk
that starts from i. Then we can use a “local” version of
Cheeger’s inequality (in this form due to Dimitriou and
Impagliazzo [12]), which shows that if all small sets expand
a lot, then the collision probability of the k-step random walk
decays very fast with k. We conclude that if all small sets
expand a lot, then the expression in ‖Gkei‖22 must be small,
which yields an upper bound on m(1 − η)2k, and hence on
the threshold rank m.

A related bound (in the other direction) connecting Schat-
ten norms to small-set expansion was shown by Naor [31],
who used the Schatten norm to certify small-set expansion
of Abelian Cayley graphs (or more generally, graphs with
`∞ bounded eigenvectors).

C. Organization of the paper

The main ideas of this work appear in the simplest form
in the subexpontial algorithm for Small-Set Expansion that
is described in Section II. The main component used is
Theorem II.3, showing that small set expanders must have
low threshold rank. This theorem is proven in Section III.

Section IV contains our decomposition theorem, which
is used in our algorithm for Unique Games appearing in
Section V. Complete proofs of lemmas can be found in a
full version of this paper found on ECCC. The full version
also contains some partial results for other computational
problems such as Multi Cut, and for interesting subcases of
Max Cut and Vertex Cover. We show that hypercontractive
graphs, that appear in many of the known integrality
gap examples, have much smaller threshold rank than the
bound guaranteed by Theorem II.3, and use this to show a

quasipolynomial time algorithm for efficiently certifying that
a hypercontractive graph is a small-set expander.

D. Notation

Throughout this paper we restrict our attention to regular
undirected graphs only, though we allow self loops and
weighted edges (as long as the sum of weights on edges
touching every vertex is the same). In our context this
is without loss of generality, because the computational
problems we are interested reduce easily to the regular
case (as explained in the complete version).5 We consider
graphs with vertex set V = [n] = {1, . . . , n}, and use G
to denote both the graph and its stochastic walk matrix.
We use (i, j) ∼ G to denote the distribution obtained by
choosing a random edge of G (i.e., obtaining (i, j) with
probability Gi, j/n). We define the measure of a subset
S ⊆ [n], denoted µ(S), to be |S |/n. For S ,T ⊆ [n] we
denote G(S ,T) := 1

n
∑

i∈S , j∈T Gi, j = �(i, j)∼G[i ∈ S , j ∈ T]. The
expansion of a subset S of the vertices of a graph G, denoted
ΦG(S), is defined as G(S , S)/µ(S) = �(i, j)∈G[j ∈ S |i ∈ S],
where S = [n] \ S . We will often drop the subscript G and
use only Φ(S) when the graph is clear from the context.

For x, y ∈ �n we let 〈x, y〉 = �i∈[n][xiyi]. We define the
corresponding 2-norm and 1-norm as ‖x‖ =

√〈x, x〉 and
‖x‖1 = �i∈[n][|xi|]. Note that Φ(S) = 1 − 〈χS ,GχS 〉 where χS

is the normalized characteristic vector of S , that is χS (i) =√
n/|S | if i ∈ S and χS (i) = 0 otherwise. Indeed, 〈χS ,GχS 〉 =

G(S , S)/µ(S).
We say that f (n) = exp(g(n)) if there is some constant c

such that f (n) 6 2c·g(n) for every sufficiently large n.
Throughout this paper, the implicit constants used in O(·)
notation are absolute constants, independent of any other
parameters.

II. An algorithm for Small-Set Expansion

In this section we give a subexponential algorithm for
Small-Set Expansion. Specifically we prove the following
theorem.

Theorem II.1 (Subexponential algorithm for Small-Set
Expansion). For every β ∈ (0, 1), ε > 0, and δ > 0, there
is an exp

(
nO(ε1−β)) poly(n)-time algorithm that on input a

regular graph G with n vertices that has a set S of at most
δn vertices satisfying Φ(S) 6 ε, finds a set S ′ of at most δn
vertices satisfying Φ(S) 6 O(εβ/3).

Note that by setting β = O(1/ log(1/ε)) we can get an
exp(nO(ε))-time algorithm that given a graph with a small set
of expansion at most ε, finds a small set of expansion at
most, say, 0.01.

5For simplicity, we define the Small-Set Expansion problem only for
regular graphs, although one can easily generalize the definition and our
results to non-regular graphs, assuming the measure of each vertex is
weighted by its degree.

We prove Theorem II.1 by combining two methods. First
we show that if the input graph has at most m large
eigenvalues then one can find the non expanding set (if
it exists) in time exp(m). Then we show that if a graph has
many eigenvalues that are fairly large then it must contain a
small set with poor expansion, and in fact there is an efficient
way to find such a set. The algorithm is obtained by applying
one of these methods to the input graph depending on the
number of eigenvalues larger than 1 − η (for some suitably
chosen threshold η).

A. Enumerating non-expanding sets in low-rank graphs

We start by showing that the search for a non-expanding
set in a graph can be greatly sped up if it has only few large
eigenvalues. The following result is an analog of [25], [24]’s
algorithms for unique games whose label-extended graphs
have few large eigenvalues (see also Footnote 3).

Theorem II.2 (Subspace enumeration). There is an
exp(rank1−η(G)) poly(n)-time algorithm that given ε > 0 and
a graph G containing a set S with Φ(S) 6 ε, outputs a
sequence of sets, one of which has symmetric difference at
most 8(ε/η)|S | with the set S .

In particular for ε < 0.01 and η = 1/2 the algorithm will
output a list of sets containing a set S ′ such that |S ′| 6 1.1|S |
and Φ(S ′) 6 13ε.

Proof: Let δ = µ(S) = |S |/n, and let χS be the
normalized indicator vector of S , that is χS (i) = 1/

√
δ if

i ∈ S and χS (i) = 0 otherwise. Let U ⊆ �V be the span of the
eigenvectors with eigenvalue greater than 1−η. The dimension
of U is equal to m = rank1−η(G). Suppose χS = u+u⊥, where
u ∈ U and u⊥ is orthogonal to U (and hence u⊥ is in the
span of the eigenvectors with eigenvalue at most 1−η). Since
Φ(S) 6 ε, we have

ε > 1 − 〈χS ,GχS 〉 = 1 − 〈u,Gu〉 − 〈u⊥,Gu⊥〉 > η‖u⊥‖2 ,
where the last step uses 〈u,Gu〉 6 ‖u‖2 and 〈u⊥,Gu⊥〉 6
(1−η)‖u⊥‖2, as well as ‖u‖2 + ‖u⊥‖2 = 1. Hence, the distance
of χS to the subspace U is bounded ‖χS −u‖2 = ‖u⊥‖2 6 ε/η.
If we enumerate over a

√
ε/100η-net in the unit ball of the

m-dimensional subspace U, then we will find a vector v
satisfying ‖v − χS ‖22 6 2ε/η. (The size of such a net in U is
at most exp(m log(1/ε)).) Thus, at most 8δε/η fraction of the
coordinates of v differ from χS by more than 1/(2

√
δ). Let

S ′ = S ′(v) be the set defined by setting i ∈ S ′ if vi > 1/(2
√
δ)

and i < S ′ otherwise. Every coordinate i in the symmetric
difference between S and S ′ corresponds to a coordinate
in which v and χS differ by at least 1/(2

√
δ) and so the

symmetric difference of S and S ′ has measure at most 8εδ/η.

Remark: While the above proof is basically a variant of the
“easy direction” of Cheeger’s inequality (showing that if λ2 6
1−ε then every set S of size at most n/2 satisfies Φ(S) > ε/2),
it is actually a competitor of the “hard direction”, which

produces a set S with Φ(S) 6 O(
√
ε) in a graph where

λ2 > 1−ε. Our algorithm finds a set with Φ(S) 6 O(ε) albeit
via brute force enumeration.

B. Finding small non-expanding sets in high-rank graphs

Our next step is to show that every graph with high
threshold-rank contains a small non-expanding vertex set.

Theorem II.3 (Rank bound for small-set expanders). Let
G be a regular graph on n vertices such that rank1−η(G) >
n100η/γ. Then there exists a vertex set S of size at most n1−η/γ

that satisfies Φ(S) 6
√
γ. Moreover, S is a level set of a

column of (1
2 · I + 1

2 ·G) j for some j 6 O(log n), where a level
set of a vector x ∈ �V is a set of the form {i ∈ V | xi > τ}
for some threshold τ ∈ �.

One can think of Theorem II.3 as a generalization of
the “difficult direction” of Cheeger’s Inequality. The latter
says that if rank1−η(G) > 1 then there exists a set S with
µ(S) 6 1/2 and Φ(S) 6 O(

√
η). Theorem II.3 gives the same

guarantee, but in addition the measure of the set S is inversely
proportional to the threshold rank (i.e., number of large
eigenvalues), assuming this rank is larger than nΩ(η). We note
that we have made no attempt to optimize the constants of
this theorem, and in fact do not know if the constant 100
above cannot be replaced with 1 + o(1) (though such a strong
bound, if true, will require a different proof).

We now combine Theorem II.2 and Theorem II.3 to
obtain our subexponential algorithm for Small-Set Expansion,
namely Theorem II.1.

Proof of Theorem II.1: Set η = ε1−β/3 and γ = ε2β/3.
If rank1−η(G) > n100η/γ, then we can compute in polynomial
time a set of size at most n1−η/γ � δn and expansion at most
10
√
γ = O(εβ/3) by Theorem II.3. Otherwise, if rank1−η(G) <

n100η/γ, we can compute in time exp
(
nO(η/γ) log(1/ε)

)
=

exp
(
nO(ε1−β)) a set with measure at most (1 + O(ε/η))δ 6 2δ

and expansion at most O(ε/η) = O(εβ/3).

III. Threshold-rank bounds for small-set expanders

As mentioned, the proof of Theorem II.3 goes by looking
at Tr(Gk). Define the k-Schatten norm, denoted Sk(M), of
a symmetric matrix M with eigenvalues λ1, . . . , λn to be
λk

1 + . . . + λk
n = Tr(Mk) by the trace formula. We say a graph

G is lazy if G = 1/2 ·G′+ 1/2 · I for some regular graph G′. (In
other words, G is lazy if G > 1/2 · I entry-wise.) For technical
reasons, we will prove a Schatten norm bound only for lazy
graphs. (This bound will suffice to prove Theorem II.3 also
for non-lazy regular graphs.)

Theorem III.1 (Schatten norm bound). Let G be a lazy
regular graph on n vertices. Suppose every vertex set S with
µ(S) 6 δ satisfies Φ(S) > ε. Then, for all even k > 2, the
k-Schatten norm of G satisfies

Sk(G)k 6 max
{
n ·

(
1 − ε2/32

)k
, 4
δ

}
.

Moreover, for any graph that does not satisfy the above
bound, we can compute in polynomial time a vertex subset S
with µ(S) 6 δ and Φ(S) 6 ε, where S is a level set of a
column of G j for some j 6 k.

Before proving Theorem III.1, lets see how it implies
Theorem II.3

Proof of Theorem II.3 from Theorem III.1: Let G, η, γ
be as in the theorem, and let m = rank1−η(G). (Note that
we can assume η < 100γ as otherwise the statement is
trivial.) Set G′ = 1/2I + 1/2G to be the “lazy version” of G
and note that (1) for every set S , ΦG′(S) = Φ(S)/2 and (2)
since every eigenvalue λ in G translates to an eigenvalue
1/2 + 1/2λ in G′, m = rank1−η/2(G′). Now set k to be such that
(1 − γ/64)k = 1/n and δ = n−η/γ and apply Theorem III.1
to G′, k with ε =

√
γ/2. We get that if ΦG′(S) 6

√
γ/2 for

every S of measure at most δ, then

m(1 − η/2)k 6 Sk(G′)k 6 4/δ = 4nη/γ .

(Since the first term in the max expression is 1.) Now use
(1 − η/2) ∼ (1 − γ/64)64η/(2γ) > (1 − γ/64)65η/γ (in the range
we care about) to argue that m(1 − γ/64)k65η/γ 6 4nη/γ, but
by our choice of k, we get mn−65η/γ 6 4nη/γ, or (assuming
nη/γ � 4) m 6 n100η/γ. Moreover, if G′ violates the last
inequality, we can find efficiently a level set S of a column
G′ j that will satisfy µ(S) 6 δ and ΦG′ (S) = ΦG(S)/2 6

√
γ/2.

A trace bound: The proof of Theorem II.3 actually
achieves a somewhat stronger statement. Define the (1 − η)
trace threshold rank of G, denoted rank∗1−η(G), to be
the infimum over k ∈ � of Tr(G2k)/(1 − η)2k. Clearly
rank1−η(G) 6 rank∗1−η(G), since Tr(G2k) > rank1−η(G)(1−η)2k.
Because our proof bounds the rank of G via the trace of
the lazy graph 1/2I + 1/2G, it actually achieves the following
statement:

Theorem III.2 (Trace rank bound for small-set expanders).
Let G be a regular lazy graph on n vertices such that
rank∗1−η(G) > n100η/γ. Then there exists a vertex set S of
size at most n1−η/γ that satisfies Φ(S) 6

√
γ. Moreover, S is

a level set of a column of G j for some j 6 O(log n).

One can also show that the trace rank bound is not too
far from the threshold rank, in the range of parameters of
interest in this work:

Lemma III.3. For every δ, η ∈ (0, 1), rank∗1−δη(G) 6
rank1−η(G)n5δ.

Proof: For every k, one can see by the definition of
rank∗ and the formula Tr(G2k) =

∑n
i=1 |λi|2k that

rank∗1−δη(G)(1 − ηδ)2k 6 Tr(G2k) 6 rank1−η(G) + n(1 − η)2k

plugging in k = log n/η we get that rank∗1−δη(G)n−4δ 6
rank1−η(G) + 1.

A. Proof of Theorem III.1

In the following, we let G be a fixed lazy graph with vertex
set V = [n]. Recall that we identify G with its stochastic
adjacency matrix. The proof of Theorem III.1 is based on
the relation of the following parameter to Schatten norms
and the expansion of small sets,

Λ(δ) def
= max

x∈Ωδ

‖Gx‖
‖x‖ .

Here, the set Ωδ ⊆ �V is defined as

Ωδ
def
=

{
x ∈ �V | 0 < ‖x‖21 6 δ · ‖x‖2

}
.

By Cauchy–Schwarz, every vector with support of measure
at most δ is contained in Ωδ.

Since the spectral radius of G is at most 1, the parameter
Λ(δ) is upper bounded by 1 for all δ > 0. The following
lemma shows that if G is an expander for sets of measure at
most δ, then Λ(δ) is bounded away from 1. (In fact, small-set
expansion is equivalent to Λ(δ) being bounded away from 1.
However, we only need one direction of this equivalence for
the proof.)

Lemma III.4. Suppose Φ(S) > ε for all sets S of measure
at most δ. Then, Λ(δ/4) 6 1 − ε2/32. Moreover, if x ∈ Ωδ/4
is a unit vector such that ‖Gx‖ > 1− ε2/32, then there exists
a level set S of x such that µ(S) 6 δ and Φ(S) < ε.

The proof of Lemma III.4 combines a few standard
techniques (Cheeger’s inequality with Dirichlet boundary
conditions and a truncation argument; see for example [15],
[2]). A variant of this lemma that is strong enough for our
purposes was given by Dimitriou and Impagliazzo [12].

Next, we obtain a bound on Schatten norms in terms of
the parameter Λ(δ). We need the following simple technical
lemma, which almost follows immediately from the definition
of Λ(δ).

Lemma III.5. For every j ∈ �, x ∈ �V , and δ > 0,

‖G jx‖ 6 max
{
Λ(δ) j · ‖x‖ , 1√

δ
· ‖x‖1

}
. (1)

Proof: Indeed, suppose that ‖G jx‖ > ‖x‖1/
√
δ. Then,

since G is stochastic and hence ‖Gy‖2 6 ‖y‖2 and ‖Gy‖1 6
‖y‖1 for all y,

‖x‖2 > ‖Gx‖2 > · · · > ‖G j−1x‖2 > ‖G jx‖2 > ‖x‖1/
√
δ

> ‖Gx‖1/
√
δ > · · · > ‖G j−1x‖1/

√
δ > ‖G jx‖1/

√
δ .

Therefore, we see that Gix ∈ Ωδ for all i ∈ {0, . . . , j},
which implies that

‖G jx‖ 6 Λ(δ)‖G j−1x‖ 6 Λ(δ)2‖G j−1x‖ 6 . . . 6 Λ(δ) j‖x‖ .

With this lemma, we can prove the following bound on
Schatten norms in terms of the parameter Λ(δ).

Lemma III.6. For every even integer k > 2,

Sk(G)k 6 max
{
n · Λ(δ)k, 1

δ

}
.

Proof: Let e1, . . . , en be the normalized standard basis
vectors, that is, the j-th coordinate of ei is equal to

√
n if

i = j and equal to 0 otherwise. Note that ‖ei‖ = 1 and
‖ei‖1 = 1/

√
n. Using the identity Sk(G)k = Tr(Gk), we obtain

Sk(G)k = Tr(Gk) =

n∑
i=1

〈ei,Gkei〉 =

n∑
i=1

〈Gk/2ei,Gk/2ei〉

=

n∑
i=1

‖Gk/2ei‖2 6 n ·max
{
Λ(δ)k, 1

nδ

}
,

where the last inequality uses Lemma III.5.
Lemma III.4 and Lemma III.6 immediately imply Theo-

rem III.1 by noting that under the condition of the theorem,
Λ(δ/4) > 1− ε2/32, hence implying that Sk(G)k 6 max{n(1−
ε2/32)k, 4/δ}. Moreover, following the proof we see that if
the condition is violated then we can get a set S with |S | 6 δn
and Φ(S) 6 ε by looking at a level set of the vector G jei for
some j 6 k and standard basis vector ei.

IV. Low threshold-rank decomposition of graphs

Our main technical tool for extending our Small-Set
Expansion algorithm to Unique Games is an algorithm to
decompose a graph into parts with low threshold rank.

We will use the following notation. For a graph G, a
partition of the vertices V = V(G) is a function χ : V → �.
We will not care about the numerical values of χ and so
identify χ with the family of disjoint sets {χ−1(i)}i∈Image(χ).
The size of the partition χ, denoted by size(χ) is the number
of sets/colors it contains. We define the expansion or cost of
the partition, denoted Φ(χ), to be the fraction of edges i, j for
which χ(i) , χ(j). If G is a d-regular graph and U ⊆ V(G),
we let G[U] be the induced graph on U that is “regularized”
by adding to every vertex sufficient number of weight half
self loops to achieve degree d. Our decomposition result is
the following:

Theorem IV.1 (Low threshold rank decomposition theorem).
There is a polynomial time algorithm that on input a graph
G and ε > 0, outputs a partition χ = (A1, . . . , Aq) of
V(G) such that Φ(χ) 6 O(ε log(1/ε)) and for every i ∈ [q],
rank1−ε5 (G[Ai]) 6 n100ε.

A. Proof of the decomposition theorem (Theorem IV.1)

The proofs of lemmas below can be found in the complete
version of this paper.

We start with some notation. Throughout the proof we’ll
fix the graph G (which we also think of as a stochastic
matrix) on the set V = [n] of vertices. If U ⊆ V , and S ⊆ U,
then the relative expansion of S with respect to U, denoted
by ΦU(S), is defined as �(i, j)∼G { j ∈ U \ S | i ∈ S }. Note that
ΦU(S) is equal to the expansion of S in the graph G[U].
(Recall that G[U] is regularized by adding self-loops.) If

A1 A2 Ai Ar B

≤ O(ε2|Ai|)
We prove Lemma IV.3 by repeatedly using Lemma IV.2 to remove from
the graph sets A1, . . . , Ar that are “somewhat small” (size 6 n1−ε) until the
remaining part B has 1 − ε5 threshold rank at most n100ε. To count the
expansion of the partition we orient all edges to the right in the figure
and charge each edge −→u v crossing the partition to the set Ai containing
u. Lemma IV.2 guarantees that the weight of directed edges from Ai to
Ai+1∪· · ·∪B is at most O(ε2 |Ai |). Theorem IV.1 is an immediate implication
of Lemma IV.4, and the latter is proven by recursively applying Lemma IV.3
to each of the sets Ai up to ε−1 log(1/ε) times until the only non-expander
parts remaining are “very small” (size 6 nε). The overall cost of the partition
is O(ε2ε−1 log(1/ε)) = O(ε log(1/ε)).

Figure 1. Overview of proof of Theorem IV.1.

χ = (S1, . . . , Sq) is a partition of V , then we define the
relative expansion of χ with respect to U, denoted as ΦU(χ),
to be

∑q
i=1 ΦU(Si ∩ U). We say that χ refines a partition τ

if χ(x) = χ(y) ⇒ τ(x) = τ(y). We define the relative cost
of χ with respect to τ, denoted Φτ(χ) to be the fraction
of edges that are cut in χ but not in τ. That is, Φτ(χ) is
equal to 1/n times the sum of Gi, j over all i, j such that
χ(i) , χ(j) but τ(i) = τ(j). Note that if τ = (S1, . . . , Sq)
then Φτ(χ) =

∑q
i=1 µ(Si)ΦSi (χ). It’s not hard to verify that

Φ(χ) 6 Φ(τ) + Φχ(τ) with equality if χ is a refinement of τ.
The proof will be obtained by a sequence of three lemmas,

see Figure 1 for an overview. We start with the following
instantiation of our small set expander algorithm:

Lemma IV.2. Let G be an n vertex graph, and ε > 0. If
rank1−ε5 (G) 6 n100ε then we can find in polynomial time a
set S ⊆ V(G) with |S | 6 n1−ε and Φ(S) 6 O(ε2).

Proof: Instantiate Theorem II.3 with γ = ε4 and η = ε5.

The precise powers of ε in Lemma IV.2 are not important.
The main point is that the set S in the conclusion of the
lemma satisfies logn(1/µ(S)) � Φ(S) (which is the case
because logn(1/µ(S)) = ε and φ(S) = O(ε2)).

Next, we apply Lemma IV.2 repeatedly to obtain a partition
of the graph into sets that are either somewhat small, or are
small set expanders.

Lemma IV.3. There is a polynomial-time algorithm that
given an n vertex graph G and ε > 0, outputs a partition
χ = (A1, . . . , Ar, B) of V(G), such that Φ(χ) 6 O(ε2), |Ai| 6
n1−ε for all i ∈ [r], and rank1−ε5 (G[B]) 6 n100ε.

Proof: We start with an empty partition χ and will
repeatedly add sets to χ until we cover V = V(G). Suppose
we have already obtained the sets A1, . . . , Ai−1. Let Ui =

V \ (A1∪· · ·∪Ai−1). We run the algorithm of Lemma IV.2 on

G[Ui]. If it fails to return anything we add the set B = Ui to
the partition and halt. (In this case, Lemma IV.2 guarantees
that rank1−ε5 (G[B]) 6 n100ε.) Otherwise, the algorithm returns
a set Ai ⊆ Ui with |Ai| 6 |Ui|1−ε 6 n1−ε and ΦUi (A) 6 O(ε2).
We continue in this way until we have exhausted all of V .
Let χ = (A1, . . . , Ar, B) be the partition that we obtained in
this way. Note that

Φ(χ) = 2
r∑

i=1

G(Ai, Ai+1 ∪ · · · ∪ Ar ∪ B) = 2
r∑

i=1

G(Ai,Ui \ Ai) .

But since G(Ai,Ui \ Ai) = Φ′U(Ai)µ(Ai) 6 O(ε2µ(Ai)),
we can upper bound the cost of χ as desired Φ(χ) 6
O(ε4 ∑r

i=1 µ(Ai)) 6 O(ε2) (using
∑r

i=1 µ(Ai) = 1).
The idea for the next lemma is to apply Lemma IV.3

recursively until we obtain a partition of the vertices into
sets Ai are very small (|Ai| � nε) and sets Bi that are small-
set expanders. To achieve the bound on the size of the sets,
it is enough to recurse up to depth O(log(1/ε)/ε). In each
level of the recursion, we cut at most an O(ε2) fraction of
edges. Hence, the total fraction of edges that we cut across
all levels is at most O(ε log(1/ε)). (For this argument, it was
important that the algorithm of Lemma IV.2 outputs set with
logn(1/µ(S)) � Φ(S).)

Note that the next lemma immediately implies Theo-
rem IV.1 (since the threshold rank of a subgraph is at most
the number of its vertices).

Lemma IV.4. There is an algorithm that given an
n vertex graph G, and ε > 0, outputs a partition
χ = (A1, . . . , Ar, B1, · · · , Br′) of [n], such that Φ(χ) 6
O(ε log(1/ε)), |Ai| 6 nε for all i ∈ [r], and rank1−ε5 (G[B j]) 6
n100ε all j ∈ [r′].

Proof: We let χ0 be the trivial partition of one set
(with Φ(χ0) = 0) and will continually refine the partition
using Lemma IV.3 until we reach the desired form. Now for
i = 0, 1, . . . , 10 log(1/ε)/ε we repeat the following steps. As
long as χi does not satisfy the above form, then for every
set A of χi that satisfies rank1−ε5 (G[A]) > n100ε > |A|100ε

we run Lemma IV.3 to obtain a partition χA of A with
ΦA(χA) 6 O(ε2). We then let χi+1 be the partition obtained
by refining every such set A in χi according to χA. Note that
we maintain the invariant that in χi, every set A such that
rank1−ε5 (G[A]) > n100ε has size at most n(1−ε)i

. Thus, after
10 log(1/ε)/ε iterations every such set will have size at most
nε. At the end we output the final partition χ = χ10 log(1/ε)/ε.
It just remains to bound Φ(χ). To do that it suffices to prove
that Φ(χi+1) 6 Φ(χi) + O(ε2), since this implies Φ(χ) 6
O(ε2 · log(1/ε)/ε) = O(ε log(1/ε)). So we need to prove
Φχi (χi+1) 6 O(ε2). But indeed, if we let A1, . . . , Ar be the
sets in χi that χi+1 refines, then one can see that

Φχi (χi+1) =
∑b

j=1 µ(A j)ΦA j (χA j) 6 O(ε2) ,

where the last inequality follows from
∑
µ(A j) 6 1 and the

guarantee ΦA(χA j) 6 O(ε2) provided by Lemma IV.3.

Trace rank bound: Note that by using Theorem III.2
instead of Theorem II.3, if we assume the original graph is
lazy, then we can get a partition of small trace threshold-rank
instead of threshold rank. (One just needs to note that if
G is lazy then G[A] is lazy as well for every subset A of
G’s vertices.) Thus our proof actually yields the following
theorem as well:

Theorem IV.5 (Low trace threshold rank decomposition
theorem). There is a polynomial time algorithm that on input
a graph G and ε > 0, outputs a partition χ = (A1, . . . , Aq) of
V(G) such that Φ(χ) 6 O(ε log(1/ε)) and for every i ∈ [q],
rank∗1−ε5 (G[Ai]) 6 n100ε.

V. A subexponential algorithm for Unique Games

In this section we give a subexponential algorithm for
Unique Games. A unique game of n variables and alphabet k
is an n vertex graph G whose edges are labeled with
permutations on the set [k], where the edge (i, j) is labeled
with π iff the edge (j, i) is labeled with π−1. An assignment to
the game is a string y = (y1, . . . , yn) ∈ [k]n, and the value of y
is the fraction of edges (i, j) for which y j = π(yi), where π is
the label of (i, j). The value of the game G is the maximum
value of y over all y ∈ [k]n.

Theorem V.1 (Subexponential algorithm for Unique Games).
There is an exp(knO(ε)) poly(n)-time algorithm that on input
a unique game G on n vertices and alphabet size k that has
an assignment satisfying 1 − ε6 of its constraints outputs an
assignment satisfying 1 − O(ε log(1/ε)) of the constraints.

A. Proof of Theorem V.1.

We assume the unique game constraint graph is d-regular
for some d — this is without loss of generality. For a unique
game G, the label extended graph of G, denoted Ĝ, is a
graph on nk vertices, where for i, j ∈ [n] and a, b ∈ [k] we
place an edge between (i, a) and (j, b) iff there is an edge
(i, j) in G labeled with a permutation π such that π(a) = b.
That is, every vertex i ∈ V(G) corresponds to the “cloud”
Ci := {(i, 1), . . . , (i, k)} in V(Ĝ). We say that S ⊆ V(Ĝ) is
conflict free if S intersects each cloud in at most one vertex.
Note that a conflict free set S in Ĝ corresponds to a partial
assignment f = fS for the game G (i.e., a partial function
from V(G) to [k]). We define the value of a partial assignment
f , denoted val(f), to be 2/(nd) times the number of labeled
edges (i, j, π) such that both f (i) and f (j) are defined, and
π(f (i)) = f (j).

We say that a unique game is lazy if each vertex has half
of its constraints as self loops with the identity permutation.
We use the following simple lemma, whose proof consists
of observing that if there is a length t walk in Ĝ from the
vertex (i, a) back to itself then there must be a corresponding
length t walk from i back to itself in G (and in fact one
where composing the corresponding permutation yields a
permutation that has a as a fixed point).

Lemma V.2. Suppose that G is lazy. Then rank∗1−η(Ĝ) 6
k · rank∗1−η(G).

Combining this with Lemma III.3 we get the following
corollary:

Corollary V.3. For every δ, η and n vertex constraint graph
G on alphabet k, rank1−δη(Ĝ) 6 knηrank1−η(G).

Because of Lemma V.2, we will find it convenient
to use the trace threshold rank partitioning algorithm of
Theorem IV.5. We note that we could have instead used
Corollary V.3 instead, at some quantitative loss to the
parameters. The main idea is that any assignment that satisfies
(1 − ε) fraction of the unique game constraints corresponds
in the label extended graph to a set of about 1/k of all the
vertices, and expansion ε. Our earlier subspace enumeration
algorithm outputs all non-expanding subsets, so it will also
find this one (or one close to it, which yields almost as good
an assignment). Now we give the algorithm:
Input: Unique game G on n variables of alphabet k that has
value at least 1 − ε6.
1) Make G lazy by adding to every vertex self loops

accounting to half the weight labeled with the identity
permutation.

2) Run the partition algorithm of Theorem IV.5 to obtain a
partition χ = {A1, . . . , Aq} of the graph G with Φ(χ) 6
O(ε log(1/ε)) such that for every i, rank∗1−ε5 (G[Ai]) 6
n100ε.

3) Let Â1, . . . , Âq be the corresponding partition of the
label-extended graph Ĝ. Note that for all t ∈ [q],
Ĝ[At] = ˆG[At] and hence by Lemma V.2 rank1−ε5 (Ĝ[Ai]) 6
rank∗1−ε5 (Ĝ[Ai]) 6 kn100ε.

4) For every t = 1 . . . q do the following:
i) Run the exp(rank1−ε5 (Ĝ[At])-time enumeration algo-

rithm of Theorem II.2 on the graph Ĝ[Ât] to obtain a
sequence of sets St.

ii) For every set S ∈ St, we compute an assignment fS
to the vertices in At as follows: For every i ∈ At, if
Ci ∩ S = ∅, then fS assigns an arbitrary label to the
vertex i, if |Ci∩S | > 0, then fS assigns one of the labels
in C ∩ S to the vertex i. Let ft be the assignment of
maximum value, and assign the variables corresponding
to vertices in At according to ft. (Note that since the sets
A1, . . . , Aq are disjoint, every variable will be assigned
exactly one label.)

We now turn to analyze the algorithm. We assume the game
has an assignment fopt satisfying 1 − ε6 of the constraints.
Note that fopt still has the same value, and in fact even
somewhat better — 1 − ε6/2 — after we make the graph lazy.
Let χ = (A1, . . . , At) be the partition obtained by the algorithm
in Step 2. Since Φ(χ) 6 1/2, the assignment fopt satisfies at
least 1−2(ε6/2) = 1−ε6 of the constraints that are not cut by
χ. Let µt be the measure of At (also equalling the measure
of Ât), and let εt be the fraction of constraints in At that are

violated by fopt. We know that
∑q

t=1 µtεt 6 2ε6.
The following lemma implies that the algorithm will output

an assignment satisfying at least 1 − O(ε) fraction of the
constraints:

Lemma V.4. Every partial assignment ft satisfies all but a
20εt/η fraction of the constraints in At.

Proof: Let Sopt be the subset of Ât corresponding to
the assignment fopt. Note that |Sopt| = |At | and ΦÂt

(Sopt) 6 εt.
Thus, the sequence St contains a set S that has symmetric
difference with Sopt at most 8(εt/η)|At | (Theorem II.2). Let S ′

be the subset of Ât corresponding to the assignment fS . The
construction of fS (and thus S ′) ensures that the symmetric
difference between S ′ and S is at most the symmetric
difference between S and Sopt. (In fact, the symmetric
difference of S and S ′ is equal to

∑
i∈At
||S ∩Ci| − 1|.) Hence,

S ′ has symmetric difference with Sopt at most 16(εt/η)|At |.
In other words, fS agrees with fopt on all but a 16εt/η
fraction of the vertices in At. Thus fS violates at most
εt + 16εt/η 6 20εt/η of the constraints in At. The lemma
follows because we choose ft as the best assignment among
all assignments fS for S ∈ St.

Lemma V.4 implies that among the constraints not cut by
χ, the assignment we output satisfies all but a∑

t

µt · 20εt/η = (20/η)
∑

u

µiεt = O(ε6/ε5) = O(ε)

fraction of constraints.
Since χ cuts at most O(ε log(1/ε)) fraction of the con-

straints, the correctness of the algorithm and thus Theo-
rem V.1 follow. (One also has to note that any solution
satisfying 1−γ fraction of the lazy game’s constraints satisfies
at least 1−2γ fraction of the original game’s constraints.) �

VI. Conclusions and Open Questions

The obvious open question is whether our methods can be
extended to yield an exp(no(1))-time algorithms for Unique
Games, hence refuting the Unique Games Conjecture. More
generally one can ask what is the true complexity of the
Unique Games and Small-Set Expansion problems? Any
quantitative improvement to the bounds of Theorem II.3
would translate to an improvement in our algorithm for
the Small-Set Expansion problem, and so will result in
refuting the stronger variant of the UGC proposed in
[34]. Another open question is whether our techniques can
yield subexponential algorithms with better approximation
guarantees for unique-games hard problems such as Vertex
Cover, Max Cut, Sparsest Cut on every instance.

Acknowledgements

This work stemmed from a suggestion of Assaf Naor that
eigenvalue distribution, and in particular Schatten norms,
could be related to small set expansion, and his related
manuscript [31]. We thank Alexandra Kolla for giving us

an early copy of the manuscript [24]. The authors also had
a number of very fruitful conversations on this topic with
several people including Moritz Hardt, Thomas Holenstein,
Russell Impagliazzo, Guy Kindler, William Matthews, Prasad
Raghavendra, and Prasad Tetali. This work was financially
supported by NSF, Packard and Sloan foundations.

References

[1] N. Alon and V. D. Milman, “λ1, isoperimetric inequalities
for graphs, and superconcentrators,” J. Combin. Theory Ser.
B, vol. 38, no. 1, pp. 73–88, 1985. [Online]. Available:
http://dx.doi.org/10.1016/0095-8956(85)90092-9

[2] N. Alon and B. Klartag, “Economical toric spines
via Cheeger’s inequality,” J. Topol. Anal., vol. 1,
no. 2, pp. 101–111, 2009. [Online]. Available:
http://dx.doi.org/10.1142/S1793525309000096

[3] S. Arora, R. Impagliazzo, W. Matthews, and D. Steurer,
“Improved algorithms for unique games via divide and conquer,”
ECCC, Tech. Rep. ECCC TR10-041, 2010.

[4] S. Arora, S. Khot, A. Kolla, D. Steurer, M. Tulsiani, and
N. Vishnoi, “Unique games on expanding constraints graphs
are easy,” in Proc. 40th STOC. ACM, 2008.

[5] B. Barak, M. Hardt, T. Holenstein, and D. Steurer, “Subsam-
pling mathematical relaxations and average-case complexity,”
2010, manuscript.

[6] A. Bulatov, P. Jeavons, and A. Krokhin, “Classifying the
complexity of constraints using finite algebras,” SIAM J.
Comput, vol. 34, no. 3, pp. 720–742, 2005, prelim version in
ICALP ’00.

[7] M. Charikar, K. Makarychev, and Y. Makarychev, “Near-
optimal algorithms for unique games,” in STOC, 2006, pp.
205–214.

[8] S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, and
D. Sivakumar, “On the hardness of approximating multicut
and sparsest-cut,” Computational Complexity, vol. 15, no. 2,
pp. 94–114, 2006, prelim version in CCC 2005.

[9] J. Cheeger, “A lower bound for the smallest eigenvalue of
the Laplacian,” in Problems in analysis (Papers dedicated to
Salomon Bochner, 1969). Princeton Univ. Press, 1970, pp.
195–199.

[10] C. Chekuri and M. Pal, “A recursive greedy algorithm for
walks in directed graphs,” in Proc. FOCS, 2005, pp. 245–253.

[11] E. Chlamtac, K. Makarychev, and Y. Makarychev, “How to
play unique games using embeddings,” in Proc. 47th FOCS.
Citeseer, 2006, pp. 687–696.

[12] T. Dimitriou and R. Impagliazzo, “Go with the winners for
graph bisection,” in Proc 9th SODA, 1998, pp. 510–520.

[13] U. Feige and D. Reichman, “On systems of linear equations
with two variables per equation,” Proc. of RANDOM-APPROX,
pp. 117–127, 2004.

[14] A. M. Frieze and R. Kannan, “Quick approximation to matrices
and applications,” Combinatorica, vol. 19, no. 2, pp. 175–220,
1999.

[15] S. Goel, R. Montenegro, and P. Tetali, “Mixing time bounds
via the spectral profile,” Electron. J. Probab., vol. 11, pp. no.
1, 1–26 (electronic), 2006.

[16] A. Gupta and K. Talwar, “Approximating unique games,” in
Proc. 17th SODA. ACM, 2006, p. 106.

[17] A. Gupta, R. Krauthgamer, and J. R. Lee, “Bounded geome-
tries, fractals, and low-distortion embeddings,” in FOCS, 2003,
pp. 534–543.

[18] J. Håstad, “Some optimal inapproximability results,” J. ACM,
vol. 48, no. 4, pp. 798–859, 2001, prelim version STOC ’97.

[19] R. Impagliazzo, R. Paturi, and F. Zane, “Which problems have
strongly exponential complexity?” Journal of Computer and
System Sciences, vol. 63, no. 4, pp. 512–530, 2001.

[20] S. Khot, “On the power of unique 2-prover 1-round games,”
in Proceedings of 34th STOC. New York: ACM Press, 2002,
pp. 767–775.

[21] ——, “On the unique games conjecture (invited survey),”
Computational Complexity, Annual IEEE Conference on, vol. 0,
pp. 99–121, 2010.

[22] S. Khot and R. Saket, “SDP integrality gaps with local `1-
embeddability,” in FOCS, 2009, pp. 565–574.

[23] S. Khot and N. K. Vishnoi, “The unique games conjecture,
integrality gap for cut problems and embeddability of negative
type metrics into `1,” in FOCS, 2005, pp. 53–62.

[24] A. Kolla, “Spectral algorithms for unique games,” in Proc.
CCC, 2010, to appear.

[25] A. Kolla and M. Tulsiani, “Playing random and expanding
unique games,” 2007, unpublished manuscript available from
the authors’ webpages, to appear in journal version of [4].

[26] G. Kun and M. Szegedy, “A new line of attack on the
dichotomy conjecture,” in Proceedings of the 41st annual ACM
symposium on Symposium on theory of computing. ACM
New York, NY, USA, 2009, pp. 725–734.

[27] A. K. Lenstra and H. W. J. Lenstra, The Development of the
Number Field Sieve. Springer-Verlag, 1993.

[28] N. Linial and M. E. Saks, “Low diameter graph decomposi-
tions,” Combinatorica, vol. 13, no. 4, pp. 441–454, 1993.

[29] E. M. Luks, “Isomorphism of graphs of bounded valence can
be tested in polynomial time,” J. Comput. Syst. Sci., vol. 25,
no. 1, pp. 42–65, 1982.

[30] D. Moshkovitz and R. Raz, “Two query PCP with sub-constant
error,” in Proc. 49th FOCS, 2008, pp. 314–323.

[31] A. Naor, “On the Banach space valued Azuma inequality
and small set isoperimetry in Alon-Roichman graphs,” 2004,
unpublished manuscript.

[32] P. Raghavendra, “Optimal algorithms and inapproximability
results for every csp?” in Proc. 40th STOC. ACM, 2008, pp.
245–254.

[33] P. Raghavendra and D. Steurer, “Integrality gaps for strong
SDP relaxations of Unique Games,” in FOCS, 2009, pp. 575–
585.

[34] ——, “Graph expansion and the unique games conjecture,” in
STOC, 2010, to appear.

[35] R. Stearns and H. Hunt III, “Power indices and easier hard
problems,” Math. Syst. Theory, vol. 23, no. 4, pp. 209–225,
1990.

[36] D. Steurer, “Fast SDP algorithms for constraint satisfaction
problems,” in SODA, 2010, to appear.

[37] E. Szemerédi, “Regular partitions of graphs,” Problèmes
combinatoires et théorie des graphes, Orsay, 1976.

[38] L. Trevisan, “Approximation algorithms for unique games,” in
FOCS, 2005, pp. 197–205.

