
Overcoming the Hole in the Bucket:

Public-Key Cryptography Resilient to Continual Memory Leakage

Zvika Brakerski

Weizmann Institute of Science

zvika.brakerski@weizmann.ac.il

Yael Tauman Kalai

Microsoft Research

yael@microsoft.com

Jonathan Katz

University of Maryland

jkatz@cs.umd.edu

Vinod Vaikuntanathan

Microsoft Research

vinodv@alum.mit.edu

Abstract—In recent years, there has been a major effort to
design cryptographic schemes that remain secure even when
arbitrary information about the secret key is leaked (e.g., via
side-channel attacks). We explore the possibility of achieving
security under continual leakage from the entire secret key
by designing schemes in which the secret key is updated over
time. In this model, we construct public-key encryption schemes,
digital signatures, and identity-based encryption schemes that
remain secure even if an attacker can leak a constant fraction
of the secret memory (including the secret key) in each time
period between key updates. We also consider attackers who
may probe the secret memory during the updates themselves. We
stress that we allow unrestricted leakage, without the assumption
that “only computation leaks information”. Prior to this work,
constructions of public-key encryption schemes secure under
continual leakage were not known even under this assumption.

I. INTRODUCTION

In most of cryptography, secrecy of secret keys is

paramount, and compromise of even a portion of the secret

key yields a break of the entire cryptosystem. In practice,

unfortunately, it is difficult to maintain secrecy of crypto-

graphic keys. For one, it has been shown that various side-

channel attacks [27], [28], exploiting physical characteristics

of the execution of a cryptographic algorithm (e.g., timing

measurements, power consumption, or electromagnetic radi-

ation), can be used to obtain information about secret keys.

More recently, so-called “cold boot” attacks [21] have been

used to recover some (noisy) fraction of the secret keys used

in poor cryptographic implementations.

Responding to this challenge, cryptographers over the past

several years have begun to investigate the construction of

cryptographic schemes that are provably resilient to various

forms of key leakage. There are, of course, many different

ways in which this desired notion of leakage resilience can

be modeled. Early work (e.g., [35], [10]) focused on an

adversary who could learn (a bounded number of) specific bits

of the secret key. Ishai, et al. [23], [22] considered attackers

who could probe the values of specific wires in a circuit

implementing the functionality of interest. Petit, et al. [33]

construct pseudorandom generators that are secure against

specific, naturally occurring, classes of leakage such as the

Hamming weight leakage.

Micali and Reyzin [30] initiated work on a general model of

leakage in which the adversary can learn arbitrary information

about portions of memory that are accessed during a particular

computational step, but is assumed to learn nothing about any

portions of memory that are untouched.

Dziembowski and Pietrzak [17], [34] construct stream

ciphers in this model, in which the secret key is updated over

time [4] and the adversary can leak a bounded amount of

information between key updates (subject to the limitation just

mentioned) but an unbounded amount of information overall.

Faust, et al. [18] construct a signature scheme that is secure

in this leakage model.

We emphasize that in this leakage model, the leakage

obtained by the adversary at any time period may depend

only on those portions of the secret key that are actively used

in the computation during that period; inactive portions of

the key cannot be probed. This allows for “shielding” parts

of the secret key; in particular, if in every time period some

(different) part of the secret is shielded, then the shielded

portion of the key is uncorrelated with the leakage that

occurred in that time period; that portion of the key can thus

be used to “refresh” the rest of the secret key.

The above model, in which “only computation leaks infor-

mation”, fails to capture the cold boot attack discussed earlier,

as well as other attacks in which information leaks from

portions of memory not directly accessed during a particular

computation. This motivates consideration of a more general

model in which the adversary can learn an arbitrary function

of all the secret information. (Depending on the exact details

of the model, the leakage may depend on the secret key

only, or may depend also on other secret information such

as random coins used by the algorithm.) Of course, some

restriction must be placed on the leaked information or else

the adversary could simply leak the entire secret key itself!

A complementary line of work, initiated by Akavia, Gold-

wasser, and Vikuntanathan [1], restricts the total-length of the

leaked information, however, allows the leakage to depend on

all parts of the memory arbitrarily. Namely, they impose a

global bound on the amount of leakage in the entire lifetime

of the scheme, regardless of the amount of computation

performed. In particular, the leakage needs to be shorter than

the secret key. Variants of this so called bounded memory

leakage model require that the secret key retain sufficient min-

entropy given the leakage [31] (see also [15]), or require that

the secret key remain computationally hard to compute given

the leakage [14]. Subsequent work in the bounded memory

leakage model includes [25], [3], [12], [2].

A. Continual Memory Leakage

In this work, we introduce a new model that retains the

strongest features of both the models above. Specifically, just

as in the “leaky computation” model we consider schemes

in which the secret key is updated over time and the total

leakage over the lifetime of the system is unbounded. As in

the bounded-leakage model, though, we allow the leakage

between key updates to be an arbitrary function of the secret

state, subject only to a restriction on the total length of the

leakage.1 (In particular, we no longer make the assumption

that “only computation leaks information”.) We refer to this as

the model of continual memory leakage. Our model addresses

deficiencies of both prior models in that the adversary we

consider is unrestricted in both time (since leakage may occur

forever) and space (since leakage may always depend on all

portions of the secret memory). We remark, however, that we

do make the implicit assumption in our model that data can be

completely erased from memory (as otherwise the adversary

would be able, over time, to leak the entire initial secret key).

For concreteness, we illustrate the model of continual

memory leakage in the context of digital signature schemes.

Initially, a public and secret key-pair is generated and the

secret key is stored on some signing device. The lifetime

of the system is divided into discrete time periods, where

during each time period the signing device may issue multiple

signatures. At the end of each time period a “refresh” or

“update” operation is performed on the secret key, and the

old secret key is erased. We stress that, as in forward-secure

cryptosystems, the public key remains fixed throughout the

lifetime of the system and is all that is needed for verification.

We consider an attacker that, as usual, can ask for signa-

tures of any messages of its choice at any time. The attacker

can also leak information about the secret state of the signing

device, as we now make precise. We view the signing device

as containing two types of memory:

1) Public memory that stores, e.g., the public verification

key and any public randomness used.

2) Secret memory that stores the secret key and any secret

randomness used for signature computation.

We assume the attacker can see the contents of the public

memory in its entirety, at all times. Leakage from the secret

memory is bounded per time period, but unbounded overall.

Formally, at each time period, the adversary can specify

a leakage function f , and is given f(sk), where sk is the

secret key at that time period. In addition, each time the

adversary requests a signature we also allow him to specify a

leakage function f ; in addition to the signature, the adversary

is given the result of f applied to the entire secret state at

that point in time (including the randomness used for the

1One can consider more general bounded-leakage models between updates.
Indeed, our results extend to the more general “leftover entropy” model of
Naor and Segev [31], which requires only that the secret key has sufficient
min-entropy conditioned on the leakage.

signature computation). The only restriction placed on f is

that the output length of all such leakage functions during any

specific time period should be bounded to some pre-specified

fraction of the number of bits of the secret state.

In addition to the above, which treats leakage during the

signing process, our model also incorporates leakage that may

occur during the key-update process itself.

B. Our Results

In addition to formalizing the model of continual memory

leakage, we also show constructions of public-key encryption

schemes, digital signatures, and identity-based encryption

(IBE) schemes that are secure in this setting.

The cornerstone of our results is a public-key encryption

scheme that is secure against continual memory leakage.

(We remark that prior to our work, there were no known

public-key encryption schemes resilient to continual leakage

even under the assumption that “only computation leaks

information”.) We show two constructions: The first is secure

even if a (1/2 − o(1)) fraction of the secret state is leaked

per time period; its security is based on the decisional linear

assumption in groups with a bilinear map. A variant relies

on the less standard SXDH assumption2 and is secure even

if a (1 − o(1)) fraction of the secret state is leaked per

time period. Both schemes can also be shown resilient to

O(log k) bits of leakage during the key-update process itself,

where k is the security parameter. (If we are willing to rely

on sub-exponential hardness assumptions, we can tolerate

O(kǫ) bits of leakage from each key update.) We note that

while tolerating a logarithmic-length leakage once is easy and

can be done generically (since the leakage can be guessed),

tolerating logarithmic-length leakage repeatedly is much more

difficult.

It is easy to see that any public-key encryption scheme

resilient to continual leakage automatically implies a private-

key encryption scheme with similar leakage resilience. Thus,

our scheme can be used to enable two parties who share a

secret key to interact over an insecure channel in the presence

of side-channel attacks. The parties simply individually and

independently update their secret keys. Thus, at any point of

time, the two communicating parties might have completely

different secret keys, and still they will be able to commu-

nicate meaningfully. We stress that, as opposed to previous

solutions to this problem, here the key update requires no

interaction whatsoever!

Our public-key encryption scheme is obtained by suitably

modifying the identity-based encryption scheme due to Brak-

erski and Kalai [9] (for which no leakage resilience was

claimed). We can extend our construction to obtain an IBE

scheme secure against continual memory leakage of users’

individual secret keys. Achieving resilience to leakage from

2If e : G1 × G2 → GT is a bilinear maps, the SXDH assumption is that
the decisional Diffie-Hellman problem is hard in both G1 and G2.

the master secret key remains an interesting open problem (in

any of the models for leakage resilience).

Finally, we show a generic technique (following Katz

and Vaikuntanathan [25]) that transforms any public-key

encryption scheme resilient to continual leakage to a signature

scheme secure in the same model. The basic transformation

results in a signature scheme that tolerates leakage from

the secret key but not from the entire secret state (i.e.,

not from the randomness used by the signing procedure).

Under additional cryptographic assumptions (most notably,

the existence of short non-interactive arguments, such as cs-

proofs [29]), we show how leakage from the entire secret state

can be tolerated.

C. Other Prior and Concurrent Work

Besides the related work mentioned already, there has also

recently been research aimed at achieving leakage resilience

by relying on a small amount of perfectly leakage-proof hard-

ware. In this model, Juma and Vahlis [24] and Goldwasser

and Rothblum [20] show how to obtain continual leakage

resilience for general cryptographic algorithms, based also

on the assumption that “only computation leaks information”

(for computation not done on the secure hardware). Faust, et

al. [19] show how to use leakage-proof hardware to tolerate

length-bounded leakage computed by a function in AC0

In work done concurrently with our own, Dodis, et al. [13]

construct efficient signature schemes, identification schemes,

and authenticated key-agreement protocols that are secure in

the model of continual memory leakage. Unlike this work,

they do not address the issue of leakage from the key-update

process and, furthermore, they do not construct public-key

encryption schemes or IBE schemes.

D. Paper Organization

Due to space constraints, this extended abstract only con-

tains an overview of our results. We refer the interested reader

to the full version [8] for further details and proofs.

In Section II we present our model of continual memory

leakage, and give a formal definition only for the case of

public-key encryption. (Definitions for IBE and signature

schemes can be found in the full version of this work.)

In Section III we introduce a linear-algebraic theorem that

we use; the theorem shows (roughly) that random subspaces

are leakage resilient (in a way we make precise there). We

describe our public-key encryption scheme in Section IV,

our identity based encryption scheme in Section V, and our

signature scheme in Section VI.

II. A MODEL FOR CONTINUAL MEMORY LEAKAGE

In this section, we formalize our model of continual mem-

ory leakage (i.e., the CML model). We start by describing the

model at a high level in the context of signature schemes, and

then, in the following section, we provide a formal definition

for the case of public-key encryption. (The formal definition

for signature schemes is complicated by the fact that the

signing may be randomized, and thus we need to deal with

leakage of the randomness used during the signing process;

in contrast, decryption is deterministic.)

In the CML model, the lifetime of the system is divided into

discrete time intervals, and the secret key is updated at the end

of every such interval. Within a given interval, the adversary

may submit a leakage function f of his choice, and is given

f(sk). In addition, as usual, the adversary may make signing

queries to obtain valid signatures on messages of its choice.

At the time of each signing query, though, the adversary is

also allowed to submit a leakage function f ; in return, the

adversary is given f(sk, r) where sk is the secret key (at the

current time interval) and r is the secret randomness used to

answer the signing query. (We assume r is securely erased

once signature generation is complete.) The signing process

may also use some “public randomness”, which is given to

the adversary “for free” and not counted toward the leakage

bound. We restrict the leakage (i.e., the output length of f)

per signature query to be some fraction of the total length

(i.e., |sk| + |r|) of the secret state. We also restrict the total

leakage per time interval to be some fraction of the length of

the secret key.

At the end of an interval, the secret key is updated and

the old secret key is erased. We allow the adversary also to

probe the memory during this update process. The leakage

during the key-update procedure is counted toward both the

previous interval and the next interval; this is because the

secret keys for both time intervals are completely determined

by the inputs to the key-update procedure.

In the formulation of the model just described, the leakage

is restricted to be strictly smaller than the length of the secret

key (following [1]). Other restrictions could also be used;

for example, we could require only that the secret key has

sufficient min-entropy given the leakage (as in [31]), or that

the secret key should be hard to compute given the leakage

(see [14]). We choose the first restriction for simplicity, but

note that our proofs go through as long as the min-entropy

requirement is satisfied. On the other hand, we do not know

how to prove our results using the notion of [14] and leave

open the question of constructing schemes secure with respect

to that notion.

A. CML-Secure Public-Key Encryption

We now give a formal definition of public-key encryption

in the CML model. An encryption scheme consists of the

following algorithms which run in time polynomial in k:

• Key generation. Gen takes as input a security parameter

1k and outputs a secret key sk and a public key pk. We

denote this by (sk, pk)←Gen(1k).
• Encryption. Enc takes a public key pk and a message

m, and outputs a ciphertext c. We write c←Encpk(m).
• Decryption. Dec takes keys sk, pk and a ciphertext c and

outputs a message m′. We write m′:=Decsk,pk(c).

• Key update. Update Takes as input keys sk, pk and

outputs a “refreshed” secret key sk′. We denote this by

sk′←Updatepk(sk).

We remark that because our algorithms are required to run

in time polynomial in k, we must not allow the secret key

to grow too large following an update. In our construction,

|sk| = |Updatepk(sk)| (i.e. the size of the secret key remains

unchanged by update operations).

We require that for all m and all polynomially bounded

t ∈ N, setting (sk0, pk)←Gen(1k), ski←Updatepk(ski−1)
for i ∈ [t], and c←Encpk(m), we have m = Decskt,pk(c)
with all but negligible probability (where the probability is

over all randomness in the experiment).

We next define semantic security (i.e., security against

chosen-plaintext attacks) in the CML model. Our definition

has three leakage parameters ρG, ρU , ρM , where ρG bounds

the leakage rate from the key-generation process, ρU bounds

the leakage rate from the update process, and ρM is a “global”

leakage bound that is enforced between key updates. Taking

ρG = ρU = 0 corresponds to allowing leakage only during

“normal” operation of the system, and not from the key-

generation or key-update processes.

Definition 1. Encryption scheme (Gen, Enc, Dec, Update) is

CML-secure with leakage rate (ρG, ρU , ρM) if the advantage

of any PPT adversary A in the following game is negligible:

1) Initialize. A specifies a circuit f with |f(r, τ)| ≤
ρG · |r| for all r, τ . The challenger chooses “secret

randomness” r and “public randomness” τ , generates

(sk0, pk) ← Gen(1k; r, τ), sends (pk, τ, f(r, τ)) to the

adversary, and sets i:=0 and L0:= |f(r, τ)|.
2) Leakage and updates. A makes the following queries:

• Update queries (update, f), where f is a circuit

with |f(sk, r, τ)| ≤ ρU · (|sk| + |r|) for all sk, r, τ .

The challenger chooses “secret randomness” r and

“public randomness” τ , and computes ski+1 :=
Updatepk(ski; r, τ). If Li + |f(ski, r, τ)| ≤ ρM ·
|ski| then the challenger returns (τ, f(ski, r, τ))
to the adversary, sets i := i + 1, and sets Li+1 :=
|f(ski, r, τ)|. Otherwise, the challenger aborts.

• Leakage queries (leak, f), where f is a circuit.

If Li + |f(ski)| ≤ ρM · |ski| then the challenger

returns f(ski) to the adversary and sets Li := Li+
|f(ski)|. Otherwise, the challenger aborts.

3) Challenge. A outputs two messages m0,m1. A random

bit b
$
← {0, 1} is chosen and c ← Encpk(mb) is given

to A.

4) Finish. The adversary outputs b′ ∈ {0, 1}.

The advantage of the adversary is |Pr[b′ = b] − 1
2 |.

We do not explicitly consider leakage during decryption

because we assume that decryption is deterministic (and so

any such leakage is captured by leakage queries as allowed

above).

III. RANDOM SUBSPACES ARE LEAKAGE RESILIENT

We introduce a linear-algebraic tool that is crucial to

our leakage-resilient constructions. Roughly, we show that

random subspaces are resilient to continual leakage in an

information-theoretic sense. We believe this tool is interesting

in its own right, and may find further applications.

For concreteness we work in Z
m
p (p prime), though what we

say generalizes to subspaces of arbitrary vector spaces. Fix

an arbitrary leakage function f on the ambient space Z
m
p .

Let X ∈ Z
m×ℓ
p be a random matrix of rank ℓ ≥ 2;

abusing notation, we also let X denote the linear subspace

(of dimension ℓ) generated by the columns of this matrix. We

show that when the output length of f is sufficiently short,

then the random variables (X, f(v)) (for random v ∈ X) and

(X, f(u)) (for random u ∈ Z
m
p) are statistically close. Since

f(u) is independent of X (and hence leaks no information

about X), we conclude that when the output length of f is

sufficiently short then f(v) for a random v ∈ X leaks almost

no information about X.

We also consider the case where the leakage function is

applied to two random vectors in X. In other words, the

leakage function is applied to a random dimension-2 subspace

Y ⊆ X (in matrix notation Y = X · T, where T ∈ Z
ℓ×2
p is

a random matrix of rank 2). In this case, we need to assume

that the subspace X has dimension ℓ ≥ 4. More generally,

the dimension of X needs to be at least twice the dimension

of the subspace leaked. Namely, if the leakage function is

applied to a random subspace of X of dimension d, then we

need X to have dimension ℓ ≥ 2d.

Theorem 1. Let p be prime, ǫ > 0, and m, ℓ, d ∈ N with

2 ≤ 2d ≤ ℓ ≤ m. Fix an arbitrary function f : Z
m×d
p → W

with |W | ≤ 4 · (1 − 1/p) · pℓ−(2d−1) · ǫ2. Then

dist
(

(X, f(X · T)) , (X, f(Y))
)

≤ ǫ , (1)

where X
$
← Z

m×ℓ
p , T

$
← Rkd(Z

ℓ×d
p), and Y

$
← Z

m×d
p .

Note that for d = 1 the leakage function f(v) can leak

almost the entire v. This is the case, since according to our

parameters, |v| = ℓ·log p, and as long as the leakage size is at

most log |W | ≤ (ℓ−1) log p+2 log ǫ, the leakage f(v) hides

the subspaces X, up to an ǫ factor. Taking p to be super-

polynomial in the security parameter and taking ǫ = 1/p
(which are the parameters used in this paper), we get that as

long as the leakage size is at most (ℓ − 3) log p the leakage

f(v) statistically hides the subspaces X.

The proof of the above theorem (see [8]) relies on the

“crooked leftover hash lemma” of [16], [6].3 In the full

version of this work we also give a simpler and more intuitive

proof that Equation (1) holds for |W | = O
(

q
ℓ−(2d−1)

2 · ǫ3/2
)

.

3We thank Yevgeniy Dodis, Gil Segev, and Daniel Wichs for pointing out
this analysis to us.

IV. A CML-SECURE ENCRYPTION SCHEME

In this section, we present public-key encryption schemes

L and L∗ that are secure against continual leakage. The

schemes are parameterized by an integer ℓ that allows for

a tradeoff between the sizes of keys and ciphertexts, and

the tolerable leakage rate. Scheme L is secure under the

decisional linear assumption in bilinear groups, as long as

at most (1/2 − o(1)) fraction of the memory leaks between

consecutive key updates. The security of L∗ relies on the

less standard SXDH assumption (described below), however

it can tolerate leakage of a (1 − o(1)) fraction of the secret

key between key updates. L∗ is also somewhat simpler than

L. However, since it is based on a less standard assumption,

we will focus our attention mostly on L. We note that the

analyses of L and L∗ are very similar and differ only in

the value of the parameter d used when applying Theorem 1

(we use d = 1 for L∗, and d = 2 for L). Scheme L is

described in Section IV-A, and scheme L∗ is described in

Section IV-B. We provide an outline of the security proof for

L in Section IV-C. We refer the reader to the full version [8]

for further details.

We show that our schemes are resilient to leakage of

constant rate between updates, as well as small leakage (of

sub-constant rate) from the key-update and key-generation

procedures. This corresponds to ρM = Ω(1) and ρG = ρU =
o(1) in Definition 1.

A. Scheme L[ℓ]

Our first scheme is parameterized by an integer ℓ, with keys

and ciphertexts having length linear in ℓ. The scheme has

leakage rate ρM = ℓ−6−γ
2ℓ for all γ > 0; thus, taking ℓ large

enough we can tolerate leakage (1/2 − ǫ) for any desired ǫ.

(Taking ℓ asymptotically increasing gives ρM = (1/2−o(1)).)
We can also tolerate leakage during key updates. Specifi-

cally, we show that our scheme achieves ρU = O
(

log k
ℓ log p

)

,

where p is the order of the group in which we work. Since

the secret key in our scheme has length O(ℓ log p), this

translates to tolerating an absolute leakage of O(log k) bits

during each key update. In fact, our proof can be generalized

in a straightforward manner to achieve ρU = O
(

log T (k)
ℓ log p

)

under the assumption that the decisional linear assumption is

hard for adversaries that run in time poly(T (k)). It is easy

to show that the scheme also tolerates the same amount of

leakage (i.e., O(log k) bits under a standard assumption or

O(log T (k)) bits under a strengthened one) from the key-

generation procedure.

To put these results in context, we note that tolerating

leakage of O(log k) bits once is trivial, since this leakage

can be guessed. However, tolerating leakage of O(log k) bits

repeatedly is significantly harder.

Before describing the scheme, we introduce some notation.

If g ∈ G is an element in a group G of order p and

X ∈ Z
m×n
p is a matrix, then gX ∈ G

m×n denotes the

matrix where (gX)i,j = g(X)i,j . Observe that given a matrix

gX ∈ G
m×n and a matrix A ∈ Z

ℓ×m
p one can efficiently

compute gAX by working “in the exponent”. Note further

that if e : G×G → GT is a bilinear map, then given matrices

gX ∈ G
m×n and gY ∈ G

n×ℓ one can efficiently compute the

matrix e(g, g)XY ∈ G
m×ℓ
T .

Our construction here relies on the (matrix form of the)

decisional linear assumption in bilinear groups [7], [31],

which states that the ensembles
{

gX
}

and
{

gY
}

are compu-

tationally indistinguishable if X is a random rank-d matrix

(d ≥ 2) over Zp, and Y is a random rank-(d + t) matrix

(t ≥ 0) over Zp of the same dimensions.

Let us overview the main ideas behind the structure of our

scheme. We start by recalling a simplified version of the IBE

scheme of [9], and then explain what changes need to be

made to achieve leakage resilience. (For now, we do not try

to achieve IBE and thus we ignore this aspect of the scheme.)

Let G be a group of prime order p, with g ∈ G a generator.

In the scheme of [9], the public key is gA where A ∈ Z
2×ℓ
p

is chosen at random. To encrypt a “0”, the sender chooses a

random (column) vector r ∈ Z
2
p and computes the ciphertext

grT A; to encrypt a “1”, the sender chooses a random vector

u ∈ Z
ℓ
p and outputs the ciphertext guT

. Indistinguishabil-

ity (based on the decisional linear assumption) follows by

looking at the 3 × ℓ matrix defined by the public key and

ciphertext: when a 0 is encrypted, this matrix takes the form

gX for X ∈ Z
3×ℓ
p of rank 2, but when a 1 is encrypted the

matrix takes the form gX for X of rank 3 (with overwhelming

probability).

The next question, of course, is figuring out how to decrypt

such ciphertexts. Notice that any non-zero vector y in the

kernel of A can be used to decrypt: given a ciphertext gvT

the receiver can compute gvT ·y and check if the result is g0.

This will always be the case for encryptions of 0 and will

only happen with negligible probability for encryptions of

1. This suggests that any such y can be used as a secret

key. In [9], due to constraints related to the IBE property, gy

is used as the secret key and decryption is performed using

the bilinear map. We will use a similar (but not identical)

secret key in our scheme, and the main challenge is then

to provide a mechanism for this key to be updated while

tolerating leakage.

In order to allow for updates, we use a secret key of the

form gY, where Y = [y1|y2] ∈ Z
ℓ×2
p , and y1,y2 ∈ Z

ℓ
p are

random vectors in the kernel of A. Decryption of a ciphertext

gvT

is done by checking whether e(g, g)v
T Y is equal to

e(g, g)0.

The key-update operation is done by “rotating” the ma-

trix Y; i.e., the receiver samples a random 2 × 2 full-rank

matrix R ∈ Z
2×2
p and sets the new secret key to gY·R.

Intuitively, the linear assumption implies that running the

update operation is indistinguishable from sampling a fresh

random secret key, which turns out to be a useful property.

The scheme L[ℓ] is presented in Figure 1.

Encryption scheme L[ℓ]

Parameters. Take groups G, GT of prime order p, with
bilinear map e : G × G → GT . Let g be a generator of
G (and so e(g, g) is a generator of GT). Let ℓ ≥ 7.

Key generation. The key-generation algorithm samples

A
$
← Z

2×ℓ
p and y1,y2

$
← ker(A), and sets Y = [y1|y2].

It outputs pk = gA and sk = gY .

Key update. To update the secret key sk = gY ∈ G
ℓ×2,

sample R
$
← Rk2(Z

2×2

p) and then set sk′ = gY·R.

Encryption. Given a public key pk = gA ∈ G
2×ℓ,

encryption of 0 is done by sampling r
$
← Z

2

p and

outputting the ciphertext c = grT
·A. Encryption of 1 is

done by choosing u
$
← Z

ℓ
p and outputting c = guT

.

Decryption. To decrypt a ciphertext c = gvT

given a

secret key sk = gY , compute e(g, g)v
T
·Y and output 0

iff the result is e(g, g)0.

Figure 1: A CML-secure encryption scheme based on the

decisional linear assumption.

Theorem 2. Under the decisional linear assumption, for

every ℓ ≥ 7 and all γ, c > 0, encryption scheme L[ℓ]
(described in Figure 1) is secure in the continual leakage

model with leakage rate

(ρG, ρU , ρM) =

(

c · log k

4ℓ · log p
,

c · log k

(2ℓ + 4) · log p
,

ℓ − 6 − γ

2ℓ

)

.

An outline of the proof appears in Section IV-C.

B. The Scheme L∗[ℓ]

In this section we describe a scheme L∗[ℓ] that is simpler

than L[ℓ]. While we initially used this scheme for explanatory

purposes only, Daniel Wichs pointed out to us that the scheme

can in fact be proven secure under the SXDH assumption in

bilinear groups. Moreover, the scheme enjoys better leakage

resilience: it achieves security for leakage rate (1 − o(1))
between key updates, and tolerates the same amount of

leakage during key generation and key updates as L[ℓ] does.

Let G1, G2, GT be groups of prime order p such that

there exists a bilinear map e : G1 × G2 → GT . The

SXDH assumption asserts that the decisional Diffie-Hellman

(DDH) assumption holds in both G1 and G2. Translating into

matrix notation, the SXDH assumption implies that it is hard

to distinguish random rank-1 matrices from random rank-2
matrices (of the same dimensions) in the exponent, in both

G1 and G2.

We present the scheme L∗[ℓ] in Figure 2 and state its

properties below, without proof.

Theorem 3. Under the SXDH assumption, for every ℓ ≥ 3
and γ, c > 0, encryption scheme L∗[ℓ] (described in Figure 2)

Encryption scheme L∗[ℓ]

Parameters. Take groups G1, G2, GT of prime order p,
with bilinear map e : G1 × G2 → GT . Let g1, g2 be
generators of G1, G2, respectively (and so e(g1, g2) is a
generator of GT). Let ℓ ≥ 3.

Key generation. The key-generation algorithm samples

a
$
← Z

ℓ
p and y

$
← ker(a). It then sets pk = ga

1 and
sk = g

y
2

.

Key update. To update the secret key sk = g
y
2

∈ G
ℓ
2,

sample r
$
← Zp and set sk′ = g

ry
2

.

Encryption. Given a public key pk = ga
1 ∈ G

ℓ
1, encryp-

tion of 0 is done by sampling r
$
← Zp and outputting

c = graT

1 . Encryption of 1 is done by choosing u
$
← Z

ℓ
p

and outputting c = guT

1 .

Decryption. To decrypt a ciphertext c = gvT

1 given a

secret key sk = g
y
2

, compute e(g1, g2)
vT

·y and output 0
iff the result is e(g1, g2)

0.

Figure 2: A CML-secure encryption scheme based on the

SXDH assumption.

is secure in the continual leakage model with leakage rate

(ρG, ρU , ρM) =

(

c · log k

2ℓ · log p
,

c · log k

(ℓ + 2) · log p
,

ℓ − 2 − γ

ℓ

)

.

The proof of this theorem is almost identical to that of

Theorem 2 (see outline in Section IV-C below). The only

difference is in our application of Theorem 1, where we use

d = 2 in the proof of Theorem 2 and d = 1 in the proof of

Theorem 3.

C. Proof Outline of Theorem 2

As explained above, our scheme is resilient to leakage from

memory, from the key-update procedure and from the key

generation procedure. We will leave handling leakage from

key generation to the end. Thus assume that ρG = 0, until we

mention otherwise.

Let us start by considering a possible proof for standard

CPA security of L[ℓ] (as already sketched above). The public

key gA contains a random 2 × ℓ matrix (in the exponent),

and the challenge ciphertext is either a linear combination

of the rows of A or a random vector of length ℓ. The

joint distribution of the public key and ciphertext (we can

consider this to be a matrix V ∈ Z
3×ℓ
p whose first 2

rows are the matrix A and its last row is the challenge

vT) is statistically close to either a random rank-2 matrix

or a random rank-3 matrix (in the exponent), respectively.

An adversary that distinguishes these distributions, therefore,

immediately breaks the decisional linear assumption.

In order to make the proof work when the adversary can

leak information about the secret key, we need to somehow

simulate the leakage from the secret key. This seems self

defeating, as having a secret key for the scheme should mean

that the CPA adversary becomes useless (as we can use the

secret key and decrypt the ciphertext ourselves).4 We show

that this discouraging intuition is not correct. To this end, we

rely on the fact that decryption in our scheme is not perfectly

correct, but instead has negligible probability of error.

Consider, at this point, the case where no update queries

are made, i.e., the same secret key is used throughout the

attack. At a very high level, what we will do is show how to

generate keys and a challenge ciphertext in such a way that

the secret key, while being appropriately distributed respective

to the public key, is useless against our challenge ciphertext.

Namely, the distribution (pk, sk) is proper and the distribution

(pk, c) is proper, but (pk, sk, c) is far from being proper,

in the sense that the secret key sk is useless in decrypting

the specific ciphertext c (specifically, c will always decrypt

to 0 using sk).5 Hence, a CPA adversary that decrypts c
correctly can actually be useful in breaking the decisional

linear assumption.

We then show that if the amount of leakage is sufficiently

bounded, an adversary cannot gain sufficient information

about the secret key sk to discriminate the ciphertext c from a

random ciphertext, and thus should indeed decrypt c correctly

(with non-negligible probability). We explain this in detail

below and then explain how to extend this to the continual

leakage scenario where key updates occur (and thus multiple

secret keys are used and are leaked during the attack).

Let us first explain how to generate keys and a challenge

ciphertext in such a way that the keys are properly distributed

but are still useless against the challenge ciphertext, so

that a successful CPA adversary can be used to break the

decisional linear assumption. An instance of the decisional

linear assumption is a matrix gC, where C ∈ Z
3×3
p is either

rank-2 or rank-3. We will use a successful CPA adversary A
to construct a PPT algorithm B that distinguishes between the

case that C is of rank 2 and the case that C is of rank 3.

The algorithm B, on input gC, does the following. It

samples ℓ − 3 random vectors {xi}
$
← Z

ℓ
p (with all but

negligible probability, these vectors are linearly independent),

and generates a 3 × ℓ matrix gV that has the following

properties: (1) If C is a random rank-2 matrix, then V is

a random rank-2 matrix; (2) If C is a random rank-3 matrix,

then V is a random rank-3 matrix; (3) The vectors {xi} are

uniformly distributed in the kernel of V. This can be done

using linear algebra, as follows. Let X denote the ℓ× (ℓ− 3)
matrix whose ith column is xi. Let B be a basis for the linear

subspace {wT ∈ Z
ℓ
p : wT ·X = 0}. Note that B is efficiently

computable given X. Setting gV = gC·B, it holds that V

has the same rank as C. By symmetry, the vectors {xi} are

uniformly distributed in ker(V) as required.

The algorithm B feeds the adversary A with the first two

rows of gV (denoting it by gA) as the public key. It generates

4A similar problem arises in most works on leakage resilience, and is
addressed in various manners.

5It is here that we use the fact that our scheme is not perfectly correct.

a secret key gy1 , gy2 by choosing at random y1,y2
$
← {X ·

t : t ∈ Z
ℓ−3
p }, i.e., randomly sampling from the column-

span of X. Then, it feeds A with the challenge ciphertext

gvT

, which is the last row of gV. Notice that our secret key

will always decrypt the challenge ciphertext gvT

to 0, even

if vT is independent of the rows of A and hence should

be decrypted to 1 (thus, our secret key is “crippled” w.r.t. the

ciphertext gvT

). A CPA adversary that succeeds in decrypting

c correctly (in spite of getting leakage from a “crippled” secret

key) will, therefore, break the decisional linear assumption by

determining if V (and hence C) is rank-2 or rank-3.

We next must explain why the adversary A, which is given

leakage from our “crippled” secret key, should nevertheless

decrypt c correctly (with noticeable probability). To this end,

we use Theorem 1 to show that a small enough leakage

statistically hides the subspace X that the secret key is

sampled from, making it statistically hard to distinguish this

distribution of the secret key and the legal distribution where

y1,y2
$
← ker(A). Thus, the adversary cannot use the leakage

to distinguish between our “crippled” secret key and a genuine

one. This completes the proof for the case of non-continual

leakage.

We now address the fact that the leakage is continual,

namely, that there is a sequence of phases in which leakage

occurs, each followed by a refresh operation. At this point,

however, we still assume that the key-update procedure does

not leak (i.e., ρU = 0).

While our “legal” key-update procedure never changes

the column-span of the secret key (recall that the update

procedure takes sk = gY and outputs sk′ = gY·R for

an invertible R), we notice that this is computationally

indistinguishable from an update procedure that re-samples

new vectors y1,y2 from the column-span of X (i.e., an update

procedure that sets sk′ = gX·T, for a properly sampled

matrix T, regardless of the previous sk). Indistinguishability

holds as the legal distribution on keys can be described by

setting sk′ = gX′·T, where X′ is a random rank-2 matrix;

thus, distinguishing gX and gX′

is hard by the decisional

linear assumption, and this holds even in the presence of

the matrix A. (Jumping ahead, it is this indistinguishability

argument that becomes troublesome when leakage from the

key-update procedure is allowed.) Note that this “improper”

update can be simulated, since we explicitly know X. This

enables us to apply the above argument consecutively: at each

phase, we will leak from new vectors in the column-span of

X. Applying Theorem 1, the view of the adversary is statisti-

cally close to the case where the leakage function is applied

to y1,y2
$
← ker(A) which, in turn, is indistinguishable from

the distribution of “legal” keys.

We are left with treating leakage from the update process

(i.e., ρU > 0). Any amount of such leakage seems to com-

pletely break the indistinguishability argument of the previous

paragraph. Intuitively, the adversary is getting leakage from

the input to the update procedure (including the random tape

used), and thus may have some information on what the legal

output should be. Once the adversary sees some memory

leakage from an improper secret key, used for the security

reduction, it can compare it to what it knows about the

legal secret key, thus catching any attempt for a switch of

distributions as above. In order to overcome this barrier, we

must come up with a way to simulate the leakage from the

update, in such a way that makes A behave similarly in spite

of the discrepancy between the distributions.

The key observation is that whether or not A “behaves

similarly” is an efficiently checkable event. We can simulate

the remainder of the security game, using the proposed

improper secret key and some candidate leakage value (as

if everything from this point on is done legitimately) and see

if A’s success probability decreases or not. If the number of

bits being leaked is small enough, specifically O(log k), we

can efficiently go over all possible values until we find one

that works.

There is one small problem: what if no leakage value

works? In this case, we recall again that the improper distri-

bution on keys used in our reduction is indistinguishable from

the original one. Therefore, since in the original distribution

there is always a good leakage value — the legal value6 —

this should also be the case with the improper one. This holds

since the event of not finding an acceptable leakage value is

also efficiently checkable (again, by simulating A). A change

in behavior in this respect yields a distinguisher between the

real and improper distributions, which is impossible under our

hardness assumption.

We obtain, therefore, that leakage of O(log k) bits from

the update procedure can indeed be tolerated. This can be

generalized in a straightforward manner to imply a tolerable

leakage of O(log T (k)) bits, if we assume that the decisional

linear assumption is hard for (roughly) T (k)-time adversaries.

The last thing to do is handle leakage from the key-

generation step. At this point, however, it is clear how this

can be done (for O(log k) bits of leakage). We use the same

technique we use for updates: after generating our initial

secret key, we go over all possible values of key-generation

leakage, and find one for which A works well.

V. A CML-SECURE IBE SCHEME

We present an identity based encryption (IBE) scheme that

is secure against continual leakage. In an IBE scheme, any

string (or identity) can be used as a public key (combined

with a set of public parameters that are known to all). A

special master secret key can be used to generate specific

secret keys per identity. Our IBE scheme is very similar to

our scheme L which, as we mentioned above, originated from

the IBE scheme of [9].

6In fact, this is only true with noticeable probability over the sampling of
the secret key, and therefore we may need to try a few keys before we find
a good one.

We recall that in the context of IBE, there are two types

of “entities” holding secrets: a trusted authority holding the

master secret key that enables producing specific secret keys

per user; and individual users, each holding their own secret

key. In this work, we only allow leakage from the memory

of the individual users. For a more detailed discussion of

identity-based encryption schemes and associated security

notions under continual leakage, we refer the reader to the

full version [8].

In our construction, we consider an IBE scheme where

the set of identities is {0, 1}m. The public parame-

ters of the scheme include a set of 2m + 1 matrices

(gA0 , {gAi,b}i∈[m],b∈{0,1}) of dimension 2 × 2. Identity

id ∈ {0, 1}m is associated with the matrix Aid =
[A0‖Aid1‖ · · · ‖Aidm

]. Specifically, we use gAid in order to

encrypt messages for id. To decrypt, the user corresponding

to id uses the secret key skid:=g[y1‖y2], where y1,y2
$
←

ker(Aid). In other words, each user is associated with a pair

of keys corresponding to L[ℓ] (see Section IV), defined by

its identity and the public parameters. We notice that the

trusted authority only needs to know msk = A0 in order

to produce secret keys for all users. The encryption and

decryption algorithms are similar to those of L[ℓ].

The proof of security is by reduction to the security of

L[ℓ] for ℓ = 2m + 2. Specifically we prove that our scheme

is selectively secure with continual leakage. In selective

security [11] we assume that the attacker decides on the

identity it wants to attack before seeing the public parameters.

Let id∗ be that identity. This enables generating the public

parameters such that all matrices Ai,1−id∗

i
(i.e., all matrices

that do not affect Aid∗) are explicitly known, and a public

key for L[2m + 2] is “embedded” in the public parameters

as the matrix gAid∗ . This enables the adversary to know

everything about all other identities (since it is sufficient to

explicitly know one sub-matrix of Aid in order to generate a

corresponding secret key) while knowing nothing about id∗.

Thus, an adversary that breaks the security of id∗, even with

continual leakage, actually breaks the security of L[2m + 2].

The leakage guarantees of our scheme are formally stated

in the theorem below. We note that since we cannot allow

any leakage from the master secret key, the relevant leakage

parameters are leakage during the update and memory leakage

of the individual users, denoted ρU , ρM , respectively.

Theorem 4. Under the decisional linear assumption, for

every polynomially bounded m, the IBE scheme described

above is selective secure under chosen plaintext attack, in the

CML model, with the following parameters. For all γ, c > 0
the scheme is secure with leakage rate

(ρU , ρM) =

(

c · log k

ℓ · log p
,
m − 2 − γ

2(m + 1)

)

.

VI. A CML-SECURE SIGNATURE SCHEME

We show how to use any encryption scheme secure with

continual leakage (such as the encryption scheme L[ℓ] pre-

sented in Section IV) to construct a signature scheme that is

secure with continual leakage.

When discussing continual leakage in the context of signa-

ture schemes, we must also take into account the signing op-

eration. This operation involves the secret key and additional

secret randomness and may potentially leak extra information.

Therefore, we are concerned with an additional parameter

of leakage resilience, namely the leakage rate during the

signing process, which we denote by ρS . This is defined

as the total amount of information leaked during a signing

process, divided by the total size of the secret key and

secret randomness used by the signing procedure. For a more

detailed discussion and for the full constructions, see the full

version [8].

A. No Leakage During the Signing Process

Our first construction applies the techniques of [25] to our

encryption scheme to obtain a signature scheme that preserves

the leakage guarantees but does not allow any leakage during

the signing process (i.e., ρS = 0). The signing key contains a

secret key sk for the encryption scheme, and the verification

key contains the public key pk as well as an additional public

key pk′ for a (not necessarily leakage-resilient) public-key

encryption scheme, and a common random string for a non-

interactive simulation-sound zero-knowledge (NIZK) proof

system. A signature on a message m contains an encryption

of sk using pk′, and a simulation-sound NIZK proof that the

contents of the ciphertext are indeed a valid secret key for

the leakage-resilient encryption scheme. The dependence on

the message m comes from properly defining the language

for the simulation-sound NIZK proof, as done in [25].

We show that we can use a successful forger for this

scheme to break the security of the leakage-resilient en-

cryption scheme. In the security reduction we follow the

outline of the proof in [25]: We simulate all NIZK proofs

and sample pk′ together with a respective secret key sk′.

We can then provide valid-looking signatures for a successful

forger without it being able to tell the difference. Then we

can take its successful forged signature, which must contain

an encryption of a valid secret key for the leakage-resilient

encryption scheme, decrypt it using sk′, and obtain a valid

sk that enables breaking the security of the leakage-resilient

encryption scheme. A statement of the result follows.

Theorem 5 (Informal). Consider a semantically secure

public-key encryption scheme in the CML model, with leak-

age rate (ρG, ρU , ρM). Then, under standard cryptographic

assumptions, there exists a signature scheme that is existen-

tially unforgeable under adaptive chosen message attacks in

the CML model, with leakage rate (ρG, ρU , ρS, ρM), where

ρS = 0.

B. Tolerating Leakage During the Signing Process

Our second construction tolerates leakage from the signing

algorithm. Recall that in our previous construction each signa-

ture consists of an encryption of the secret key, together with

a simulation sound NIZK proof. Note that if the randomness

used for the encryption or the NIZK is partially leaked, then

the secret key can be leaked entirely.

Thus, we change the signing algorithm as follows. Instead

of using a (simulation-sound) NIZK proof system, we use

a (non-interactive) argument system with short proofs; i.e.,

proofs that are significantly shorter than the witness size.

Intuitively, even though we cannot say much about what

information might be leaked by such a proof, we can bound

the leakage by the length of the proof. We note that all known

short non-interactive argument systems [26], [29], [5] are in

the random oracle model. However, we do not use random

oracles explicitly anywhere in our proof.

In addition, instead of using a standard encryption scheme,

we use a special “dual-mode encryption scheme”, that (de-

pending on the public key) may lose most information about

the plaintext (information theoretically). More specifically,

we “encrypt” the secret key by using a family of lossy

trapdoor functions [32], in a particular way. In the security

proof, we set the public key so that the lossy functions

corresponding to the forged message m are all injective,

which results with the encryption being invertible; whereas

the lossy functions corresponding to any other message are

not all injective, which results with a “lossy encryption”. This

type of analysis achieves only a weaker notion of security,

called a-priori-message unforgeability, where the adversary

is given a random “challenge” message m in advance, can

request signatures on any messages other than m, and then

succeeds only if it outputs a forgery on m. We then apply a

recent transformation from [9] to obtain a scheme satisfying

existential unforgeability. We refer the reader to the full

version [8] for more details and for a formal statement of

our results (which requires additional terminology).

We note that, interestingly, in order to allow leakage from

the signing algorithm, we make our scheme leak more,

since in our new scheme, the signatures themselves leak

information about the signing key. Thus the scheme does

not even conform with the standard definition of security

(without leakage). In the CML model, however, this caveat is

tolerable, since we have a method for refreshing the key. We

have to require, however, that the signing-key is periodically

refreshed, even regardless of any adversarial action, resulting

in a variant of CML security.

ACKNOWLEDGEMENTS

We thank Yevgeniy Dodis, Gil Segev, and Daniel Wichs

who (independently) pointed us to the crooked leftover hash

lemma for an alternative (and better) analysis in the proof of

Theorem 1. We thank Daniel Wichs for pointing out that our

proof of security goes through with better parameters if we

rely on the SXDH assumption. Thanks, guys!

We thank Shafi Goldwasser for various fruitful discussions,

comments, and advice; and Adam Tauman Kalai for helpful

comments. Adam, thanks for your positive contribution (in

absolute value, at least).

Work of the first and third authors was done in part

while being hosted by Microsoft Research (New England).

Work of the third author was supported in part by NSF

grant #0627306. Work of the fourth author was done while

at IBM.

REFERENCES

[1] A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous
hardcore bits and cryptography against memory attacks. In 6th Theory

of Cryptography Conference — TCC 2009, volume 5444 of LNCS,
pages 474–495. Springer, 2009.

[2] J. Alwen, Y. Dodis, M. Naor, G. Segev, S. Walfish, and D. Wichs.
Public-key encryption in the bounded-retrieval model. In Advances in

Cryptology — Eurocrypt 2010, volume 6110 of LNCS, pages 113–134.
Springer, 2010.

[3] J. Alwen, Y. Dodis, and D. Wichs. Public key cryptography in the
bounded retrieval model and security against side-channel attacks. In
Advances in Cryptology — Crypto 2009, volume 5677 of LNCS, pages
1–17. Springer, 2009.

[4] R. Anderson. Two remarks on public-key cryptology. Invited lecture,
ACM CCCS 1997. Available at http://www.cl.cam.ac.uk/ftp/users/rja14/
forwardsecure.pdf.

[5] B. Barak and O. Goldreich. Universal arguments and their applications.
SIAM J. Computing, 38(5):1661–1694, 2008.

[6] A. Boldyreva, S. Fehr, and A. O’Neill. On notions of security for
deterministic encryption, and efficient constructions without random
oracles. In Advances in Cryptology — Crypto 2008, volume 5157 of
LNCS, pages 335–359. Springer, 2008.

[7] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. K.
Franklin, editor, CRYPTO, volume 3152 of Lecture Notes in Computer

Science, pages 41–55. Springer, 2004.

[8] Z. Brakerski, Y. T. Kalai, J. Katz, and V. Vaikuntanathan. Overcoming
the hole in the bucket: Public-key cryptography resilient to continual
memory leakage. Cryptology ePrint Archive, Report 2010/278, 2010.
Full version of this paper.

[9] Z. Brakerski and Y. Tauman Kalai. A framework for efficient signatures,
ring signatures, and identity-based encryption in the standard model.
Cryptology ePrint Archive, Report 2010/086, 2010.

[10] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai. Exposure-
resilient functions and all-or-nothing transforms. In Advances in

Cryptology — Eurocrypt 2000, volume 1807 of LNCS, pages 453–469.
Springer, 2000.

[11] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key
encryption scheme. Journal of Cryptology, 20(3):265–294, 2007.

[12] Y. Dodis, S. Goldwasser, Y. Tauman Kalai, C. Peikert, and V. Vaikun-
tanathan. Public-key encryption schemes with auxiliary inputs. In 7th

Theory of Cryptography Conference — TCC 2010, volume 5978 of
LNCS, pages 361–381. Springer, 2010.

[13] Y. Dodis, K. Haralambiev, A. Lopez-Alt, and D. Wichs. Cryptography
against continuous memory attacks. These proceedings.

[14] Y. Dodis, Y. Kalai, and S. Lovett. On cryptography with auxiliary input.
In 41st Annual ACM Symposium on Theory of Computing (STOC),
pages 621–630. ACM Press, 2009.

[15] Y. Dodis, S. J. Ong, M. Prabhakaran, and A. Sahai. On the
(im)possibility of cryptography with imperfect randomness. In 45th

Annual Symposium on Foundations of Computer Science (FOCS), pages
196–205. IEEE, 2004.

[16] Y. Dodis and A. Smith. Correcting errors without leaking partial
information. In 37th Annual ACM Symposium on Theory of Computing

(STOC), pages 654–663. ACM Press, 2005.

[17] S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In
49th Annual Symposium on Foundations of Computer Science (FOCS),
pages 293–302. IEEE, 2008.

[18] S. Faust, E. Kiltz, K. Pietrzak, and G. Rothblum. Leakage-resilient
signatures. In 7th Theory of Cryptography Conference — TCC 2010,
volume 5978 of LNCS, pages 343–360. Springer, 2010.

[19] S. Faust, T. Rabin, L. Reyzin, E. Tromer, and V. Vaikuntanathan.
Protecting circuits from leakage: The computationally-bounded and
noisy cases. In Advances in Cryptology — Eurocrypt 2010, volume
6110 of LNCS, pages 135–156. Springer, 2010.

[20] S. Goldwasser and G. Rothblum. How to play mental solitaire
under continuous side-channels: A completeness theorem using secure
hardware. Crypto 2010. To appear.

[21] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten.
Lest we remember: Cold boot attacks on encryption keys. In USENIX

Security Symposium, pages 45–60, 2008.
[22] Y. Ishai, M. Prabhakaran, A. Sahai, and D. Wagner. Private circuits

II: Keeping secrets in tamperable circuits. In Advances in Cryptology

— Eurocrypt 2006, volume 4004 of LNCS, pages 308–327. Springer,
2006.

[23] Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware
against probing attacks. In Advances in Cryptology — Crypto 2003,
volume 2729 of LNCS, pages 463–481. Springer, 2003.

[24] A. Juma and Y. Vahlis. Leakage-resilient key proxies. Crypto 2010.
To appear.

[25] J. Katz and V. Vaikuntanathan. Signature schemes with bounded
leakage resilience. In Advances in Cryptology — Asiacrypt 2009,
volume 5912 of LNCS, pages 703–720. Springer, 2009.

[26] J. Kilian. A note on efficient zero-knowledge proofs and arguments. In
24th Annual ACM Symposium on Theory of Computing (STOC), pages
723–732. ACM Press, 1992.

[27] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In Advances in Cryptology —

Crypto ’96, volume 1109 of LNCS, pages 104–113. Springer, 1996.
[28] P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In

Advances in Cryptology — Crypto ’99, volume 1666 of LNCS, pages
388–397. Springer, 1999.

[29] S. Micali. Computationally sound proofs. SIAM J. Computing,
30(4):1253–1298, 2000.

[30] S. Micali and L. Reyzin. Physically observable cryptography. In 1st

Theory of Cryptography Conference — TCC 2004, volume 2951 of
LNCS, pages 278–296. Springer, 2004.

[31] M. Naor and G. Segev. Public-key cryptosystems resilient to key
leakage. In Advances in Cryptology — Crypto 2009, volume 5677
of LNCS, pages 18–35. Springer, 2009.

[32] C. Peikert and B. Waters. Lossy trapdoor functions and their applica-
tions. In STOC, pages 187–196, 2008.

[33] C. Petit, F.-X. Standaert, O. Pereira, T. Malkin, and M. Yung. A
block cipher based pseudo random number generator secure against
side-channel key recovery. In ASIACCS 2008: 3rd ACM Symp. on

Information, Computer, and Communications Security, pages 56–65.
ACM Press, 2008.

[34] K. Pietrzak. A leakage-resilient mode of operation. In Advances in

Cryptology — Eurocrypt 2009, volume 5479 of LNCS, pages 462–482.
Springer, 2009.

[35] R. L. Rivest. All-or-nothing encryption and the package transform. In
Fast Software Encryption – FSE ’97, volume 1267 of LNCS, pages
210–218. Springer, 1997.

