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Abstract—The question of polynomial learnability of proba-
bility distributions, particularly Gaussian mixture distributions,
has recently received significant attention in theoretical computer
science and machine learning. However, despite major progress,
the general question of polynomial learnability of Gaussian
mixture distributions still remained open. The current work
resolves the question of polynomial learnability for Gaussian
mixtures in high dimension with an arbitrary fixed number of
components. Specifically, we show that parameters of a Gaussian
mixture distribution with fixed number of components can be
learned using a sample whose size is polynomial in dimension
and all other parameters.

The result on learning Gaussian mixtures relies on an analysis
of distributions belonging to what we call “polynomial families”
in low dimension. These families are characterized by their
moments being polynomial in parameters and include almost all
common probability distributions as well as their mixtures and
products. Using tools from real algebraic geometry, we show that
parameters of any distribution belonging to such a family can
be learned in polynomial time and using a polynomial number
of sample points. The result on learning polynomial families is
quite general and is of independent interest.

To estimate parameters of a Gaussian mixture distribution
in high dimensions, we provide a deterministic algorithm for
dimensionality reduction. This allows us to reduce learning a
high-dimensional mixture to a polynomial number of parameter
estimations in low dimension. Combining this reduction with
the results on polynomial families yields our result on learning
arbitrary Gaussian mixtures in high dimensions.

Index Terms—Gaussian mixture learning, polynomial learn-
ability

I. INTRODUCTION

Estimating parameters of a model from sampled data is
one of the oldest and most general problems of statistical
inference. Given a number of samples, one needs to choose a
distribution that best fits the observed data. While traditionally
theoretical analysis in the statistical literature has concentrated
on rates (e.g., minimax rates), in recent years other compu-
tational aspects of this problem, especially dependence on
dimension of the space, have attracted attention. In particular,
a recent line of work in the theoretical computer science and
learning communities has been concerned with learning the
distribution in time and using a number of samples, polynomial
in parameters and the dimension of the space. This effort has
been particularly directed at the family of Gaussian Mixture
models due to their simple formulation and widespread use in
applications spanning areas such as computer vision, speech
recognition, and many others (see, e.g.,[1], [2], [3]). This line

Author Min. Separation Description
Dasgupta [4], 1999

√
n Gaussian mixtures, mild assumptions

Dasgupta-Schulman [5], 2000 n
1
4 Spherical Gaussian mixtures

Arora-Kannan [6], 2001 n
1
4 Gaussian mixtures

Vempala-Wang [7], 2002 k
1
4 Spherical Gaussian mixtures

Kannan-Salmasian-Vempala [8], 2005 k
3
2 Gaussian mixtures, log-concave distributions

Achlioptas-McSherry [9], 2005 k +
√
k logn Gaussian mixtures

Feldman-Servedio-O’Donnell [16], 2006 > 0 Axis aligned Gaussians, no param. estimation
Belkin-Sinha [17], 2010 > 0 Identical spherical Gaussian mixtures
Kalai-Moitra-Valiant [18], 2010 ≥ 0 Gaussian mixtures with two components
This paper, 2010 ≥ 0 Gaussian mixtures

TABLE I
PARTIAL SUMMARY OF RESULTS ON GAUSSIAN MIXTURE MODEL

LEARNING.

of research started with the work of Dasgupta [4], who was
the first to show that learning the parameters of a Gaussian
mixture distribution in time polynomial in the dimension of
the space n was possible at all. This work has been refined
and extended in a number of consequent papers. The results
in [4] required separation between mixture components on the
order of

√
n. That was later improved to of Ω(n

1
4 ) in [5]

for mixtures of spherical Gaussians and in [6] for general
Gaussians. The separation requirement was further reduced
and made independent of n to the order of Ω(k

1
4 ) in [7] for a

mixture of k spherical Gaussians and to the order of Ω(k
3
2

ϵ2 )
in [8] for logconcave distributions. In [9] the separation
requirement was further reduced to Ω(k +

√
k log n). An

extension of PCA called isotropic PCA was introduced in [10]
to learn mixtures of Gaussians when any pair of Gaussian
components is separated by a hyperplane having very small
overlap along the hyperplane direction (so-called “pancake
layering problem”). A number of recent papers [11], [12], [13],
[14], [15] addressed related problems, such as learning mixture
of product distributions and heavy tailed distributions.

However all of these papers assumed a minimum separation
between the components, which is an increasing function of
the dimension n and/or the number of components k. The
general question of learning parameters of a distribution with-
out any separation conditions, remained open. The first result
in that direction was obtained in Feldman, et al., [16], which
showed that the density (but not the parameters) of mixtures
of axis aligned Gaussians can be learned in polynomial time
using the method of moments.

Very recently two papers [17], [18] independently addressed
two special cases of Gaussian mixture learning without sepa-
ration assumption. In Kalai, et al., [18] the authors showed that
a mixture of two Gaussians with arbitrary covariance matrices
can be learned in polynomial time. The technique relies on a



randomized algorithm to reduce the problem to one dimension.
The key argument of the paper is based on deconvolving the
one-dimensional mixture to increase the separation between
the components and carefully analyzing the moments of the
deconvolved mixture in order to apply the method of moments.
In [17] it is shown that a mixture of k identical spherical
Gaussians can be learned in time polynomial in dimension.
The key result is based on analyzing the Fourier transform of
the distribution in one dimension to give a lower bound on
the norm. However, it is not clear whether the techniques of
either [18] or [17] could be applied to the general case with
an arbitrary number of components and covariance matrices.

In this paper we resolve the polynomial learnability prob-
lem by proving that there exists a polynomial algorithm to
estimate parameters of a general high-dimensional mixture
with arbitrary fixed number of Gaussians components without
any additional assumptions. Table I briefly summarizes the
progress in the area and our result.

Our main result for Gaussian mixtures relies on a quite
general result of independent interest on learning what we call
polynomial families. These families are characterized by their
moments being polynomial in the parameters of a distribution.
It turns out that almost all common distribution families, e.g.,
Gaussian, exponential, uniform, Laplace, binomial, Poisson
and a number of others as well as their mixtures and (tensor)
products have this property. A partial list of one dimensional
distributions and description of their moments are presented
in Table II in Appendix A. Our technique uses methods of
real algebraic geometry and combines them with the classical
method of moments (originally introduced by Pearson in [19]
to analyze Gaussian mixtures).

We note that there have been applications of algebraic
geometry in the field of statistics, particularly in conditional
independence testing and likelihood estimation for discrete
distributions and exponential families (see, e.g., [20]).

Below we give a brief summary of the main results and the
structure of the paper.
Brief outline of the paper.
Section II. We start Section II by introducing the problem of
parameter learning and defining the notion of a polynomial
family. We proceed to prove the main result showing that
parameters of a distribution from a polynomial family can
be learned with confidence 1 − δ up to precision ϵ using
the number of samples poly( 1δ ,max( 1ϵ ,

1
R ), B), where R is

the radius of identifiability, a measure of intrinsic hardness of
unique parameter identification for a distribution1 and the set
of parameters are contained within a ball of radius B. In fact,
the result is more general, even if the radius of identifiability is
zero, parameters can still be learned up to a certain equivalence
relation defined in the paper.

The proof consists of the two main steps. The first step
uses the Hilbert basis theorem for an appropriately defined
ideal in the ring of polynomials to show that a fixed set of

1For example, it is impossible to identify mixing coefficients of a mixture
of two Gaussians with identical means and variances, thus in that case R = 0.
See Section III for the detailed analysis of Gaussian mixtures.

(possibly high-dimensional) moments uniquely identifies the
distribution.

In the second step, we pose parameter estimation problem
as a system of quantified algebraic equations and inequalities
using the finite set of moments obtained in the first step.
We use quantifier elimination for semi-algebraic sets (Tarski-
Seidenberg theorem) to prove that there exists a polynomial
algorithm for parameter learning.
Section III. In Section III we prove our main results on
learning Gaussian mixture distributions in high dimensions.
The main difficulty is that the general results of Section II
cannot be applied directly since the number of parameters
increases with the dimension of the space. To overcome this
issue, we prove that the Gaussian family has the property
that we call polynomial reducibility. That is the parameters
of a distribution in n dimensions can be recovered from a
poly(n) number of low-dimensional projections. Specifically,
we show that a mixture of Gaussians with k components can
be recovered using a polynomial number of projections to
(2k2 + 2)-dimensional space. This leads us to Theorem III.1,
our main result for parameter learning on Gaussian mixtures.
We show that parameters of a Gaussian mixture can be learned
with precision ϵ and confidence 1 − δ, using the number of
samples polynomial in dimension n, 1

δ , max( 1ϵ ,
1
R ) and B. We

also provide an explicit formula for the radius of identifiability
of Gaussian mixtures, which, given an a priori bounds on the
minimum mixing weight and the minimum separation between
the mean/covariance pairs, leads to an upper bound on 1

R . For
example, our results holds even in the extreme case where all
components have the same mean, as long as the covariance
matrices are different. In Theorem III.2 we also show that in
the absence of an apriori lower bound, R can be estimated
directly from the data.

We briefly discuss other polynomially reducible families,
where a similar approach would yield results on polynomial
learnability.

In Section IV we conclude and discuss some limitations of
our results and directions of future work.

II. LEARNING POLYNOMIAL FAMILIES

In this section we prove some general learnability results for
a large class of probability distributions that we call polyno-
mial families, which are characterized by the moments being
polynomial functions of parameters. This class turns out to
contain nearly all commonly used probability distributions, as
well as their mixtures and (tensor) products. See Appendix A
(Table II) for a partial list together with the description of their
moments either explicitly or through a recurrence relation, as
well as some examples of families, which are not polynomial.

The main result in this section is Theorem II.8, which
shows that there exists an algorithm to learn the parameters
of a polynomial distribution using a polynomial number of
samples.

We start with the outline of the standard parameter learning
problem. Let pθ, θ = (θ1, . . . , θm), θ ∈ Θ ⊂ Rm be a
m-parametric family of probability distributions in Rl. The



problem of parameter learning is the following: given precision
ϵ and confidence δ, and some number n(ϵ, δ) of points
sampled from pθ, we need to provide an estimate θ̂, such that
∥θ̂ − θ∥ < ϵ with probability at least 1 − δ, where ∥ · ∥ is
Euclidean distance in Rm.

Fig. 1. If θ and ω are close to two values of
parameters θ′ and ω

′
with identical probability

distribution, then it is be hard to distinguish
between them from sampled data, even when
∥θ − ω∥ is large.

However, for
many families
identifying
the values of
parameters
uniquely is
impossible,
due to the fact
that several
different values
of parameters
may correspond
to the same
probability
distribution.
Moreover, if
two values of
parameters, say,

θ and ω are close to two values of parameters, θ′ and ω′

respectively, which have identical probability distributions,
then it may be hard to distinguish between them. This
situation is illustrated in Fig. 1. These observations suggests
that a more general formulation of learning distribution
parameters needs to take these into account. A mathematical
formalization of the more general of learnability will be
given in Eq.1, which defines a notion of a neighborhood
taking parameters with identical probability distribution into
account. An ϵ-“neighborhood” of θ, N (θ, ϵ), is shown in gray
in Fig. 1. We will also introduce the notion of the radius of
identifiability R(θ) (definition II.9) to give a quantification of
how hard it may be to identify the parameters. For example,
parameters θ for which R(θ) = 0 cannot be identified given
any amount of data. In Fig. 1, the radius of identifiability
R(θ) is equal to ϵ′.

For mixtures of Gaussians any permutation of the mixture
components has the same distribution, while a component with
zero mixing weight may have arbitrary mean/covariance. If
two components have the same mean/covariance pair, then
the mixing coefficients are not defined uniquely. However,
assuming that the mean/variance pairs for any two components
are different and that the mixing coefficients are non-zero,
the parameters are defined uniquely up to a permutation of
components (see Section II).

Our main Theorem II.8 applies even when parameters of a
probability distributions are not defined uniquly, including the
standard definition of parameter learning as a special case (see
Corollary II.10 and Corollary II.11).

In Subsection II-A we prove the basic properties of poly-
nomial families, including the key result, Theorem II.3, which
shows that a finite set of moments uniquely determines the
distribution.

In Subsection II-B we define the extended notion of a
neighborhood N (θ, ϵ) and discuss its basic properties. We
proceed to obtain the main technical result, a lower bound
in Theorem II.5. This, together with the upper bound in
Proposition II.7 allows us to set up a grid search to prove the
main Theorem II.8. We also define the radius of identifiability,
and derive Corollary II.10 and Corollary II.11.

A. Polynomial Families and Finite Sets of Moments

We start by assuming that the parameter set Θ is a compact
semi-algebraic subset of Rm. Recall that a semi-algebraic set
in Rm is a finite union of sets defined by a system of algebraic
equations and inequalities. A sphere, a polytope, the sets of
symmetric and orthogonal matrices are all examples of semi-
algebraic sets.

The family of semi-algebraic sets is closed under finite
union, intersection and taking complements. Importantly, the
Tarski-Seidenberg theorem states that a linear projection of a
semi-algebraic set is also semi-algebraic. This is equivalent
to the elimination of quantifiers for semi-algebrac sets, which
we will need shortly. See [21] for a review of results on real
algebraic geometry.

Definition II.1 (Polynomial family). We call the family pθ
a polynomial family, if each (raw l-dimensional) moment
Mi1,...,il(θ) =

∫
xi11 . . . x

il
l dpθ of the distribution exists

and can be represented as a polynomial of the parameters
(θ1, . . . , θm). We also require that each pθ should be defined
uniquely by its moments2.

We will order the moments Mi1,...,il lexicographically and
denote them by M1(θ), . . . ,Mn(θ), . . . In the one-dimensional
case this corresponds to the standard ordering of the moments.

As it turns out, most of the common families of probabil-
ity distributions are, in fact, polynomial (see Appendix A).
Moreover, a mixture, a product or a linear transformation of
polynomial families is also a polynomial family, as stated in
the following

Lemma II.2. Let pθ, θ ∈ Θ and qω , ω ∈ Ω be polynomial
families. Then the following families are also polynomial:
(a) the family w1pθ + w2qω , w1, w2 ∈ R, w1 + w2 = 1.
(b) the family pθ,ω(x, y) = pθ(x)× pω(y), (θ, ω) ∈ Θ× Ω.
(c) the family pAθ, where A ∈ Rm×m is a fixed matrix and
Aθ ∈ Θ ⊂ Rm.

The proof follows directly from the linearity of the integral,
Fubini’s theorem and the fact that polynomial functions stay
polynomial under a linear change.

Note that a multivariate Gaussian distribution is a product
of univariate Gaussians along its principal directions of the
covariance matrix. Since the standard coordinates can be trans-
formed to principal coordinates by a linear transformation, a
multivariate Gaussian is a polynomial family. Hence a general
mixture of k multivariate normal distributions in Rl is also a
polynomial family with lk + 1

2 l(l + 1)k + k − 1 parameters.

2This is true under some mild conditions, e.g., if the moment generating
function converges in a neighborhood of zero [22].



Let us now recall that a family pθ, is called identifiable if
pθ1 ̸= pθ2 for any θ1 ̸= θ2. We will now prove the following

Theorem II.3. Let pθ be a polynomial family of distributions.
Then there exists a positive integer N , such that pθ2 = pθ1
if and only if Mi(θ1) = Mi(θ2) for all i = 1, . . . , N . In the
case when the family pθ is identifiable, the first N moments
are sufficient to uniquely identify the parameter θ.

PROOF:
Since pθ, θ = (θ1, . . . , θm) is a polynomial family, each
Mi(θ) is a polynomial of θ. Let θ1 = (θ11, . . . , θ

m
1 ) and

θ2 = (θ12, . . . , θ
m
2 ). Let

Pi(θ
1
1, . . . , θ

m
1 , θ

1
2, . . . , θ

m
2 )

def
= Mi(θ1)−Mi(θ2)

be a polynomial of 2m variables. Now let Ij be the ideal
in the ring of polynomials of 2m variables generated by the
polynomials P1, . . . , Pj . Thus we have an increasing sequence
of ideals I1 ⊂ I2 ⊂ I3 . . . Let I = ∪∞

j=1 Ij . By the
Hilbert basis theorem, the ideal I is finitely generated, which
implies that for some N large enough, IN contains all of the
generators. Therefore for any M ≥ N we can write

PM (θ1, θ2) =
N∑
i=1

ai(θ1, θ2)Pi(θ1, θ2)

for some polynomials ai. Thus if Pi(θ1, θ2) = 0 for i =
1, . . . , N then Pi(θ1, θ2) = 0 for any i. Recalling the definition
of PM , we conclude that all moments of pθ1 and pθ2 coincide
if and only if the first N moments of these distributions are the
same. Since the sequence of moments defines the distribution
uniquely, the statement of the theorem follows. �

B. Learning Polynomial Families

We will now introduce a notion of an ϵ-“neighbourhood” of
a point, which takes into account that different parameters may
have identical probability distribution. We proceed to prove
the main Theorem II.8 and a few corollaries, showing that the
standard parameter learning problem becomes a special case
of the result.

Let E(θ) = {ω|pω = pθ} be the set of parameters ω which
have distributions same as pθ. We note that the distributions
corresponding to different values of parameters in the set E(θ)
are identical and hence cannot be distinguished from each
other given any amount of sampled data. We now define

N (θ, ϵ) = {ω ∈ Θ| ∃ ω′, θ′ ∈ Θ,∃ ϵ′ < ϵ, such that

∥ω − ω′∥ < ϵ′, ω′ ∈ E(θ′), ∥θ′ − θ∥ < ϵ− ϵ′}(1)

In other words, ω belongs to N (θ, ϵ) if it is within ϵ′ < ϵ
distance of a parameter value which has the same probability
distribution as a parameter value within ϵ − ϵ′ of θ. This
definition is illustrated graphically in Fig. 1. We observe the
following properties of N (θ, ϵ):

1) (Symmetry) If θ1 ∈ N (θ2, ϵ) then θ2 ∈ N (θ1, ϵ).
2) (ϵ-ball) An ϵ-ball B(θ, ϵ) around θ is contained in

N (θ, ϵ). If B(θ, ϵ) is an identifiable family, then
B(θ, ϵ) = N (θ, ϵ).

3) (Equivalence) If pθ1 = pθ2 , then θ1 ∈ N (θ2, ϵ) for any
ϵ > 0.

Thus N (θ, ϵ) can be viewed as an “ϵ-ball” around θ taking
probability distribution into account. For example, values of
parameters with identical probability distributions cannot be
distinguished by this metric, which is consistent with statistical
identifiability.

Lemma II.4. N (θ, ϵ) is an open semi-algebraic set.

PROOF:N (θ, ϵ) is open since, a sufficiently small open ball
around any point ω ∈ N (θ, ϵ) is also contained in N (θ, ϵ).
To see that it is algebraic we recall that by Theorem II.3 there
exists an N , such that θ1 ∈ E(θ2) if and only if

Q(θ1, θ2)
def
=

N∑
i=0

(Mi(θ1)−Mi(θ2))
2 = 0 (2)

which is an algebraic condition. Hence, by applying the Tarski-
Seidenberg theorem to eliminate the existential quantifiers in
Eq. 1, we see that N (θ, ϵ) is semi-algebraic. �
Theorem II.5 (Lower bound). Let pθ be a polynomial family.
There exists N ∈ N and t > 0, such that for any sufficiently
small ϵ > 0 and any θ1, θ2 ∈ Θ, if |Mi(θ1)−Mi(θ2)| > ϵ for
at least one i ≤ N , then θ1 /∈ N (θ2, O(ϵt)).

PROOF:
Choose N as in Theorem II.3. We start by observing we can
replace the condition

|Mi(θ1)−Mi(θ2)| > ϵ by

Q(θ1, θ2)
def
=

N∑
i=1

|Mi(θ1)−Mi(θ2)|2 > Nϵ2

in the statement of the theorem. Since the existence of t is not
affected by the substitution of Nϵ2, instead of ϵ, to simplify
the matters we will assume that Q(θ1, θ2) > ϵ.

From Theorem II.3 we recall that if for some i ≤ N
|Q(θ1, θ2)| ̸= 0 then pθ1 ̸= pθ2 . Let δ be a positive real
number. Consider the set X = {θ1, θ2|θ1 ∈ N (θ2, δ)}. From
Lemma II.4 and the fact that the relationship θ1 ∈ N (θ2, δ)
is symmetric, it follows that X is an open subset of Θ × Θ.
Hence the set Θ×Θ−X = {θ1, θ2 ∈ Θ, θ1 /∈ N (θ2, δ))} is
compact and since Q(θ1, θ2) > 0 for any (θ1, θ2) ∈ Θ×Θ−X
we have

inf
θ1,θ2∈Θ,θ1 /∈N (θ2,δ))

Q(θ1, θ2) > 0 (3)

By an argument following that in Lemma II.4 we see that X
and hence its complement are semi-algebraic sets.

Consider now the set Sδ , δ > 0 given by the following
expression

Sδ = {ϵ > 0 | ∀θ1,θ2∈Θ (θ1 /∈ N (θ2, δ)) ⇒ Q(θ1, θ2) > ϵ}.
(4)

Since these logical statements can be expressed as semi-
algebraic conditions, by the Tarski-Seidenberg theorem Sδ is
a semi-algebraic subset of R. Let ϵ(δ) = inf Sδ . From Eq.3
we have that ϵ(δ) > 0 for any positive δ. Since the number



ϵ(δ) > 0 is easily written using quantifiers and algebraic
conditions, the Tarski-Seidenberg theorem implies that it is a
semi-algebraic set and hence satisfies some algebraic equation3

whose coefficients are polynomial in δ.
We write this polynomial as q(x) = qM (δ)xM+. . .+q0(δ),

such that q(ϵ(δ)) = 0. We can assume that q0(δ) is not
identically zero (dividing by an appropriate power of x if
necessary). From Lemma II.6 we see that if q(ϵ(δ)) = 0 then

ϵ(δ) >
|q0(δ)|∑M
i=1 |qi(δ)|

.

The last quantity is a ratio of two polynomials in δ and can
thus be lower bounded by C(δt

′
), so that ϵ(δ) > Cδt

′
for

some t′ > 0, when δ is sufficiently small.
Putting t = 1

t′ and recalling the definition of Sδ , we see that
Q(θ1, θ2) < ϵ, implies θ1 ∈ N (θ2, O(ϵt)), which completes
the proof of the theorem. �
Lemma II.6. Let δ be a positive root of the polynomial q(x) =
aMx

M + . . .+ a0, a0 ̸= 0. Then δ > min(
∑M

i=1 |ai|
|a0| , 1).

PROOF:We have δ(
∑M
i=1 aiδ

i−1) = −a0. For 0 < δ < 1 we
have

∑M
i=1 aiδ

i−1 <
∑M
i=1 |ai|, and the statement follows. �

Proposition II.7 (Upper bound). Let pθ be a polynomial
family. For any N ∈ N there exists a C > 0, such that

N∑
i=1

|Mi(θ1)−Mi(θ2)|2 < C∥θ1 − θ2∥2.

If Θ is contained in a ball of radius B, then C is bounded
from above by a polynomial of B.

PROOF:To prove the claim it is sufficient to show that
each summand |Mi(θ1) − Mi(θ2)|2 is bounded from above
by C ′∥θ1 − θ2∥2, which is equivalent to proving that
|Mi(θ1)−Mi(θ2)|

∥θ1−θ2∥ <
√
C ′. We now observe that by the mean

value theorem

|Mi(θ1)−Mi(θ2)|
∥θ1 − θ2∥

≤ sup
θ∈Θ

∥grad(Mi)(θ)∥

where grad is the gradient of the function Mi. Since Mi

is a polynomial, all elements of the vector grad(Mi) are
polynomial in θ. Therefore

sup
θ∈Θ

∥grad(Mi)(θ)∥ < C ′′Bt

where t is the maximum degree of these polynomials and C ′′

is an appropriate constant. This implies the statement of the
Proposition. �

Now we have the following:

Theorem II.8. There exists an algorithm, which, given ϵ > 0
and 1 > δ > 0, and P ( 1ϵ ,

1
δ , B) samples from pθ, θ ∈ Θ,

where Θ is the set of parameters within a ball of radius B and
P is a polynomial depending only on the distribution family,

3Note that strict inequalities alone cannot define a set consisting of a single
point.

outputs θ̂, s.t. θ̂ ∈ N (θ, ϵ) with probability at least 1− δ. The
algorithm also requires a polynomial number of operations.

PROOF:From Theorem II.5 it follows that there exists an
N ∈ N and t > 0, such that if ∀i=1,...,N |Mi(θ̂)−Mi(θ)| < ϵt,
than θ̂ ∈ N (θ, ϵ). Thus it is sufficient to estimate each moment
within O(ϵt). From Lemma D.1 (moment estimation) this can
be done with probability 1−δ given a number of sample points
poly( 1

ϵt ,
1
δ , B) = poly( 1ϵ ,

1
δ , B) by computing the empirical

moments of the sample. Once we have precise estimates of
the first N moments a simple grid search suffices to find the
corresponding values of parameters. Indeed, suppose that Θ
is contained in a ball of radius B in Rm. Then the desired
estimate can be obtained by conducting a grid search over
a rectangular grid of size O( ϵt

N
√
m
) and invoking Proposi-

tion II.7. We see that the number of operations is polynomial
in ϵ and the main theorem is proved. �

To simplify further discussion we will now define the radius
of identifiability:

Definition II.9. As before let pθ, θ ∈ Θ be a family of
probability distributions. For each θ we define the radius of
identifiability R(θ) as the supremum of the following set

{r > 0|∀θ1 ̸= θ2, (∥θ1−θ∥ < r, ∥θ2−θ∥ < r) ⇒ (pθ1 ̸= pθ2)}

In other words, R(θ) is the largest number, such that the
open ball of radius R(θ) around θ intersected with Θ is an
identifiable (sub)family of probability distributions. If no such
ball exists, R(θ) = 0.

From Theorem II.8 and the definition of the radius of
identifiability we have the following

Corollary II.10. There is an algorithm, which, given ϵ > 0,
for any identifiable θ ∈ Θ, where Θ is the set of parameters
within a ball of radius B, outputs θ̂ within min(ϵ,R(θ)) of θ
with probability 1− δ, using a number of sample points from
pθ polynomial in max

(
1
ϵ ,

1
R(θ)

)
, 1
δ and B.

Corollary II.11. More generally, if θ ∈ Θ, where Θ is
the set of parameters within a ball of radius B, is not
identifiable but, E(θ) = {θ1, . . . , θk} is a finite set, there
exists an algorithm, such that, given ϵ > 0, it outputs θ̂
within min(ϵ,minj R(θj)) of θi for some i ∈ {1, . . . , k} with
probability 1 − δ, using a number of sample points from pθ
polynomial in max

(
1
ϵ ,

1
minj R(θj)

)
, 1
δ and B.

This last result is what we need to analyze Gaussian mixture
model in the next Section.

Remark: It is important to note that the radius of identi-
fiability depends on the choice of family Θ. Specifically, the
radius is a decreasing function on the family of the sets Θ
ordered by inclusion.

III. GAUSSIAN DISTRIBUTIONS AND POLYNOMIALLY
REDUCIBLE HIGH DIMENSIONAL FAMILIES

The main result of this section is to show that there exists
an algorithm for estimating parameters of high-dimensional



Gaussian mixture distributions in time polynomial in the
dimension n and other parameters. We note that the techniques
from the previous section cannot be applied directly to high-
dimensional distributions since the number of parameters
generally increases with dimension. Instead our approach will
be to show that parameters of high-dimensional Gaussians
can be estimated using poly(n) linear projections to linear
subspaces, whose dimension is independent of n. We will
call this property polynomial reducibility and will also briefly
discuss some other families satisfying this condition later in
the section.

We will now specifically discuss the case of a mixture
of Gaussian distributions. Let pθ =

∑k
i=1 wiN(µi,Σi) be a

mixture of k Gaussian distributions in Rn, with means µi
and covariance matrices Σi. Let us consider the parameters
of the distribution θ = (µ1,Σ1, w1, . . . , µk,Σk, wk) as a
single vector (thus flattening the covariance matrices). We
take the usual Euclidean distance in this space (which, in
fact, corresponds to the Frobenius distance for the covariance
matrices).

We will assume that the number of components k is fixed.
We note that any permutation of the mixture components leads
to the same density function and hence cannot be identified
from data. On the other hand, it is well known ([23]) that the
density of the distribution determines the parameters uniquely
up to a permutation, if and only if any two components with
the same means have different covariance matrices and no
mixing coefficient is equal to zero.

The main result of the section is given by the following

Theorem III.1. Let pθ =
∑k
i=1 wiN(µi,Σi), θ ∈ Θ, where Θ

is the set of parameters within a ball of radius B, be a mixture
of Gaussian distributions in Rn with radius of identifiability
R(θ). Then there exists an algorithm which given ϵ > 0 and
1 > δ > 0, and poly

(
n,max

(
1
ϵ ,

1
R(θ)

)
, 1δ , B

)
samples from

pθ, with probability greater than (1− δ), outputs a parameter
vector θ̂ =

(
(µ̂1, Σ̂1, ŵ1), . . . , (µ̂k, Σ̂k, ŵk)

)
∈ Θ, such that

there exists a permutation σ : {1, 2, . . . , k} → {1, 2, . . . , k}
satisfying,
k∑
i=1

(
∥µi − µ̂σ(i)∥2 + ∥Σi − Σ̂σ(i)∥2 + |wi − ŵσ(i)|2

)
≤ ϵ2

We note that the radius of identifiability R(θ) can be
calculated explicitly from the Proposition III.3:

(R(θ))2 = min

(
1

4
min
i̸=j

(
∥µi − µj∥2 + ∥Σi − Σj∥2

)
,min

i
w2

i

)
Thus if the mean/variance pairs for any two components

are different with difference bounded from below and the
minimum mixing weight is is also bounded from below, then
we have explicit lower bound for R(θ).

In fact, even when R(θ) is not known in advance, it can be
estimated from data.

Theorem III.2. Let pθ =
∑k
i=1 wiN(µi,Σi), θ ∈ Θ, where

Θ is the set of parameters within in a ball of radius B,

be a mixture of Gaussian distributions in Rn with radius of
identifiability R(θ). Then there exists an algorithm, which,
given ϵ > 0 and 1 > δ > 0, and poly

(
n, 1ϵ ,

1
δ , B

)
samples

from pθ, outputs whether R(θ) < ϵ with probability greater
than 1− δ.

The rest of the section is structured as follows:
In subsection III-A we discuss various properties of Gaus-

sian mixture distributions. In particular we derive the formula
for the radius of identifiability (Proposition III.3) and show
that there exists a low-dimensional projection such that the
radius of identifiability changes by at most a linear factor
(Theorem III.7).

In subsection III-B we give a sketch for the proof of
the main theorem, showing how the parameters of a high-
dimensional distribution can be estimated from a polynomial
number of projections. The details of the proof as well as the
proof of Theorem III.2 are given in the appendix C.

Finally, we note that our results apply to high-dimensional
distributions which are not mixtures of Gaussians with a
fixed number of components. For example, a product of n
1-dimensional Gaussian mixture distributions each with k
components, which is a Gaussian mixture distribution in n
dimensions with kn components, can be easily learned using
our methods. The same applies to other product distributions
whose components are polynomial families.

A. Gaussian Distributions

Proposition III.3. Let pθ =
∑k
i=1 wiN(µi,Σi), θ ∈ Θ be a

family of mixtures of Gaussian distributions in Rn with non-
zero mixing weights. Then the following inequality is satisfied:

(R(θ))2 ≥ min

(
1

4
min
i̸=j

(
∥µi − µj∥2 + ∥Σi − Σj∥2

)
,min

i
w2

i

)
(5)

Moreover, suppose Θ is a convex set4 such that it contains
all possible mixing coefficients (w1, . . . , wk) for any fixed set
of means and variances5

In this case the inequality becomes an equality:

(R(θ))2 = min

(
1

4
min
i̸=j

(
∥µi − µj∥2 + ∥Σi − Σj∥2

)
,min

i
w2

i

)
(6)

In particular, the radius of identifiability is invariant under
the permutation of components.

PROOF:We will start by proving the inequality 5. Suppose that
the distributions pθ′ and pθ′′ have the same density. To prove
the inequality, we need to show that at least one of θ′, θ′′ is
no closer to θ then the right hand side of the inequality 5.

Let us first consider the case when there is no pair i ̸= j,
s.t. µ′

i = µ
′′

j and Σ′
i = Σ

′′

j . In that case that case at least
one of the mixing coefficients for one of the mixtures must
be equal to zero. That implies that either ∥θ − θ′∥ ≥ mini wi
or ∥θ − θ′′∥ ≥ mini wi, which is consistent with the 5.

4Note that requiring convexity is natural, since the set of positive definite
matrices is a convex cone.

5This requirement is unnecessarily strong, however, the precise condition,
evident from the proof, is awkward to state.



Alternatively, suppose that for some i ̸= j we have
(µ′
i,Σ

′
i) = (µ′′

j ,Σ
′′
j ). Put v′ = (µ′

i,Σ
′
i) = (µ′′

j ,Σ
′′
j ), v1 =

(µi,Σi), v2 = (µj ,Σj). We see that

∥θ′′−θ∥2+∥θ′−θ∥2 ≥ ∥v′−v1∥2+∥v′−v2∥2 ≥ 1

2
∥v1−v2∥2

=
1

2
∥µi − µj∥2 +

1

2
∥Σi − Σj∥2

Therefore, max{∥θ′−θ∥2, ∥θ′′−θ∥2} ≥ 1
4 (∥µi−µj∥

2+∥Σi−
Σj∥2) which is again consistent with Inequality 5 and together
with the first case implies the inequality.

To show Eq. 6 we need to observe that the bound is tight.
Again we consider two possible cases. If the minimum in the
right hand side of Eq. 6 is equal to the square of one of the
mixing weights, say, wi, construct θ′ by putting w′

i = 0 and
keeping the rest of the parameters of θ. We see that ∥θ′−θ∥ =
wi. By slightly perturbing µ′, we see that there exists a θ′′

arbitrarily close (but not equal)to θ′ with the same probability
density. Thus the radius of identifiability cannot exceed wi.

Alternatively the minimum in the right hand side of Eq. 6
could be equal to 1

4

(
∥µi − µj∥2 + ∥Σi − Σj∥2

)
for some i ̸=

j. Construct θ′ by putting µ′
i = µ′

j = 1
2 (µi − µj) and Σ′

i =
Σ′
j =

1
2 (Σi−Σj) and keeping the rest of the parameters of θ. It

is easy to see that ∥θ′−θ∥2 = 1
4

(
∥µi − µj∥2 + ∥Σi − Σj∥2

)
.

Note that θ′ ∈ Θ by the convexity condition. By perturbing wi
and wj slightly, and keeping the rest of parameters fixed, we
can obtain θ′′ arbitrarily close to θ′ with the same probability
density. Hence the radius of identifiability does not exceed
1
4

(
∥µi − µj∥2 + ∥Σi − Σj∥2

)
, which completes the proof. �

From the discussion above we have the following

Corollary III.4. Let Θ be a convex set, such that for any
θ ∈ Θ all mixing coefficients wi are nonzero. Then

(R(θ))2 =
1

4
min
i ̸=j

(
∥µi − µj∥2 + ∥Σi − Σj∥2

)
(7)

It is also easy to see that the radius of identifiability satisfies
a type of triangle inequality and that under any permutation
of (mean, covariance matrix, mixing weight) triples the radius
of identifiability does not change. This is expressed in the fol-
lowing two lemmas (the straightforward proofs are omitted):

Lemma III.5. Let pθ =
∑k
i=1 wiN(µi,Σi), θ ∈ Θ be a

family of mixtures of Gaussian distributions in Rn. For any
θ1, θ2 ∈ Θ such that θ1 ∈ N (θ2, ϵ) for some ϵ > 0, |R(θ1)−
R(θ2)| ≤ ϵ.

Lemma III.6. Let pθ =
∑k
i=1 wiN(µi,Σi), θ ∈ Θ be

a mixture of Gaussian distributions in Rn. Suppose θ is
represented as θ = (θ1, θ2, . . . , θk), where θi = (µi,Σi, wi)
is the mean, covariance matrix, mixing weight triple. Let
θ
′
= (θσ(1), θσ(2), . . . , θσ(2)), where σ : {1, 2, . . . , k} →

{1, 2, . . . , k} is a permutation. Then R(θ) = R(θ
′
).

From now on, we will assume that Θ is a sufficiently large
ball or cube (with the necessary conditions to make pθ a valid
probability distribution), so that we do not have to worry about
convexity and other technical properties.

We now recall that a projection of a Gaussian mixture
distribution onto a subspace is a lower-dimensional Gaussian
mixture distribution. Specifically, if pθ =

∑k
i=1 wiN(µi,Σi),

the Gaussian mixture distributions in Rn, is projected onto
a subspace S then the projection is a lower-dimensional
Gaussian mixture distribution family πS(pθ), parameterized
by PS(θ). In particular, if S is a coordinate plane then PS
is a projection operator, which is an identity mapping for the
mixing weights, an orthogonal projection onto S for the means
and the restriction operator for the covariance matrices of the
components, where each covariance matrix is projected to its
minor corresponding to the coordinates in S.

We will now state the following Theorem whose proof is
omitted due to space limitation.

Theorem III.7. Let pθ =
∑k
i=1 wiN(µi,Σi), θ ∈ Θ be a

Gaussian mixture distribution in Rn with radius of identifia-
bility R(θ). Then there exists a 2k2-dimensional coordinate
plane S, such that R(PS(θ)) ≥ 1

nR(θ).

B. Sketch of the Proof of Theorem III.1

We present a brief overview of the proof. The technical
details can be found in Appendix C. The main idea is to
show that parameters of high-dimensional Gaussian mixture
can be estimated arbitrarily well using poly(n) projections
to coordinate subspaces, whose dimension only depends on
k. Since the dimension of these lower dimensional subspaces
is independent of n, results from Section II can be used to
estimate the parameters.

Let θ = (θ1, θ2, . . . , θk), where θi = (µi,Σi, wi), be
the parameter vector after flattening the covariance matrices.
Recall that projection of pθ onto a 2k2-coordinate plane T ,
will result in a mixture πT (pθ), parameterized (with a slight
abuse of notation) by PT (θ) = (PT (θ1), PT (θ2), . . . , PT (θk)).
Step 1: Let R(θ) be the radius of identifiability. Theorem III.7
guarantees the existence of a 2k2-dimensional coordinate
subspace S, such that R(PS(θ)) ≥ 1

nR(θ).
To identify such a subspace, we take all

(
n

2k2

)
coordinate

projections. For each projection to a subspace T we estimate
the parameters using the Theorem II.8. It is important to
note that given ϵ′ as input, Theorem II.8 is guaranteed to
produce a value of parameter P̂T (θ), such that |R(P̂T (θ))−
R(PT (θ))| < ϵ′ (Lemma III.5) using a number of samples
polynomial in k and 1

ϵ′ . Applying the union bound for all
(
n

2k2

)
projections provides an estimate for the radius of identifiability
for each projection within ϵ′. Choosing ϵ′ appropriately (say,
R(θ)
2n ), and choosing the projection with the largest estimated

radius of identifiability, yields a coordinate subspace S with
a lower bounded R(PS(θ)). We use S as a starting point for
Step 2.
Step 2: By applying Corollary II.11 to the projection PS(θ),
we can estimate the mixing weights, projections of the original
means and 2k2×2k2 minors of the covariance matrices corre-
sponding to the coordinates within S. We now need to estimate
the rest of the parameters using a sample size polynomial
on n. We do this by estimating each additional coordinate



separately. That is for each coordinate i not in S we take
Si = span(S, ei), where ei is the corresponding coordinate
vector. It can be seen that the radius of identifiability does
not decrease going from S to Si. We show that the i’th
coordinate of each component mean can be estimated by
applying Corollary II.11 to the projection to Si. We repeat
this procedure for each of the n− 2k2 coordinates not in S.

To estimate the covariance matrices we proceed similarly,
except that we need to estimate entries corresponding to
pairs of coordinates (i, j). Now we have two possibilities,
since either one of i, j or both of them may not be in S.
If exactly one of them, say i, is not in S, projection to
Si defined above can be used to estimate the corresponding
entry of each covariance matrix. If both i, j are not in S, we
take the projection onto Sij = span(S, ei, ej). By applying
Corollary II.11, we show that the ij’th entry of covariance
matrices can also be estimated.

Thus, after obtaining the initial space S, the complete set of
parameters can be estimated using at most n− 2k2 +

(
n−2k2

2

)
parameter estimations for 2k2 + 1 or 2k2 + 2-dimensional
subspaces.

IV. CONCLUSION AND DISCUSSION

The results of this paper resolve the general problem of
polynomial learning of Gaussian mixture distributions in high
dimension. Our results do not require any separation assump-
tions and apply as long as the mixture is identifiable. For
example, they apply even if all components of the mixture
have the same mean distribution, as long as the covariance
matrices are different and the mixing coefficients are non-zero.

We also provide quite general results applicable to learning
various fixed-dimensional families, including mixtures and
products of a number of standard distributions.

In high dimensions, our results can be applied beyond Gaus-
sian mixture distributions with a fixed number of components.
For example, one can also learn a product of n number of
d-dimensional Gaussians mixtures with k components each
(which is a nd-dimensional Gaussian mixture distribution with
kn components).

The proof brings the techniques of algebraic geometry to
the classical method of moments, an approach that, as far as
we know, is new to this domain.

We are planning to investigate other applications in learning
of the framework presented in this paper. We also note
that the methods proposed in the paper can be turned into
implementable (and potentially practical) algorithms through
the use of tools from computational algebraic geometry ([21]).
This is also a direction of future investigation.
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APPENDIX A
SOME POLYNOMIAL FAMILIES OF DISTRIBUTIONS

In Table II, we present a partial list of probability distri-
butions which form polynomial families. Standard probability
distributions that are not polynomial are more rare to find and
include Weibull distribution and Cauchy distribution.

APPENDIX B
SEPARATION PRESERVING COORDINATE PLANES

Let pθ =
∑k
i=1 wiN(µi,Σi) be a mixture of k Gaussian

distributions in Rl, with means µi and covariance matrices
Σi. When this distribution is projected onto any lower dimen-
sional coordinate plane S, the corresponding Gaussian mixture
πS(pθ), parameterized by PS(θ), has means and covariance
matrices represented by PS(µi) and PS(Σi) respectively. We
first show that if any pair of means or pair of covariance
matrices of the original component Gaussian distributions are



Distribution θ Pdf/Pmf f(x; θ) Mgf M(t) Moments Expression

Gaussian µ, σ 1√
2πσ

e
− (x−µ)2

2σ2 eµt+
σ2t2

2

E(Xi) = µE(Xi−1) + (i− 1)σ2E(Xi−2)
E(X) = µ
E(X2) = µ2 + σ2

E(X3) = µ3 + 3µσ2

Uniform a, b 1
b−a

, a ≤ x ≤ b etb−eta

t(b−a)

E(Xi) = 1
i+1

∑i
j=1 a

jbi−j

E(X) = a+b
2

E(X2) = a2+ab+b2

3

E(X3) = a3+ab+ab2+b3

4

Gamma β,m xm−1e−x/β

βmΓ(m)
, x > 0 (1− βt)−m

E(Xi) =
∏i−1

j=0(m+ j)βi

E(X) = mβ
E(X2) = m(m+ 1)β2

E(X3) = m(m+ 1)(m+ 2)β3

Laplace µ, b 1
2b

e−
|x−µ|

b
eµt

1−b2t2

E(Xi) =
∑i

j=0
i!bjµi−j

(i−j)!
1{j is even}

E(X) = µ
E(X2) = µ2 + 2b2

E(X3) = µ3 + 6µb2

Exponential λ 1
λ
e−

x
λ , x > 0 (1− λt)−1

E(Xi) = i!λi

E(X) = λ
E(X2) = 2λ2

E(X3) = 6λ3

Chi-Square k x
k
2
−1

e
− x

2

2k/2Γ(k/2)
, x > 0 (1− 2t)−

k
2

E(Xi) = k(k + 2) · · · (k + 2i− 2)
E(X) = k
E(X2) = k(k + 2)
E(X3) = k(k + 2)(k + 4)

µ, λ
√

1
2πλx3 e

− (x−µ)2

2λµ2x e
(1−

√
1−2λµ2t)

λµ

E(Xi) = (2i− 3)λµ2E(Xi−1) + µ2E(Xi−2)
Inverse E(X) = µ

Gaussian E(X2) = λµ3

E(X3) = 3λ2µ5

Poisson λ λxe−λ

x!
eλ(e

t−1)

E(Xi) = λE(Xi−1) + λ
d(E(Xi−1))

dλ
E(X) = λ
E(X2) = λ2 + λ
E(X3) = λ3 + 3λ2 + λ

Binomial n, p
(n
x

)
px(1− p)n−x (1− p+ pet)n

E(Xi) = npE(Xi−1) + p(1− p)
d(E(Xi−1))

dp
E(X) = np
E(X2) = n(n− 1)p2 + np
E(X3) = (n3 − 3n2 + 2n)p3 + 3n(n− 1)p2 + np

Geometric p (1− 1
p
)x( 1

p
) 1

p−(p−1)et

E(Xi) =
∑∞

j=0
1
p

(
1− 1

p

)j
ji

E(X) = (p− 1)
E(X2) = (p− 1)(2p− 1)
E(X3) = (p− 1)(6p2 − 6p+ 1)

r,m
(x+r−1

r−1

)
mx

(m+1)r+x

(
1

m+1−met

)r
E(Xi) = rmE(Xi−1) +m(m+ 1)

d(E(Xi−1))
dm

Negative E(X) = rm
Binomial E(X2) = r(r + 1)m2 + rm

E(X3) = (r3 + 3r2 + 2r)m3 + 3r(r + 1)m2 + rm

TABLE II
COMMON POLYNOMIAL FAMILIES AND THEIR MOMENTS

separated, then they remain so after projecting the mixture
distribution onto some suitable lower dimensional coordinate
plane.

Lemma B.1. For any µ1, µ2, ..., µk ∈ Rl, there exists a k2-
coordinate plane S such that,

∀i,j , ∥PS(µi)− PS(µj)∥ ≥ ∥µi − µj∥
1√
l

.Lemma B.2. For any Σ1,Σ2, ...,Σk ∈ Rl×l, there exists a
k2-coordinate plane S such that,

∀i,j , ∥PS(Σi)− PS(Σj)∥ ≥ ∥Σi − Σj∥
1

l

. APPENDIX C
PROOF OF THEOREM III.1 AND THEOREM III.2

In this appendix we give the detailed proof of Theorem III.1
and Theorem III.2. We start with some preliminary Lemmas.

Lemma C.1. Let pθ =
∑k
i=1 wiN(µi,Σi), where θ is the

set of parameters within a ball of radius B, be a mixture of
Gaussian distributions in Rn with the radius of identifiability
R(θ). If θ is represented as θ = (θ1, θ2, . . . , θk), where
θi = (µi,Σi, wi) is the mean, covariance matrix, mixing
weight triple, (after flattening the covariance matrices) then
for any i ̸= j, ∥θi − θj∥ ≥ 2R(θ).

Lemma C.2. Let pθ =
∑k
i=1 wiN(µi,Σi), where θ is the

set of parameters within a ball of radius B, be a mixture
of Gaussian distributions in Rn with radius of identifiability

R(θ). Let S and T be two lower-dimensional subspaces such
that S ⊂ T . Then R(PT (θ)) ≥ R(PS(θ)).

Proof of Theorem III.1 :
Let θ = (θ1, θ2, . . . , θk), where θi = (µi,Σi, wi), be param-

eter vector after flattening the covariance matrices. Recall that
projection of pθ onto any 2k2-coordinate plane T , will result in
a mixture πT (pθ), which is parameterized (with a little abuse
of notation) by PT (θ) = (PT (θ1), PT (θ2), . . . , PT (θk)).
Details of Step 1: Let γ = min

(
R(θ)
n , ϵn

)
where R(θ)

is the radius of identifiability. Theorem III.7 guarantees the
existence of a 2k2-dimensional coordinate subspace S, such
that R(PS(θ)) ≥ 1

nR(θ) ≥ γ. To identify such a subspace,
consider all

(
n

2k2

)
coordinate projections. For any fixed projec-

tion to a 2k2-dimensional subspace T , invoking Theorem II.8
using a sample of size poly( 1γ ,

1
δ , B), (setting the precision

parameter to γ
3 ) produces a value of parameters P̂T (θ) such

that |R(P̂T (θ)) − R(PT (θ))| < γ
3 (Lemma III.5). Applying

the union bound for all
(
n

2k2

)
coordinate projections provides

an estimate for the radius of identifiability for each projection
within γ

3 . Thus invoking Theorem II.8
(
n

2k2

)
times, each

time using a sample of size poly
(

1
γ ,

1
(δ/4n2) , B

)
, (setting

the precision parameters to γ
3 and δ

4n2 respectively) and
choosing the projection with the largest estimated radius of
identifiability, yields a coordinate subspace S such that with
probability at least (1− δ

4 ), R(PS(θ)) ≥ γ
3 .

Details of Step 2: By applying Corollary II.11 to the mixture
πS(pθ), where S is obtained in Step 1, using a sample of size
poly( 1γ ,

1
δ , B), (setting the precision parameters to γ

9 and δ
4

respectively) with probability greater than (1− δ
4 ) we can get

an estimate of P̂S(θ) satisfying ∥P̂S(θ)− PS(θ)∥ ≤ γ
9 . Note

that these estimates encompass the mixing weights, projections
of the original means and 2k2× 2k2 minors of the covariance
matrices corresponding to the coordinates within S. If we let θ

′

to be PS(θ) then the estimate θ̂
′
= P̂S(θ) is, up to a permuta-

tion, within γ
9 of θ

′
with probability greater than (1− δ

4 ). Note
that the dimension of θ

′
is (k − 1) + k

(
2k2 + 2k2(2k2+1)

2

)
.

We now need to estimate the rest of the parameters using
a sample size polynomial on n. This procedure explained in
the following two sub-steps.
2a: Estimating means and part of covariance matrices

In this sub-step we estimate each additional coordinate
separately. That is for each coordinate i not in S we take
Si = span(S, ei), where ei is the corresponding coordinate
vector. For each such Si (note that there are (n − 2k2) such
(2k2 + 1)-coordinates planes corresponding to each i not
in S), we project pθ onto Si and invoke the algorithm of
Corollary II.11 (setting the precision parameters to γ

9 and
δ
4n respectively) using a sample of size poly

(
1
γ ,

1
(δ/4n) , B

)
.

Noting that radius of identifiability does not decrease going
from S to Si (Lemma C.2) and applying union bound ensures
that, with probability at least (1 − δ

4 ), each time we get an
estimate P̂Si(θ) such that ∥P̂Si(θ) − PSi(θ)∥ ≤ γ

9 . Since
PS(θ) ⊂ PSi(θ) letting ϕi = PSi(θ) \ PS(θ) to be the extra



parameters, we have for each i,

∥ϕ̂i − ϕi∥ = ∥P̂Si(θ)− PSi(θ)∥ ≤ γ

9

with probability greater than (1− δ
4 ), where ϕ̂ is the estimate

of ϕ. Since for each Si, ∀m ̸=n, ∥PSi(θm) − PSi(θn)∥ ≥ 2γ
3 ,

(using the fact R(PS(θ)) ≥ γ
3 , Lemma C.1 and Lemma C.2),

estimates of the extra parameters can be uniquely associated
to the parameters of the component Gaussian distributions
estimated in Step 2.

Letting θ
′′

to be ∪n−2k2

i=1 ϕi, we have

∥θ̂
′′

− θ
′′
∥ =


√√√√√n−2k2∑

i=1

∥ϕ̂i − ϕi∥2

 ≤

√(
γ

9

)2

(n− 2k2) <

(
γ

9

)
n

with probability greater than (1− δ
4 ), where θ̂

′′
is the estimate

of θ
′′

.
Note that the dimension of θ

′′
is k(n − 2k2)(2 + 2k2),

where each PSi(θ) \ PS(θ) encompasses i’th coordinate for
each component mean, i’th diagonal entry for each component
covariance matrix and 2k2 extra off diagonal entries for each
component covariance matrix.
2b: Estimating the remaining entries of covariance matri-
ces

To estimate the the remaining parameters of the covariance
matrices we need to estimate entries corresponding to pairs
of coordinates (i, j) when both i and j are not in S. We
consider projection onto Sij = span(S, ei, ej). For each such
projection Sij (note that there are

(
n−2k2

2

)
such (2k2 + 2)-

coordinate planes corresponding to i, j not in S), we project pθ
onto Sij and invoke the algorithm of Corollary II.11, (setting
the precision parameters to γ

9 and δ
4n2 respectively) using a

sample of size poly
(

1
γ ,

1
(δ/4n2) , B

)
. Noting that radius of

identifiability does not decrease going from S to Sij (Lemma
C.2) and applying union bound ensures that, with probability
at least (1 − δ

4 ), each time we get an estimate P̂Sij (θ) such
that ∥P̂Sij (θ) − PSij (θ)∥ ≤ γ

9 . Since PS(θ) ⊂ PSij (θ) in
each case and there are

(
n−2k2

2

)
such cases, letting ψt, t =

1, . . . ,
(
n−2k2

2

)
to be the extra parameters in each case, we

have for each t, ∥ψ̂t − ψt∥ ≤ γ
9 with probability greater than

(1− δ
4 ), where ψ̂t is the estimate of ψt. As before estimates

of these extra parameters can be uniquely associated to the
parameters of the component Gaussian distributions estimated
in Step 2.

Letting θ
′′′

to be the k
(
n−2k2

2

)
covariance parameters that

have not been estimates in the previous steps, we have θ
′′′ ⊂

∪(
n−2k2

2 )
t=1 ψt, and in particular,

∥θ̂
′′′

−θ
′′′

∥ ≤


√√√√√

(
n−2k

2

)∑
t=1

∥ψ̂t − ψt∥2

 ≤

√(
γ

9

)2 (n− 2k2

2

)
<

(
γ

9

)
n

with probability greater than (1− δ
4 ), where θ̂

′′′
is the estimate

of θ
′′′

.

In Step 1 we need to invoke Theorem II.8
(
n

2k2

)
times. In step 2 we need to invoke Corollary II.11(
1 + (n− 2k2) +

(
n−2k2

2

))
times. Thus total invocation of

Theorem II.8 and Corollary II.11 combined is poly(n). It is
easy to see that γ ≤ ϵ

n .
Since θ

′ ∪ θ′′ ∪ θ′′′
= θ, the corresponding estimate (with

a little abuse of notation) θ̂ = θ̂
′ ∪ θ̂′′ ∪ θ̂′′′

, with probability
greater than (1− δ), is within ϵ of θ only up to a permutation
using a sample of size poly

(
n,max

(
1
ϵ ,

1
R(θ)

)
, 1δ , B

)
. This

completes the proof of the Theorem III.1. �
Proof of Theorem III.2 :

Theorem III.7, guarantees the existence of a 2k2-coordinate
plane S such that when pθ is projected onto S, the corre-
sponding mixture πS(pθ), parameterized by PS(θ), satisfies
R(PS(θ)) ≥ R(θ) 1n . Since S is not known in advance,
projecting pθ on to all

(
n

2k2

)
, 2k2-coordinate planes, each time

invoking the algorithm of Theorem II.8 (setting the precision
parameters to ϵ

3n and δ
n2 respectively) with a sample of size

poly
(

1
(ϵ/3n) ,

1
(δ/n2) , B

)
and using union bound ensures that

for each 2k2-coordinate plane T , Theorem II.8 produces a
value of parameters P̂T (θ) such that P̂T (θ) ∈ N

(
PT (θ),

ϵ
3n

)
with probability greater than (1− δ). Now for each such 2k2-
coordinate plane T , Lemma III.5 guarantees that |RP̂T (θ)−
RPT (θ)| ≤ ϵ

3n . Thus there must exist at least one 2k2-
coordinate plane (say T∗) such that, R(P̂T∗(θ)) ≥ R(θ) 1n −
ϵ
3n . Thus,

(R(θ) ≥ ϵ) ⇒
(

R(P̂T∗(θ)) ≥
2ϵ

3n

)
The desired algorithm now works as follows. For each of
the

(
n

2k2

)
values of parameters P̂T (θ) outputted by Theo-

rem II.8, we compute R(P̂T (θ)) using Equation 6. Now set
R∗ = maxT R(P̂T (θ)). If R∗ <

2ϵ
3n then output R(θ) < ϵ

otherwise output R(θ) ≥ ϵ. �

APPENDIX D
MOMENT CONCENTRATION

Lemma D.1. Let pθ, θ ∈ Θ ⊂ Rm be a m-parametric
family of probability distributions in Rl where Θ is contained
in a ball of radius B in Rm and let X1, X2, . . . , XM be
iid random vectors drawn from pθ. Suppose the moments
Mi1...il(θ) =

∫
xi11 . . . x

il
l dpθ and the corresponding empirical

moments M̂i1...il(θ) =
∑M

i=1X
i1
i,1...X

il
i,l

M are lexicographically
ordered as M1(θ),M2(θ), . . . and M̂1(θ), M̂2(θ), . . . respec-
tively. Then given any positive integer N , and sample size
M > CNB2⌈N

l
⌉

ϵ2δ where C is a constant, for any ϵ > 0 and
0 < δ < 1, |M̂i(θ) − Mi(θ)| ≤ ϵ for all i ≤ N with
probability greater than 1− δ.


