
Solving linear systems through nested dissection

Noga Alon
Schools of Mathematics and Computer Science

Tel Aviv University
Tel Aviv, Israel

nogaa@post.tau.ac.il

Raphael Yuster
Department of Mathematics

University of Haifa
Haifa, Israel

raphy@math.haifa.ac.il

Abstract—The generalized nested dissection method, devel-
oped by Lipton, Rose, and Tarjan, is a seminal method for
solving a linear system Ax = b where A is a symmetric positive
definite matrix. The method runs extremely fast whenever A
is a well-separable matrix (such as matrices whose underlying
support is planar or avoids a fixed minor). In this work we
extend the nested dissection method to apply to any non-
singular well-separable matrix over any field. The running
times we obtain essentially match those of the nested dissection
method.

Keywords-Gaussian elimination, linear system, nested dissec-
tion.

I. INTRODUCTION

Solving a linear system is the most basic, and perhaps
the most important problem in computational linear algebra.
Considerable effort has been devoted to obtaining algorithms
that solve a linear system faster than the naive cubic imple-
mentation of Gaussian elimination.

For the rest of this introduction we assume that the system
is given by Ax = b, where A is a non-singular n×n matrix
over a field, b is an n-vector over that field, and xT =
(x1, . . . , xn) is the vector of variables.

The fastest general algorithm for solving Ax = b was
obtained by Bunch and Hopcroft [2], and by Ibarra, Moran,
and Hui [10]. The algebraic complexity of both of these
algorithms is O(nω), where ω < 2.376 is the matrix
multiplication exponent [3].

If A is sparse and has only m � n2 non-zero entries,
faster algorithms exist. An important result of Wiedemann
[23] asserts that if m = O(n) then a solution of Ax = b can
be computed in Õ(n2) time over finite fields. We note that
solving sparse linear systems over finite fields has important
applications in cryptography (see, e.g., [8]). Eberly et al. [4]
solve Ax = b where A is any non-singular matrix with
O(n) nonzero bounded integer entries in bit complexity
Õ(n2.5). Spielman and Teng [20] obtained an almost linear
time1 algorithm for approximately solving sparse symmetric
diagonally-dominant linear systems.

1From here and throughout, unless otherwise noted, time means algebraic
complexity. That is, each arithmetic operation in the field requires constant
time.

In some important cases that arise in various applications,
the matrix A has additional structural properties in addition
to being sparse. To make this notion more precise we need a
definition. Let A be an arbitrary n×n matrix. The underlying
graph of A, denoted by GA, is defined by the vertex set
{1, . . . , n} where, for i 6= j we have an edge ij if and
only if ai,j 6= 0 or aj,i 6= 0 (the diagonal entries of A play
no role in the definition of GA). Note that GA is always
an undirected simple graph, while A may or may not be
symmetric.

The seminal nested dissection method of Lipton, Rose,
and Tarjan [12], generalizing an earlier result of George
[6], asserts that if A is a symmetric positive definite matrix
and the underlying graph GA has an appropriate separator
tree (precise definitions will follow in the next section) then
Ax = b can be solved in O(nωβ) time, where β ≥ 1/2 is
a parameter of the separator tree. Notice that for β < 1
this implies, in particular, an algorithm whose algebraic
complexity outperforms the O(nω) algorithm mentioned
earlier. For example, it is known that β = 1/2 for planar
graphs and for bounded genus graph (in these cases the
separator tree can be constructed in O(n log n) time so
one does not need to precondition its availability [13]). For
graphs that exclude a fixed minor it is also known that
β = 1/2 (although to initially construct a separator tree with
this parameter requires O(n1.5) time with present methods
[1]).

However, the nested dissection method has several alge-
braic restrictions. The matrix needs to be symmetric (or Her-
mitian) and needs to be positive definite. The method does
not apply to matrices over finite fields, or any other arbitrary
field, unless they are assumed to be symmetric pivoting-free
(exact definition will follow in the next section). Even if the
matrix is, say, real, but either non-symmetric or non positive
definite, the nested dissection method is not applicable.

In [25] it is shown how to modify the nested dissection
method so that it applies to computing the rank of an
arbitrary matrix A for which GA has a β-separator tree
in O(nωβ) time. The method there can also be used to
compute det(A)2 (but not det(A)) in the same time. An
important method in the result of [25] is a technique for
quickly sparsifying a given matrix so that after sparsification,

each row and column has a bounded number of non-zero
entries. The sparsification has the property that it is easy to
derive the rank of the original matrix from the rank of the
sparsified matrix, and the determinants of both matrices are
the same.

The main result of this paper shows that by modifying
the nested dissection method, proving a variant of matrix
sparsification, combining these with several nontrivial linear
algebraic claims, and a new idea of partitioning a non-
singular linear system into smaller (possibly rectangular)
systems having unique solutions, we can indeed solve Ax =
b whenever GA has a β-separator tree. Our method applies
to any such matrix, over any field; there are no algebraic
restrictions.

We now formally state the result that we obtain. We
assume that the matrix of coefficients is non-singular (if
this is not the case, our method detects this fact). The
result here is stated for the specific graph families of planar
graphs, bounded genus graphs, and H-minor free graphs,
because we prefer to be concrete about running times.
Notice, however, that the result applies to other hereditary
families of graphs that exhibit small separators (see, e.g.,
[16], [21]). The full generic statement of the result appears
in Section III.

Theorem 1 Let A ∈ Fn×n be a non-singular matrix and
let b ∈ Fn. If GA is planar or has bounded genus, then
Ax = b can be solved in O(nω/2) < O(n1.19) time. If
GA excludes some fixed minor, then Ax = b can be solved
in O(n3ω/(ω+3)) < O(n1.326) time. For the fields R,Q,C
the algorithm is deterministic. For arbitrary fields (and, in
particular, for finite fields) it is a randomized Las Vegas
algorithm.

As noted earlier, the stated running times are given under
the assumption that each arithmetic operation in the field
takes O(1) time (namely, the algorithms are measured in
terms of their algebraic complexity). If F is a finite field
whose number of elements is polynomial in n, then it is,
indeed, true that each arithmetic operation takes O(log n)
time (measured in bit operations) and hence the running
times in Theorem 1 also measure actual bit complexity, up
to a logarithmic factor. In the case where A and b have
bounded integer entries independent of n (and the system
is to be solved over Q) it is not difficult to show, using
standard techniques, that the running times in Theorem 1,
when measured in bit complexity, are multiplied by an
additional Õ(n) factor. Thus, for example, for the case of
planar graphs we obtain an O(n2.19) algorithm measured in
bit complexity. For H-minor free graphs one can exploit a
tradeoff with the combinatorial part of the algorithm and also
solve the problem in O(n2.19) bit complexity. Notice that
this is quite close to the obvious Ω(n2) lower bound, as the
output may consist of n rationals, each having numerators
and denominators with Ω(n) digits.

Another minor point is that the the stated running time
O(nω/2) assumes that ω > 2, since the algorithm has an
ingredient that runs in Θ(n log n) time. Thus, if ω = 2, the
running time for planar graphs and bounded genus graphs
is O(n log n), and not O(n).

The rest of this paper is organized as follows. In Section
II we establish the necessary tools for the proof of the
main result. This section is split into five parts according
to the nature of the tools used: linear algebra, graph theory,
sparsification, vertex splitting, and nested dissection. Section
III contains the proof of the main result. This section is also
split into parts in sync with the sub-algorithms applied in
order to achieve the main result. Section IV contains some
concluding remarks.

II. TOOLS

A. Linear algebra

Let Ax = b be a system of linear equations, where
A ∈ Fn×n, b ∈ Fn and xT = (x1, . . . , xn). Unless
otherwise stated, the field F is arbitrary, and A is assumed
to be non-singular. Our goal is to find the unique solution
of the system, which is denoted by cT = (c1, . . . , cn).

Let B = [A|b] be the n×(n+1) matrix obtained by adding
b as the rightmost column of A. For i = 1, . . . , n+1, let Bi
be the matrix obtained from B by removing column i (hence
Bn+1 = A). The following is an immediate consequence of
Cramer’s rule [9] and the fact that permuting columns only
changes the sign of the determinant.

Fact 1 ci = ±det(Bi)det(A)−1.

Recall that for a square matrix X , the minor Mi,j(X) is
the determinant of the matrix obtained from X by removing
row i and column j. If i = j then Mi,i(X) = Mi(X) is the
i’th principal minor of X .

Lemma 1 Let Q = BTB. Then det(Bi)2 = Mi(Q). Also,
det(A)2 = Mn+1(Q).

Proof: BTi Bi is precisely the matrix obtained from Q
by removing row and column i. Likewise, ATA is obtained
from Q by removing the last row and the last column.

It follows from Fact 1 and from Lemma 1 that by comput-
ing the minors M1(Q), . . . ,Mn+1(Q), we obtain c21, . . . , c

2
n.

But we are interested in c1, . . . , cn, not in their squares. For
this purpose, we use the following interpolation argument.
Let a ∈ Fn be the sum of the columns of A. Consider the
linear system Ay = (a + b). Notice that (c1, . . . , cn) is a
solution of Ax = b if and only if (c1 + 1, . . . , cn + 1) is
a solution of Ay = (a+ b). So, by the same argument, we
can compute the squares of the coordinates of the solution
of Ay = (a + b) which are (c1 + 1)2, . . . , (cn + 1)2. To
obtain ci we notice that if the field has characteristic 2 then
c2i already uniquely defines ci. For other fields, we notice
that ci = ((c1 + 1)2 − c2i − 1)2−1.

To summarize, we have shown that solving the system
Ax = b amounts to computing all the principal minors
M1(Q), . . . ,Mn+1(Q) of the matrix Q = BTB where
B = [A|b]. Computing all these principal minors quickly
turns out to be a non-trivial task. For this purpose, we need
to state and prove a few additional linear algebraic claims.

Although we are interested in solving systems Ax = b
where A is a square non-singular matrix, we will need, in the
course of our algorithm, to consider a more general setting.
Let Rx = h be a system of linear equations where R ∈
Fn+p,n, b ∈ Fn+p, and assume that the system has a unique
solution (in particular, rank(R) = n). As before, let B =
[R|h] be the matrix obtained by adding h as the last column
of R. Notice that the dimensions of B are (n+p)× (n+1).
For i = 1, . . . , n + 1, let Bi be the matrix obtained from
B by removing column i. We would like to generalize the
above observation regarding the minors Mi(B

TB) and the
squares of the solutions of the system. It is not difficult
to show that such a generalization holds for fields which
satisfy rank(RTR) = rank(R) (such as the reals or the
rationals). However, we require a generalization that applies
to all fields.

Lemma 2 Let D be a diagonal matrix of order n + p,
with elements taken from a field F′ ⊃ F, and so that
rank(RTDR) = rank(R) = n. Let Q = BTDB. Then
c2i = Mi(Q)Mn+1(Q)−1.

Proof: We first prove that Mn+1(Q) 6= 0. Indeed, since
rank(R) = n we have that rank(RTDR) = n and hence
RTDR is an n × n non-singular matrix. Since B = [R|h]
we have that RTDR is just the matrix obtained from Q =
BTDB by removing the bottom row and rightmost column.
As RTDR is non-singular, its determinant Mn+1(Q) is
nonzero.

For the rest of the proof, assume, without loss of gen-
erality, that the first n rows of R are linearly independent,
and let A denote the n × n nonsingular sub-matrix of R
corresponding to these rows. Let B′ = [A|h′] where h′

is the truncation of h to the first n coordinates. Similarly,
define B′i to be the matrix obtained from B′ by removing
column i, and let Q′ = B′TB′. We already know from
Fact 1 and from Lemma 1 that c2i = Mi(Q

′)Mn+1(Q′)−1

and that det(B′i)
2 = Mi(Q

′). We will show that there is a
scalar f 6= 0 so that Mi(Q) = fMi(Q

′), thereby obtaining
the claimed result. Notice that if we show such a scalar f
exists then it must be nonzero since Mn+1(Q) 6= 0.

For a subset J of n row indices of B, let B(J) denote the
corresponding n× (n+ 1) sub-matrix, and let Bi(J) denote
the corresponding n×n matrix where column i is removed.
Now the following two cases may occur. Either B(J) does
not have rank n, in which case det(Bi(J)) = 0 for all i, or
else the rows of B(J) span the same n-dimensional subspace
as B′ does (notice that B′ = B({1, . . . , n})). In particular,

for each J there exists a constant fJ so that det(Bi(J)) =
fJ · det(B′i) for all i = 1, . . . , n+ 1.

Let DJ denote the n×n diagonal matrix obtained from D
by selecting only the rows and columns corresponding to J .
Define f =

∑
J f

2
Jdet(DJ). By the Cauchy-Binet formula

(see, e.g., [9]),

Mi(Q) = det(BTi DBi) =
∑
J

det(Bi(J))2det(DJ) =

∑
J

f2Jdet(B
′
i)

2det(DJ) = f · det(B′i)2 = fMi(Q
′) .

Recall that in R and Q we always have rank(RTR) =
rank(R), so in these cases the diagonal matrix D in Lemma
2 is simply irrelevant (in other words, just take D = I). Over
C we can work with the conjugate transpose R∗ instead of
RT . Now, since rank(R∗R) = rank(R) the result remains
the same, except that we now obtain |ci|2 instead of c2i ,
and we can use the interpolation trick to recover ci. But for
arbitrary fields, how do we make sure that such a D exists,
and how do we compute one efficiently?

Existence is trivial; since rank(R) = n there are n
rows of R that are linearly independent, so let J denote
the subset of indices corresponding to these rows, and let
D be the diagonal matrix with 1 in the diagonal positions
corresponding to J and zero otherwise.

Although to establish Lemma 2 we just require that D has
the property that rank(RTDR) = rank(R), our algorithm
will require RTDR to have a much stronger property, which
we now define.

Gaussian elimination of symmetric matrices can be per-
formed on rows and columns simultaneously, as long as
there is no pivoting. In step i of the elimination, we already
have that the top i× i block is a diagonal matrix. Assuming
the entry in location (i, i) (the pivot) is nonzero, we elimi-
nate all the elements below it and to its right (simultaneously,
as the matrix is symmetric). If the element in location (i, i)
is zero, one has to perform pivoting, namely, permute row
(and column) i with some other row (and column) j > i so
as to obtain a nonzero entry in location (i, i).

We say that a symmetric matrix C is pivoting-free if no
pivoting occurs during the elimination process. In partic-
ular, C is non-singular. Notice also that if C is pivoting-
free then the elimination process produces a decomposition
C = LKLT where L is a unit lower triangular matrix
and D is a diagonal matrix. Notice that, over R (resp. C),
any symmetric (resp. Hermitian) positive definite matrix is
pivoting-free. (in this case the decomposition is known as
the Cholesky decomposition). Hence, in this sense, pivoting-
freeness is the analogue of symmetric positive-definite ma-
trices for arbitrary fields.

In R (C), for any matrix A with full column rank n we
have that ATA (resp. A∗A) is symmetric (resp. Hermitian)
positive definite, and thus pivoting-free. This, however, is

not true for general fields. For example, over Fp it may be
that already (ATA)(1, 1) = 0 while A is non-singular.

Our goal is to choose the diagonal matrix D so that
RTDR is pivoting-free with high probability. This can be
proved in several ways, but we prefer the following proof.

Lemma 3 Let R ∈ Fn+p,n have rank(R) = n. There is
an O(n+p) time algorithm that, with probability 1−1/n2,
constructs a diagonal matrix D of order n+p so that RTDR
is pivoting-free. If F has q ≤ n4 elements then the diagonal
entries of D are chosen at random from an extension field F′
having at least n4 elements. Otherwise, the diagonal entries
of D are chosen at random from some subset of n4 elements
of F.

Proof: Consider the symbolic diagonal matrix D =
diag(x1, . . . , xn+p). Let C = RTDR be an n × n matrix
over F[x1, . . . , xn+p] and let Ci be the top i × i block of
C. We claim that det(Ci) 6= 0. Indeed, if Ri denotes the
first i columns of R then Ci = RTi DRi. By the Cauchy-
Binet formula, det(Ci) =

∑
J det(Ri(J))2det(DJ) where

J ranges over all i-subsets of indices from {1, . . . , n + p}
and Ri(J) (resp. DJ) is the i × i sub-matrix of Ri (resp.
D) corresponding to these indices. Since det(DJ) is just the
monomial corresponding to the product of the variables with
index in J , and all these monomials are distinct, it suffices
to prove that there exists J so that det(Ri(J)) 6= 0. Indeed,
R has full column rank n, so Ri has full column rank i.
Hence, there must be at least one i× i sub-matrix of Ri that
is non-singular. Since J ranges over all such matrices, the
claim follows.

Having proved that det(Ci) 6= 0, we proceed as follows.
Each det(Ci) is a nonzero polynomial of degree i, and
in particular, the product P (x1, . . . , xn+p) = πni=1det(Ci)
is a polynomial of degree less than n2. By the results of
Schwartz [18] and Zippel [27], if S ⊂ F has at least λn2

elements then a random assignment of elements of S to the
variables yields a nonzero value with probability at least
1 − 1/λ. We will use λ = n2. If F is finite and has only
q ≤ n4 elements, we can use an extension field F′ ⊃ F with
at least n4 elements. In order to construct an extension field
F′ with qr ≥ n4 elements (notice that here r = O(log n)) we
just need to construct an irreducible polynomial of degree r
over F. A probabilistic Las Vegas algorithm that performs
this task in Õ(r2+r log q) time (here Õ indicates an implicit
polylogarithmic factor in r) is given in [19]. Thus, the time
to construct F′ is not larger than the O(n+p) time required
to randomly generate D.

Now, assuming a successful random assignment, we now
have that C = RTDR is an n×n matrix over F (or F′, if we
used an extension field). Furthermore, det(Ci) 6= 0 for all
i = 1, . . . , n. We perform the Gaussian elimination of C, and
since Gaussian elimination does not cause the determinant
of any top i × i matrix to vanish (since elimination only
involves elementary operations), we know that at step i of

the elimination process, the current top i× i matrix still has
nonzero determinant. On the other hand, this top i× i sub-
matrix is diagonal, so we must have that the entry (i, i) is
nonzero. Hence C is pivoting-free.

Suppose that a square matrix Q of order n can be
presented in the form Q = LKLT where L is unit lower tri-
angular, and K is a diagonal matrix. We present an efficient
procedure for computing the minors Mt(Q), . . . ,Mn(Q),
starting from some index t. Let Qi be the matrix obtained
from Q by removing row and column i (so that Mi(Q) =
det(Qi)). Let Li be the matrix obtained from L by removing
row i. Let Ki be the diagonal matrix obtained from K by
removing row i and column i. Observe that Qi = LiKL

T
i .

For j = 1, . . . , n, let Li,j be obtained from Li by removing
column j, and notice that Li,j is square of order n− 1. By
the Cauchy-Binet formula we have:

Fact 2

Mi(Q) = det(Qi) = det(LiKL
T
i) =

n∑
j=1

det(Li,j)
2det(Kj) .

We can use the fact that L is a unit triangular matrix and
K is a diagonal matrix to speed up the computation of the
determinants of Li,j and Kj .

Lemma 4 If j < i then det(Li,j) = 0. Consequently
Mi(Q) =

∑n
j=i det(Li,j)

2det(Kj). For a given t ≤ n, all
of the values det(Li,j) for j ≥ i ≥ t can be computed in
O(mL+(n−t)ω) time, where mL is the number of non-zero
entries of L. In particular, Mt(Q),Mt+1(Q), . . . ,Mn(Q)
can all be computed in O(mL + (n− t)ω) time.

Proof: We shall denote by `u,v the entry of L in row u
and column v. Since L is unit triangular, we have `u,u = 1
for u = 1, . . . , n. We also assume that L is represented in a
sparse form using, say, row lists.

Consider first the case of det(Li,j) when j < i. Consider
the top j rows of Li,j . These are j vectors in Fn−1, that may
have non-zeros only in their first j − 1 coordinates. Hence,
they are linearly dependent. Consequently, det(Li,j) = 0.

We fix t, and show how to compute all the values
det(Li,j) for t ≤ i ≤ j ≤ n. For this purpose we need
to recall some additional facts from linear algebra. Let L[t]
denote the matrix obtained from L by taking the lower right
(n + 1 − t) × (n + 1 − t) block. Hence, if t = 1 then
L[t] = L and if t = n then L[t] is the singleton `n,n = 1.
Next, recall that the cofactor Ci,j(L) of L is defined as
(−1)i+jdet(Li,j). As L and L[t] are triangular matrices,
there is a clear connection between the cofactors of L and
the cofactors of L[t], which we denote by Ci,j(L[t]). We
have, for all t ≤ i ≤ j ≤ n,

Ci,j(L) = Ci−t+1,j−t+1(L[t])Πt−1
u=1`u,u

= Ci−t+1,j−t+1(L[t]) .

In particular, we have that for all t ≤ i ≤ j ≤ n,

det(Li,j) = (−1)i+jCi−t+1,j−t+1(L[t]) .

So, to determine all det(Li,j) we have to compute all the
cofactors of L[t]. We need the following well-known fact
(see, e.g., [9]).

Fact 3 If X is a non-singular matrix then adj(X) =
det(X)X−1, where adj(X) is the classical adjoint of X;
namely adj(X)T is the cofactor matrix of X .

Since in our case det(L[t]) = 1, we only need to show how
to compute L[t]−1 quickly. We need the following result of
Bunch and Hopcroft [2].

Lemma 5 If X is a non-singular matrix of order x then
X−1 can be computed in O(xω) time.

Recall that L[t] is a non-singular matrix of order n+ 1− t.
Also, trivially, it can be constructed from the row lists of L
in O(mL) time, where mL is the number of nonzero entries
of L. Hence, L[t]−1 can be computed in O(mL + (n− t)ω)
time. To finish the proof we need to also compute the values
det(Kj). Since K is a diagonal matrix of order n, we have
that det(Kj) is just the product of all the diagonal entries of
K except for the one in location (j, j). Thus we can trivially
compute all the det(Kj) in O(n) ≤ O(mL) time. We have
thus shown that the overall running time of the algorithm for
computing Mt(Q),Mt+1(Q), . . . ,Mn(Q) requires O(mL+
(n− t)ω) time.

The expression O(n−t)ω) in Lemma 4 seems rather large
at first glance. However, as we shall see in Section III, a
crucial point is that we will only apply Lemma 4 for values
of t that are very large. For example, we will mostly use that
n − t = O(

√
n). Another point is that in our applications

of Lemma 4 the diagonal matrix K will mostly contain a
zero in its bottom diagonal entry. This means that in Lemma
4, only det(Kn) is nonzero. This simplifies the expression
for computing Mi(Q) in the statement of the lemma, when
applied in our setting. However, it does not seem to help
in improving the running time in Lemma 4. Furthermore,
Lemma 4 as stated may be applicable in other cases where
K is a non-singular matrix.

B. Separator trees

We say that a graph G = (V,E) has a (k, α)-separation,
if V can be partitioned into three parts, X,Y, Z such that
|X ∪Z| ≤ α|V |, |Y ∪Z| ≤ α|V |, |Z| ≤ k, and no edge has
endpoints in both X and Y . Hence, X and Y are separated
by Z. We say that the partition (X,Y, Z) exhibits a (k, α)-
separation, and that Z is a (k, α)-separator.

Lipton and Tarjan [13] proved that a planar graph with
n vertices has an (O(

√
n), 2/3)-separation and that such a

separation can be found in O(n) time.

When the existence of an (f(n), α)-separation can be
proved for each n-vertex graph belonging to a hereditary
family (closed under taking subgraphs), one can recursively
continue separating each of the separated parts X and Y
until the separated pieces are small enough. This yields
a weak separator tree 2. Notice that being planar, having
bounded genus g, as well as being H-minor free for any
fixed graph H , are all examples of nontrivial hereditary
families. More formally, we say that a graph G = (V,E)
with n vertices has an (f(n), α)-weak separator tree if there
exists a full rooted binary tree T such that the following
holds:
(i) Each node t ∈ T is associated with some Vt ⊂ V .
(ii) V = ∪t∈TVt. , If t 6= t′ then Vt ∩ Vt′ = ∅.
(iii) For an internal node t ∈ T and its children t1 and
t2, let Ti be the subtree rooted at ti. Let X = ∪s∈T1

Vs,
Y = ∪s∈T2Vs and Z = Vt. Then (X,Y, Z) exhibits an
(f(|X| + |Y | + |Z|), α)-separation of the subgraph of G
induced by X ∪ Y ∪ Z.
(iv) If t is a leaf, then |Vt| = O(1).

By using divide and conquer, the result of Lipton and
Tarjan mentioned above can be stated as follows, and even
extended to bounded genus graphs by the result of Gilbert,
Hutchinson, and Tarjan [5].

Lemma 6 Let g be a fixed nonnegative integer. Given an
embedding of a graph G with n vertices on a surface with
genus g, an (O(

√
n), 2/3)-weak separator tree for G can

be constructed in O(n log n) time.

We note that a linear time algorithm that embeds a graph
with fixed genus g in a surface of genus g was obtained by
Mohar [14]. The embedding is purely combinatorial and is
given by a rotation system (a cyclic permutation πv of edges
incident with v, representing their circular order around v
on the surface).

Alon, Seymour, and Thomas [1] extended the result of
Lipton and Tarjan to H-minor free graphs. However, the
running time of their algorithm is O(n1.5) for every fixed H .
Later, Reed and Wood [17] exhibited a more flexible algo-
rithm which runs faster, at the expense of producing a larger
separator.

Lemma 7 Let ε ∈ [0, 1/2] be fixed and let H be a fixed
graph. There is an algorithm with running time O(n1+ε)
that, given an n-vertex graph G, either reports that G has
an H-minor, or outputs an (O(n(2−ε)/3), 2/3)-separation.
In particular, if ε ∈ (0, 1/2] then an (O(n(2−ε)/3), 2/3)-
weak separator tree for G can be constructed in O(n1+ε)
time.

We note that in a very recent result appearing in this pro-
ceedings, Kawarabayashi and Reed [11] sketch an algorithm

2In a strong separator tree the recursion is applied to X ∪Z and Y ∪Z,
while in a weak separator tree the recursion is applied only to X and Y .

that finds an (O(
√
n), 2/3)-separation in O(n1+ε) time, for

any fixed ε > 0.

C. Matrix sparsification

We need to establish a matrix-minor variant of the spar-
sification result proved in [25].

Theorem 2 Let A ∈ Fn,n be any matrix with m non-
zero entries. Another matrix A′ ∈ Fn+2t,n+2t can can
be constructed in O(m) time and which has the follow-
ing properties. For all i = 1, . . . , n and j = 1, . . . , n,
Mi,j(A) = Mi,j(A

′). Furthermore, t = O(m) and each
row and column of A′ has at most three nonzero entries.

Proof: Theorem 1.1 of [25] proves a similar statement
where the conclusion is that det(A) = det(A′). However,
the exact same proof of that theorem also establishes Theo-
rem 2.

D. Sparsification through weak separator trees

As shown in [25], each step in the sparsification algorithm
of Theorem 2 corresponds to an operation on GA, the
underlying graph of A. Indeed, we can label GA so that it
encodes the matrix A itself, not only its underlying structure.
Let ai,j denote an entry of A. We label vertex i of GA with
ai,i and label an edge ij with the two labels ai,j and aj,i.
More conveniently, we can orient ij in two directions such
that (i, j) is labeled ai,j and (j, i) is labeled aj,i. Given
this labeling, each step of the sparsification algorithm can
be thought of as an operation which transforms the current
labeled underlying graph to the next one. This operation (on
unlabeled graphs) is known as vertex splitting [24]. The next
paragraph defines it formally.

Suppose that i is a vertex of GA and u, v are two
neighbors of i. Modify GA by adding two new vertices
n+ 1 and n+ 2. Add new edges {i, n+ 1}, {n+ 1, n+ 2},
{n + 2, u} and {n + 2, v}, and delete the original edges
{i, u} and {i, v}. Label the new vertices n + 1 and n + 2
with 0. We label (i, n + 1) with 1, label (n + 1, i) with
−1, label (n + 1, n + 2) with 1, label (n + 2, n + 1)
with −1, label (n + 2, u) with ai,u, label (u, n + 2) with
au,i, label (n + 2, v) with ai,v , label (v, n + 2) with av,i.
This operation is termed labeled vertex-splitting in [25].
As shown there, it is straightforward to verify that each
step in the sparsification algorithm corresponds to a single
labeled vertex splitting operation. Hence, in the notations of
Theorem 2, the underlying graph GA′ is obtained from the
underlying graph GA by a sequence of t = O(m) labeled
vertex splittings.

As is well-known, if GA is a planar graph (or a bounded
genus graph), then the vertex splitting operation can be
chosen to preserve planarity (or the genus). One simply
chooses the above neighbors u, v of i to be consecutive
vertices in the clockwise ordering of the neighbors of i in

the plane (or on the surface embedding). Thus, the resulting
GA′ is also planar (resp. of the same genus). This naive
topological argument no longer holds if we only know
that GA belongs to a hereditary family of graphs that has
(f(n), α)-weak separator trees (for example, the family of
H-minor free graphs for a fixed H). Nevertheless, in [26]
it is proved that one can perform a sequence of vertex
splittings on a given graph belonging to a δ-sparse hereditary
family, so that the resulting graph will also have a weak
separator tree with the same parameters (up to a constant).
A hereditary family of graphs F is δ-sparse if for all
sufficiently large n, any G ∈ F with n vertices has at most
δn edges. Notice that planar graphs, bounded genus graphs,
and H-minor free graphs (for fixed H) are all examples of
δ-sparse families for a suitable choice of δ. The following
result is proved in [26].

Lemma 8 Let F be a δ-sparse hereditary family of graphs
for which there exists an algorithm A that given an n-vertex
graph in F , generates an (O(nβ), 2/3)-separation in O(nγ)
time. Then, given an n-vertex graph G ∈ F , there is a
vertex-split graph G′ of G of maximum degree 3 such that G′

has an (O(nβ), α)-weak separator tree where α < 1 is a
constant that only depends on the family F . Furthermore, a
corresponding weak separator tree for G′ can be constructed
in O(n log n+ nγ) time.

It is important to note that, although Lemma 8 is stated in
[26] only for H-minor free graphs (since this is what was
needed there), its proof only uses the fact that the graphs
belong to a δ-sparse hereditary family for which there is
an algorithm that finds good separators. Hence we prefer to
state it in this more general form. Also, in the statement
of the lemma in [26], the graph G′ is only required to
have bounded maximum degree k (not necessarily maximum
degree 3). However, notice that if one splits a vertex v
of degree k several times until it has degree 3, then the
sequence of splits corresponds to a tree on O(k) vertices
rooted at v. Thus, if the graph with maximum degree k had
an (O(nβ), α)-weak separator tree then, as k is bounded, the
resulting graph with maximum degree 3 has an (O(nβ), α′)-
weak separator tree as well. So, we prefer to state Lemma
8 in the “degree 3” form. Another important thing to note
is that Lemma 8 applies to weak separator trees. It does not
work for strong separator trees. Finally, notice that for H-
minor free graphs we can simply use A to be the algorithm
of Reed and Wood stated in Lemma 7 with γ = (1 + ε) and
β = (2− ε)/3.

Combining Theorem 2 and Lemma 8 we obtain the
following corollary.

Corollary 1 Let F be a δ-sparse hereditary family of
graphs for which there exists an algorithm A that given an
n-vertex graph in F , generates an (O(nβ), 2/3)-separation
in O(nγ) time. Then, given an a matrix A ∈ Fn×n with

GA ∈ F , another matrix A′ ∈ Fn+2t,n+2t can can be
constructed and which has the following properties. For
all i = 1, . . . , n and j = 1, . . . , n, Mi,j(A) = Mi,j(A

′).
Furthermore, t = O(n) and each row and column of A′

has at most three nonzero entries. The graph GA′ has an
(O(nβ), α)-weak separator tree where α < 1 is a constant
that only depends on the family F . The time to construct
A′ and the corresponding weak separator tree of GA′ is
O(n log n+ nγ).

E. Nested dissection
We briefly describe the generalized nested dissection

method, developed by Lipton, Rose and Tarjan [12]. We
follow the variant developed by Gilbert and Tarjan [7], as it
applies to weak separator trees.

Suppose that G = (V,E) is a graph with n vertices, and T
is a weak separator tree of G. Recall that each node x ∈ T is
associated with a subset Vx ⊂ V . A T -elimination order of
the vertices of G is a bijective labeling from V to {1, . . . , n}
so that if y is a child of x in T then the vertices in Vy receive
smaller labels than the vertices in Vx. So, from now on we
assume that V = {1, . . . , n} and we identify a vertex with
its label in the elimination order.

Let C be a pivoting-free matrix and let TC be a weak
separator tree of GC (and note that we now assume that
row i of C is also the label in the TC-elimination order of
GC). Orient the edges of GC from the lower to the higher
ordered endpoint. When performing the elimination of C,
some entries that were zero in C become nonzero. Such
entries are called fill-ins. So, let G∗C denote the fill-in graph
after elimination. There is an edge (u, v) in G∗C if (u, v) ∈
GC or if (u, v) is a fill-in. It is easy to see (cf. [7]) that fill-
ins cannot cross separators. Hence, if TC is an (O(nβ), α)-
weak separator tree then the out-degree of any vertex in
G∗C is O(nβ). Another important observation of Gilbert and
Tarjan (see Theorem 4 in [7]) is that if the maximum degree
of GC is bounded then the total number of edges of G∗C is
O(n log n).

During the elimination process, when we reach step i and
consider entry (i, i), we only need to eliminate the nonzero
entries below it (and to its right; but these are the same since
the matrix is symmetric). Hence, doing naive elimination, the
total operation count is O(

∑n
i=1 d

∗(i)2) where d∗(i) is the
out-degree of i in G∗C . Since

∑n
i=1 d

∗(i) = O(n log n), this
already yields an O(n1+β log n) operation count, even when
using the naive method. A slightly more careful analysis
given in [7] shows that the total naive operation count is
only O(n1+β). By plugging in the fast Gaussian elimination
method of [2], instead of the naive method, Lipton, Rose,
and Tarjan observed that the total operation count reduces
to O(nωβ). To summarize, the result of Gilbert and Tarjan
is stated in the following lemma.

Lemma 9 Let C be a pivoting-free matrix of order n with a
bounded number of nonzero entries in each row and column,

and assume that an (O(nβ), α)-weak separator tree for GC
is given, where β ≥ 1/2. Then, a unit lower triangular
matrix L and a diagonal matrix K can be constructed in
O(nωβ) time so that C = LKLT .

We need a minor modification of the above result.

Lemma 10 Let C be a pivoting-free matrix of order n
with a bounded number of nonzero entries in each row and
column, and assume that an (O(nβ), α)-weak separator tree
for GC is given, where β ≥ 1/2. Let w ∈ Fn+1 be any
vector. Let Q be the (n+ 1)× (n+ 1) matrix obtained from
C by adding w as a last row and wT as a last column. Then,
a unit lower triangular matrix L and a diagonal matrix K
can be constructed in O(nωβ) time so that Q = LKLT .

Observe that if rank(Q) = rank(C) = n then Q is not
pivoting-free and hence K must have a unique zero in its
diagonal, in position (n+ 1, n+ 1).

III. PROOF OF THE MAIN RESULT

We state and prove our main result in its more general
setting, for which Theorem 1 is a special case.

Theorem 3 Let F be a δ-sparse hereditary family of graphs
for which there exists an algorithm A that given an n-vertex
graph in F , generates an (O(nβ), 2/3)-separation in O(nγ)
time. Then, given a system of linear equations Ax = b
where A ∈ Fn×n is non-singular, b ∈ Fn, and GA ∈ F ,
there is an algorithm that finds the unique solution of the
system in O(nωβ+nγ+n log n) time. For the fields R,Q,C
the algorithm is deterministic. For arbitrary fields (and, in
particular, for finite fields) it is a randomized Las Vegas
algorithm.

The proof of Theorem 1 follows immediately from the more
general Theorem 3. For planar graphs and bounded genus
graphs we simply use β = 1/2 and γ = 1, following
the aforementioned results of Lipton and Tarjan [13] and
Gilbert, Hutchinson and Tarjan [5]. This gives a runtime of
O(nω/2 + n log n) for these graphs (which is O(nω/2) if
ω > 2). For the class of H-minor free graphs (where H
is any fixed graph), we use the result of Reed and Wood,
stated as Lemma 7, with ε = (2ω− 3)/(3 +ω) that implies
using β = 3/(3 + ω) and γ = 3ω/(3 + ω) in Theorem 3.
Hence, the runtime obtained is this case is O(n3ω/(3+ω)).

The algorithm that proves Theorem 3 consists of two
parts, which we denote by ALG1 and ALG2. The goal of
the first part is to reduce the problem to a sparse setting that
is suitable for solving a linear system recursively.

A. Algorithm ALG1

This algorithm is given as input a linear system Ax = b
where A ∈ Fn×n is non-singular, and b ∈ Fn. The matrix is
represented via the labeled list representation of GA, and it

is assumed that GA ∈ F . The goal of ALG1 is to compute
the unique solution cT = (c1, . . . , cn) of the system.

To achieve this goal, we first apply Corollary 1 to obtain a
matrix A′ ∈ Fn+2t,n+2t and an (O(nβ), α)-weak separator
tree for GA′ as in the statement of the corollary. The running
time required for these constructions is O(nγ + n log n).

We also construct a vector b′ ∈ Fn+2t which is identical
to b in the first n coordinates, and which is zero in the
remaining 2t coordinates. Since t = O(n), it takes only
O(n) time to construct b′.

We call ALG2 and provide it as input the system A′x = b′

together with the separator tree for GA′ . Notice that since
det(A′) = det(A) this system also has a unique solution.
ALG2 returns the unique solution (c′1, . . . , c

′
n+2t) of the

system A′x = b′. Now, ALG1 returns the first n coordinates
(c′1, . . . , c

′
n) as its answer.

The overall running time of ALG1 (using ALG2 as a
“black box” and not counting the running time of ALG2)
is O(nγ + n log n). To prove the correctness of ALG1

(assuming the correctness of ALG2) we need to establish
the following lemma.

Lemma 11 Let (c1, . . . , cn) be the unique solution of Ax =
b and let (c′1, . . . , c

′
n+2t) be the unique solution of the system

A′x = b′. Then ci = c′i for i = 1, . . . , n.

Proof: Let B = [A|b] and let B′ = [A′|b′]. Let Bi and
B′i be, respectively, the matrices obtained from B and B′

by removing column i. Since det(A) = det(A′) it suffices,
by Cramer’s rule, to prove that det(Bi) = det(B′i) for i =
1, . . . , n. One way to obtain det(Bi) is by expansion of the
determinant by the last column of Bi. Hence,

det(Bi) =
n∑
j=1

(−1)n+jbjMj,i(A) .

Similarly, we can obtain det(B′i) by expansion of the
determinant by the last column of B′i.

det(B′i) =

n+2t∑
j=1

(−1)n+2t+jb′jMj,i(A
′) .

But b′j = bj for j = 1, . . . , n and b′j = 0 for j = n +
1, . . . , n+2t. Also, by Corollary 1, we have that Mj,i(A

′) =
Mj,i(A) for i = 1, . . . , n and j = 1, . . . n. Hence, for i =
1, . . . , n we have

det(B′i) =
n∑
j=1

(−1)n+2t+jbjMj,i(A)

=
n∑
j=1

(−1)n+jbjMj,i(A)

= det(Bi) .

B. Algorithm ALG2

Algorithm ALG2 is a recursive algorithm. To describe its
input in general we need to define the underlying graph GR
of a rectangular matrix R with n+ p rows and n columns.
This is simply defined as the underlying graph of the matrix
obtained from R by padding R with p zero columns to
the right. In other words, some vertices of GR may only
represent rows, and do not have a corresponding column.

Throughout all its recursive calls, Algorithm ALG2 will
need to invoke Lemma 3 several times, in fact, up to O(n)
times, each time with different column dimension n` and
row dimension n` + p` of a suitable matrix R`, where we
will always have n` + p` ≤ O(n). Instead of randomly
generating a diagonal matrix D` each time separately, it is
more convenient to generate only one O(n)×O(n) matrix
D, and use as D` the top n`+p` block of D. Since Lemma
3 guarantees that D` will make RT` D`R` pivoting-free with
probability at least 1−O(1/n2), we have by the union bound
that D has the property that all the corresponding D`’s
throughout all the invocations will make the corresponding
products RT` D`R` pivoting-free with probability at least
1− O(1/n). So, from here until the end of this subsection
we assume that pivoting-freeness holds for all invocations.

Recall also that if F is one of R,Q,C, then D is not
required (that is, D = I) and there is no randomization
involved.

The input to ALG2 is a linear system Rx = h where
R ∈ Fn1+p1,n1 and h ∈ Fn1+p1 . Furthermore, it is as-
sumed that the system has a unique solution (in particular,
rank(R) = n1), that each row and column of R has at
most three nonzero entries, and that p1 ≤ n1. An additional
input to ALG2 is an (O(nβ1), α)-weak separator tree for GR,
which we denote by TR. Let Z denote the set of vertices of
GR associated with the root of TR, and let N(Z) denote
the neighbors of Z in GR. We assume, without loss of
generality, that the vertices of Z ∪ N(Z) are the bottom
indices of R (if this is not the case we can just switch the
order of the linked lists representing GR to ensure this fact).

The goal of ALG2 is to compute the unique solution for
the system Rx = h. Notice that the initial call to ALG2 from
ALG1 satisfies these requirements with p1 = 0, R = A′,
and n1 = n+ 2t.

To achieve its goal, ALG2 operates as follows. Recall that
C = RTDn1+p1R is assumed to be pivoting-free. Since R
has at most 3 nonzero entries in each row or column, C
has at most 7 nonzero entries in each row or column, and,
furthermore, C is constructed in O(n1) time.

Another important observation (see also [15] for the same
observation) is that GC is the square of the graph GR (a
vertex of GC has as its neighbors all the vertices within
distance at most 2 in GR). This observation shows that we
can construct an (O(nβ1), α)-weak separator tree for GC ,
denoted by TC , in linear time, from the separator tree TR
of GR. It will be precisely the same tree, but the vertices of

GC assigned to a node of x ∈ TC will be different from the
vertices assigned to the same node in TR. Let Vx(R) be the
set of vertices assigned to node x in TR. We define Vx(C)
as follows. For the root vertex, take Vroot(C) = Z ∪N(Z).
Notice that since GR has maximum degree 3, |Z∪N(Z)| ≤
4|Z| and notice that Z∪N(Z) is now a separator of GC , as
required. Now, mark all the vertices of Vroot(C) as taken.
For a general node x ∈ TC , also take Vx(C) to be the yet
un-taken vertices of Vx(R) ∪N(Vx(R)), and so on.

In addition to constructing C, we also “construct” Q =
BTDB where B = [R|h]. The only difference between Q
which is a square symmetric matrix of order n + 1, and
C = RTDR, which is square symmetric of order n, is that
Q has an additional vector w as a last row and last column.
The extra time required to construct w is clearly O(n1+p1).

We may now apply the algorithm of Lemma 10 to C and
w. As guaranteed by the lemma, we construct, in O(nωβ1)
time, matrices L and K so that Q = LKLT . By Lemma
4, we may now compute all the minors Mi(Q) for i ∈ Z ∪
N(Z), since they (together with the index n1+p1+1 which
corresponds to the last row w) are the bottom indices of Q.
The time required is O(|Z ∪N(Z)|ω). Since |Z| = O(nβ1)
and since |N(Z)| ≤ 3|Z|, this is only O(nωβ1) time.

By Lemma 2, we can use these computed minors to obtain
c2i for all i ∈ Z∪N(Z). To obtain ci we use the interpolation
argument, as described after Lemma 1, working with the
system Rx = a + h where a is the sum of the columns
of R. Recall that this returns the squares (c1 + 1)2 for all
i ∈ Z ∪ N(Z) and that ci is obtained by ci = ((c1 +
1)2 − c2i − 1)2−1 for i ∈ Z ∪N(Z) (recall also that if the
field has characteristic 2 then c2i already uniquely defines ci
and there is no need to apply interpolation). We have thus
shown how to compute, in O(nωβ1) time, the values ci for
all i ∈ Z ∪N(Z).

But we are interested in the complete solution of Rx = h,
not just the solution for the variables that correspond to the
root separator Z and its neighbors N(Z). Here is where
recursion comes into play. Let us simplify the system Rx =
h by replacing the unknowns xi for i ∈ Z∪N(Z) with their
actual computed values. This possibly causes some equations
to be eliminated (equations that involve only variables of
Z ∪N(Z)), and some equations may become shorter. Since
R is represented in sparse form, the simplified system R′x =
h′ is computed in O(n1 + p1) = O(n1) time.

The crucial argument is that we can now partition the sim-
plified system into two sub-systems, each having a unique
solution, and apply ALG2 recursively to each subsystem.
Let (X,Y, Z) be the separation defined by the root of TR.
Indeed, let R1x = h1 be the system that corresponds,
after simplification, only to equations that contain variables
of X \ N(Z). Let R2x = h2 be the set of equations
that corresponds, after simplification, only to equations that
contain variables of Y \N(Z). Notice that R1 has precisely
n1,1 = |X \ N(Z)| columns, but may have more rows,

possibly even |X| rows. Hence R1 has n1,1 + p1,1 rows
where p1,1 ≤ |N(Z)| = O(nβ1). Similarly, R2 has n1,2+p1,2
rows and n1,2 columns where n1,2 = |Y \ N(Z)| and
p1,2 = O(nβ1). Also, since Rx = h had a unique solution,
we also have that Rix = hi each have a unique solution.
Obtaining the separator trees for R1 and R2 is trivial. These
are just the two subtrees rooted by the children of the root
of TR (in fact, we even gain a bit since vertices of N(Z)
are also eliminated from the sets that correspond to nodes
in these two subtrees). The recursion is hence on systems of
total column sum n1,1+n1,2 ≤ n1 and n1,i ≤ αn1, and total
row sum n1,1 + n1,2 + p1,1 + p1,2 ≤ |X| + |Y | ≤ n1. The
standard analysis of the total running time of all recursive
calls is, therefore, O(nωβ1 + n1 log n1), as required.

The total running time of ALG2, starting from the initial
invocation from ALG1, is, therefore, O(nωβ + n log n), as
required. This completes the proof of Theorem 3, as the
overall running time of all three parts is O(nωβ + nγ +
n log n).

IV. CONCLUDING REMARKS

The running times in Theorem 1, and, in its more general
form of Theorem 3, are stated in terms of the matrix
multiplication exponent, ω. The algorithm from [3] which
yields ω < 2.376, is only theoretical, and it presently
has no practical implementation for reasonable values of
n. However, it is important to note that our main result,
as well as the original nested dissection method, have
practical implementations even if we use the naive matrix
multiplication with ω = 3. In this case, the running times of
our algorithm, for the case of planar graphs, bounded-genus
graphs, and also H-minor-free graphs all become O(n1.5).
It is important to note that if we use ω = 3 (naive matrix
multiplication) then all ingredients of our algorithm become
practically implementable. In fact, for reasonable sizes of
n (starting from several hundreds) one can use Strassen’s
algorithm for fast matrix multiplication [22], which has an
easy implementation, and for which ω < 2.81.

As mentioned in the introduction, when the matrix A and
the vector b have bounded integer entries, and the system
is to be solved over Q, we can state our running times in
terms of bit complexity. The standard approach in this case
is to perform all operations over some large finite field Fp
where p is a prime which is larger than any (absolute value
of a) determinant that we may encounter in our algorithm.
This will cause all the (absolute) determinants and all the
minors that are computed by our algorithm to have the
same value in Fp as they would have over the integers.
Since n × n matrices with bounded integer entries cannot
have determinants that are larger than nO(n), it suffices to
choose p = nO(n). Since in Fp, each arithmetic operation
requires O(log p) time, this amounts, in our case, to Õ(n)
time (bit complexity) for each arithmetic operation. Hence,
in the bounded integer case, the bit-complexity of Theorem

1 for planar graphs and bounded-genus graphs becomes
Õ(n1+ω/2). For H-minor free graphs, we notice that Lemma
8 is purely combinatorial, and is applied only once in ALG1.
Hence, we can use it with β = 1/2 and γ = 1.5, where
A is the algorithm from [1]. The overall bit complexity
of Theorem 1 when applied to H-minor free graphs then
becomes Õ(n1+ω/2 + n1.5) = Õ(n1+ω/2).

Finally, the very recent result of Kawarabayashi and Reed
[11] mentioned after Lemma 7, when used instead of Lemma
7, yields in Theorem 1 a running time of O(nω/2) also in
the fixed excluded minor case, as long as ω > 2 + ε for any
fixed ε > 0.

Acknowledgment The research of Noga Alon has been
supported in part by an ERC Advanced grant.

REFERENCES

[1] N. Alon, P.D. Seymour, and R. Thomas. A separator theorem
for nonplanar graphs. Journal of the American Mathematical
Society, 3(4):801–808, 1990.

[2] J. Bunch and J. Hopcroft. Triangular factorization and
inversion by fast matrix multiplication. Mathematics of
Computation, 28:231–236, 1974.

[3] D. Coppersmith and S. Winograd. Matrix multiplication via
arithmetic progressions. Journal of Symbolic Computation,
9:251–280, 1990.

[4] W. Eberly, M. Giesbrecht, P. Giorgi, A. Storjohann, and
G. Villard. Solving sparse rational linear systems. Proceed-
ings of the 2006 International Symposium on Symbolic and
Algebraic Computation (ISSAC), 63–70, 2006.

[5] J.R. Gilbert, J.P. Hutchinson, and R.E. Tarjan. A separator
theorem for graphs of bounded genus. Journal of Algorithms
5(3):391–407, 1984.

[6] A. George. Nested dissection of a regular finite element mesh.
SIAM Journal on Numerical Analysis, 10:345–363, 1973.

[7] J.R. Gilbert and R.E. Tarjan. The analysis of a nested
dissection algorithm. Numerische Mathematik, 50(4):377-
404, 1987.

[8] J. Håstad. Some optimal inapproximability results. Journal
of the ACM, 48(4):798–859, 2001.

[9] R.A. Horn and C.R. Johnson. Matrix Analysis, Cambridge
University Press, London, 1990.

[10] O.H. Ibarra, S. Moran, and R. Hui. A Generalization of the
Fast LUP Matrix Decomposition Algorithm and Applications.
Journal of Algorithms 3(1): 45–56, 1982.

[11] K. Kawarabayashi and B. Reed. A separator theorem in
minor-closed classes. Proceedings of the 51st Annual IEEE
Symposium on Foundations of Computer Science (FOCS), this
proceedings, 2010.

[12] R.J. Lipton, D.J. Rose, and R.E. Tarjan. Generalized nested
dissection. SIAM Journal on Numerical Analysis, 16(2):346–
358, 1979.

[13] R.J. Lipton and R.E. Tarjan. A separator theorem for planar
graphs. SIAM Journal on Applied Mathematics, 36(2):177–
189, 1979.

[14] B. Mohar. A linear time algorithm for embedding graphs in
an arbitrary surface. SIAM Journal on Discrete Mathematics
12(1):6–26, 1999.

[15] M. Mucha and P. Sankowski. Maximum matchings in planar
graphs via Gaussian Elimination. Algorithmica, 45(1):3–20,
2006.

[16] S.A. Plotkin, S. Rao, and W.D. Smith. Shallow excluded mi-
nors and improved graph decompositions. Proceedings of the
5th Annual ACM/SIAM Symposium on Discrete Algorithms
(SODA), 462–470, 1994.

[17] B. Reed and D.R. Wood. A linear-time algorithm to find a
separator in a graph excluding a minor. ACM Transactions
on Algorithms, 5(4):#39, 2009.

[18] J.T. Schwartz. Fast probabilistic algorithms for verification of
polynomial identities. Journal of the ACM, 27(4):701–717,
1980.

[19] V. Shoup. Fast construction of irreducible polynomials over
finite fields. Journal of Symbolic Computation, 17(5):371–
391, 1994.

[20] D.A. Spielman and S. Teng. Nearly-linear time algorithms
for graph partitioning, graph sparsification, and solving linear
systems. Proceedings of the 36th Annual ACM Symposium
on Theory of Computing (STOC), 81–90, 2004.

[21] D.A. Spielman and S. Teng. Spectral partitioning works:
Planar graphs and finite element meshes. Proceedings of the
37th IEEE Symposium on Foundations of Computer Science
(FOCS), 96–105, 1996.

[22] V. Strassen. Gaussian Elimination is not Optimal. Numerische
Mathematik, 13:354–356, 1969.

[23] D.H. Wiedemann. Solving sparse linear equations over finite
fields. IEEE Transactions on Information Theory, 32(1):54-
62, 1986.

[24] D.B. Wilson. Determinant algorithms for random planar
structures. Proceedings of the 8th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 258–267, 1997.

[25] R. Yuster. Matrix sparsification for rank and determinant
computations via nested dissection. Proceedings of the
49th IEEE Symposium on Foundations of Computer Science
(FOCS), 137–145, 2008.

[26] R. Yuster and U. Zwick. Maximum matching in graphs with
an excluded minor. Proceedings of the Eighteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA) 108–
117, 2007.

[27] R. Zippel. Probabilistic algorithms for sparse polynomials.
Proceedings of Symbolic and Algebraic Computation (EU-
ROSAM), Lecture Notes in Computer Science 72:216–226,
1979.

