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Abstract—It has been shown by Indyk and Sidiropoulos [1]
that any graph of genus g > 0 can be stochastically embedded
into a distribution over planar graphs with distortion 2O(g).
This bound was later improved to O(g2) by Borradaile, Lee
and Sidiropoulos [2]. We give an embedding with distortion
O(log g), which is asymptotically optimal.

Apart from the improved distortion, another advantage of
our embedding is that it can be computed in polynomial time.
In contrast, the algorithm of [2] requires solving an NP-hard
problem.

Our result implies in particular a reduction for a large
class of geometric optimization problems from instances on
genus-g graphs, to corresponding ones on planar graphs, with
a O(log g) loss factor in the approximation guarantee.
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I. INTRODUCTION

Planar graphs constitute an important class of combinato-
rial structures, since they can be used to model a wide variety
of natural objects. At the same time, they have properties that
give rise to improved algorithmic solutions for numerous
graph problems, if one restricts the set of possible inputs to
planar graphs (see, for example [3]).

One natural generalization of planarity involves the genus
of a graph. Informally, a graph has genus g, for some g ≥ 0,
if it can be drawn without any crossings on the surface of
a sphere with g additional handles (see Section I-C). For
example, a planar graph has genus 0, and a graph that can
be drawn on a torus has genus at most 1.

In a way, the genus of a graph quantifies how far it is from
being planar. Because of their similarities to planar graphs,
graphs of small genus usually exhibit nice algorithmic
properties. More precisely, algorithms for planar graphs can
usually be extended to graphs of bounded genus, with a
small loss in efficiency or quality of the solution (e.g. [4]).
Unfortunately, many such extensions are complicated and
based on ad-hoc techniques.

Inspired by Bartal’s stochastic embedding of general
metrics into trees [5], Indyk and Sidiropoulos [1] showed
that every metric on a graph of genus g can be stochasti-
cally embedded into a planar graph with distortion at most
exponential in g (see Section I-C for a formal definition
of stochastic embeddings). Since the distortion measures
the ability of the probabilistic mapping to preserve metric
properties of the original space, it is desirable to make this
quantity as small as possible. The above bound was later
improved by Borradaile, Lee, and Sidiropoulos [2], who

obtained an embedding with distortion polynomial in g. In
the present paper, we give an embedding with distortion
O(log g), which matches the Ω(log g) lower bound from
[2]. The statement of our main result follows.

Theorem I.1 (Stochastic planarization). Any graph G of
genus g, admits a stochastic embedding into a distribution
over planar graphs, with distortion O(log g). Moreover,
given a drawing of G into a genus-g surface, the embedding
can be computed in polynomial time.

We note that Theorem I.1 can be equivalently stated for
compact 2-dimensional simplicial manifolds, i.e. continuous
spaces obtained by glueing together finitely many triangles,
with every point having a neighborhood homeomorphic to a
disk. The result for these spaces can be obtained via a careful
affine extension of our embedding over simplices. Since our
focus is on algorithmic applications, we omit the details, and
restrict our discussion to the discrete case (i.e. finite graphs).

A. Our techniques

In [1] it was shown that a graph of genus g can be
stochastically embedded into a distribution over graphs of
genus g−1, with constant distortion. Repeating this g times
results in a planar graph, but yields distortion exponential
in g. The improvement of [2] was obtained by giving
an algorithm that removes all handles at once. The main
technical tool used to achieve this was the Peeling Lemma
from [6]. The idea is that given a graph G of genus g, one
can find a subgraph H ⊂ G, which we refer to as the cut
graph, such that (i) G\H is planar, (ii) H has dilation gO(1),
and (iii) H can be stochastically embedded into a planar
graph. The resulting distortion of the embedding produced
via the Peeling Lemma is proportional to the dilation of H ,
and therefore polynomial in g.

It was further shown in [2] that any cut graph has dilation
Ω(g), imposing a limitation on their technique. We overcome
this barrier as follows. We first find a cut graph consisting of
O(g) shortest paths with a common end-point. These paths
are obtained from the generators of the fundamental group
of the underlying surface, due to Erickson and Whittlesey
[7]. In the heart of our analysis, we show how to embed a
collection of shortest paths with a common end-point, into
a random tree with distortion O(log g). This result can be
viewed as a generalization of the tree-embedding theorem
due to Fakcharoenphol, Rao, and Talwar [8], who showed



that any n-point metric space admits a stochastic embedding
into a tree with distortion O(log n).

This connection with tree embeddings seems surprising,
since planar graphs appear to be significantly more com-
plicated topologically. For instance, even embedding the
n× n grid into a random tree, requires distortion Ω(log n),
due to a lower bound of Alon, Karp, Peleg, and West
[9]. Gupta, Newman, Rabinovich, and Sinclair [10] have
shown that the same lower bound of Ω(log n) holds even for
embedding very simple classes of planar graphs into trees,
such as series-parallel graphs (i.e. even for planar graphs of
treewidth 2).

Our tree-embedding result is obtained by combining the
approach from [8] with the algorithm of Lee and Sidiropou-
los [11] for computing random partitions for graphs of small
genus. We remark however that the algorithm of [8] com-
putes an embedding into an ultrametric1, and it can be shown
that even a single shortest path cannot be embedded into a
random ultrametric with distortion better than Ω(log n). We
therefore need new ideas to obtain distortion O(log g). One
key ingredient towards this is a new random decomposition
scheme, which we refer to as alternating partitions, and
which takes into account the topology of the paths that we
wish to partition. These techniques might be of independent
interest.

B. Applications

Optimization: As in the case of stochastic embeddings
of arbitrary metrics into trees [5], we obtain a general
reduction from a class of optimization problems on genus-g
graphs, to their restriction on planar graphs. We now state
precisely the reduction. Let V be a set, I ⊂ RV×V+ a set of
non-negative vectors corresponding all feasible solutions for
a minimization problem, and c ∈ RV×V+ . Then, we define the
linear minimization problem (I, c) to be the computational
problem where we are given a graph G = (V,E), and we
are asked to find s ∈ I, minimizing∑

{u,v}∈V×V

cu,v · su,v · d(u, v)

Observe that this definition captures a very general class
of problems. For example, MST can be encoded by letting I
be the set of indicator vectors of the edges of all spanning
trees on V , and c the all-ones vector. Similarly, one can
easily encode problems such as TSP, Facility-Location, k-
Server, Bi-Chromatic Matching, etc.

We can now state an immediate Corollary of our embed-
ding result.

Corollary I.2. Let Π = (I, c) be a linear minimization
problem. If there exists a polynomial-time α-approximation
algorithm for Π on planar graphs, then there exists a

1A metric space (X, d) where for every x, y, z ∈ X , d(x, y) ≤
max{d(x, z), d(z, y)}.

randomized polynomial-time O(α · log g)-approximation al-
gorithm for Π on graphs of genus g.

We remark that in the above Corollary, we can allow the
approximation guarantee α to be a function of n, using
the following argument. It has been shown by Englert et
al. [12] that for any planar graph G = (V,E), and any
U ⊆ V , there exists a stochastic embedding of (U, dG)
into a distribution over planar graphs with |U | vertices.
Composing our stochastic embedding with this result, gives
an embedding into a random planar graph with the same
number of vertices as the input graph.

Metric embeddings: One of the most intriguing open
problems in the theory of metric embeddings is determining
the optimal distortion for embedding planar graphs, and
more generally graphs that exclude a fixed minor, into L1

(see e.g. [6], [10], [13], [14]). We remark that by the work of
Linial, London, and Rabinovich [13], this distortion equals
precisely the maximum multi-commodity max-flow/min-cut
gap on these graphs, and is therefore of central importance
in divide-and-conquer algorithms that are based on Sparsest-
Cut [15], [16]. Our embedding result immediately implies
the following corollary. The first proof of this statement was
given in [11], where it was derived via a fairly complicated
argument.

Corollary I.3. If all planar graphs embed into L1 with
distortion at most α, then all graphs of genus g embed into
L1 with distortion O(α · log g).

C. Preliminaries

Throughout the paper, we consider graphs G = (V,E)
with a non-negative length function len : E → R. For a
pair u, v ∈ V (G), we denote the length of the shortest path
between u and v in G, with the lengths of edges given
by len, by dG(u, v). By scaling all edge lengths, we may
assume that the minimum distance is 1. Let also ∆ denote
the diameter of G. Unless otherwise stated, we restrict our
attention to finite graphs.

Graphs on surfaces: Let us recall some notions from
topological graph theory (an in-depth exposition can be
found in [17]). A surface is a compact connected 2-
dimensional manifold, without boundary. For a graph G
we can define a one-dimensional simplicial complex C
associated with G as follows: The 0-cells of C are the
vertices of G, and for each edge {u, v} of G, there is a 1-cell
in C connecting u and v. A drawing of G on a surface S
is a continuous injection f : C → V . The orientable genus
of a graph G is the smallest integer g ≥ 0 such that C can
be drawn into a sphere with g handles. Note that a graph of
genus 0 is a planar graph.

Metric embeddings: A mapping f : X → Y between
two metric spaces (X, d) and (Y, d′) is non-contracting if
d′(f(x), f(y)) ≥ d(x, y) for all x, y ∈ X . If (X, d) is any
finite metric space, and Y is a family of finite metric spaces,



Figure 1. Example of systems of loops for surfaces of genus one and two.

we say that (X, d) admits a stochastic D-embedding into Y
if there exists a random metric space (Y, d′) ∈ Y and a
random non-contracting mapping f : X → Y such that for
every x, y ∈ X ,

E
[
d′(f(x), f(y))

]
≤ D · d(x, y). (1)

The infimal D such that (1) holds is the distortion of the
stochastic embedding. A detailed exposition of results on
metric embeddings can be found in [18] and [19].

D. Organization

The rest of the paper is organized as follows. In Section
II we show that in any graph of genus g, we can find
a collection of O(g) shortest paths with a common end-
point, whose removal leaves a planar graph. In Section III
we define alternating partitions for the metric space M
induced on these paths. Using these partitions, we show
in Section IV how to embed M into a random tree, with
distortion O(log g). Finally, in Section V we combine this
tree embedding with the Peeling Lemma, to obtain our main
result.

II. HOMOTOPY GENERATORS

Let G be a genus-g graph embedded into an orientable
genus-g surface S, and let r be a vertex of G. A system
of loops with basepoint r is a collection of 2g cycles
C1, . . . , C2g containing r, such that the complement of⋃2g
i=1 Ci in S is homeomorphic to a disk. Examples of

systems of loops are depicted in Figure 1 (see also [7] for a
detailed exposition). The set of cycles in a system of loops
generate the fundamental group π1(S, r).

A system of loops is called optimal if every Ci is
the shortest cycle in its homotopy class. Algorithms for
computing optimal systems of loops have been given by
Colin de Verdière and Lazarus [20] and by Erickson and
Whittlesey [7]. The later algorithm has the property that
each cycle Ci can be decomposed into either two shortest
paths with common end-point r, or two such shortest paths,
and an edge between the other two end-points. We therefore
have the following.

Lemma II.1 (Greedy homotopy generators [7]). Let G be
a graph embedded into an orientable surface S of genus g.
Then, there exists a subgraph H of G satisfying the following
properties:

(i) The complement of H in S is homeomorphic to a disk.
(ii) There exists r ∈ V (G), and a collection of 4g shortest-

paths Q1, . . . , Q4g in G, having r as a common end-point,
such that V (H) =

⋃
i∈[4g] V (Qi).

III. ALTERNATING PARTITIONS

Let G be a graph. By rescaling the edge-lengths we
may assume w.l.o.g. that the minimum distance in G is
one. Let P = {P1, . . . , Pk} be a collection of shortest
paths in G, with a common end-point r ∈ V (G). Let
X =

⋃k
i=1 V (Pi). We consider the metric space (X, dG).

We define a collection {Ci}2+log ∆
i=0 , where each Ci is a

random partition of X into sets of diameter less than 2i, and
such that for any i ∈ {1, . . . , 1+log ∆}, Ci is a refinement of
Ci+1. We refer to the resulting collection {Ci}i as alternating
partitions for (X, dG).

Pick a permutation σ ∈ Sg , and reals2 α ∈ [0, 1), β ∈
[1, 2), uniformly, and independently at random. This is all
the randomness that will be used in the construction.

We set C2+log ∆ = {X}, i.e. the trivial partition that places
all points into the same cluster. For i = 1 + log ∆, . . . , 1,
given Ci+1 we define Ci by performing two partitioning steps
that we describe below (see also Figure 2).

Horizontal partitioning step: Let A ∈ Ci+1. We partition
A into clusters {As}ks=1. We consider the paths in P in the
order Pσ(1), . . . , Pσ(k). For each s ∈ {1, . . . k}, we form the
cluster

As =
(
A ∩NG(Pσ(s), β · 2i−3)

)
\
s−1⋃
t=1

At,

where NG(Pl, δ) = {x ∈ X : dG(x, Pl) ≤ δ}. We say that
the path Pσ(s) is the trunk of As. For notational convenience,
we also refer to Pσ(1) as the trunk of the unique cluster {X}
in the partition C2+log ∆. We refer to the clusters {As}ks=1

as the horizontal children of A.
Vertical partitioning step: Next, we proceed to parti-

tion each horizontal child As of A into a set of clusters
{As,j}j∈N0

, so that for any integer j ≥ 0,

As,j = {x ∈ As : (j−1+α)·2i−2 ≤ dG(r, x) < (j+α)·2i−2}

We refer to the clusters {As,j}j∈N0
as the vertical children

of As. We also say that Pσ(s) is the trunk of As,j . Finally,
we add all non-empty clusters As,j to Ci.

2It suffices to chose α and β within O(logn) bits of precision.



Figure 2. Alternating horizontal and vertical partitioning steps.

This concludes the description of the construction of the
alternating partitions {Ci}i for (X, dG).

Lemma III.1. For any i ∈ {0, . . . , 2 + log ∆}, and A ∈ Ci,
we have diamG(A) < 2i.

Proof: Let Ps be the trunk of A. Let Q be the subpath
of Ps that is contained in A. By the construction of the
vertical children we have len(Q) < 2i−2. Moreover, by the
construction of the horizontal children we have that for any
x ∈ A, dG(x,Q) < 2i−2. Therefore, for any x, y ∈ A we
have dG(x, y) ≤ dG(x,C) + dG(y, C) + len(Q) < 2i.

IV. EMBEDDING THE CUT GRAPH INTO A RANDOM TREE

As in the previous section, let G be a graph, and r ∈
V (G). Let P1, . . . , Pk be shortest paths in G with common
end-point r, and define X =

⋃k
i=1 V (Pk). We will use

the alternating partitions {Ci}i constructed in the previous
section to obtain a stochastic embedding of (X, dG) into a
distribution over trees, with distortion O(log k).

For any Y ⊆ V (G), let top(Y ) = minv∈Y dG(r, v), and
bottom(Y ) = maxv∈Y dG(r, v).

We proceed by induction on the partitions {Ci}i∈N0 ,
starting from C0. For every cluster A ∈ Ci we construct a
tree TA and an injection fA : A → V (TA). We inductively
maintain the following invariant:

(I) For every cluster A with trunk Ps, there exists
in TA a copy of the subpath of Ps containing all
vertices v ∈ V (Ps) with top(A) ≤ dG(r, v) ≤
bottom(A). We refer to this path as the stem of
A. We denote by rA the vertex in the stem of A
which is closest to r in G. We refer to rA as the
root of A.

By Lemma III.1 we have that every cluster A ∈ C0 has
diameter less than the minimum distance in G, and therefore
contains a single vertex. We set TA to be the trivial tree
containing that vertex. The map fA sends the unique vertex
in A to its copy in TA.

Suppose now that we have constructed a tree for every
cluster in Ci−1, for some i ≥ 1. We will show how to

obtain a tree for every cluster in Ci. Let A ∈ Ci, and let
{As}ks=1 be the horizontal children of A. For a horizontal
child As, let {As,j}j∈N0 be its vertical children. Recall
that each such As,j is a cluster in Ci−1. Therefore, by the
induction hypothesis we have already computed a tree TAs,j

for every As,j , and an injection fAs,j
: As,j → V (TAs,j

).
We construct the tree TA in two steps:

Vertical composition step: We first combine the graphs
of the vertical children of each As, to obtain an intermediate
tree TAs

. This is done as follows. Recall that Ps is the trunk
of A. By the inductive invariant (I) we have that for every
vertical child As,j , its stem Qs,j is a path in TAs,j

, and each
such Qs,j is a copy of a subpath of Ps. In particular, since
for all i we have bottom(As,i) < top(As,i+1), it follows
that the stems of distinct vertical children correspond to
disjoint subpaths of Ps. Let Qs be the subpath containing
all vertices v ∈ Ps with top(As) ≤ dG(r, v) ≤ bottom(As).
Since As,j ⊆ As it follows that Qs,j ⊆ Qs. We form the
tree TAs

by taking a copy of Qs and identifying for every
vertical child As,j , the stem Qs,j in TAs,j with its copy in
Qs. The path Qs becomes the stem of As. The mapping
fAs

is defined by composing each fAs,j
with the natural

inclusion V (TAs,j
)→ V (TAs

). See Figure 3(a).
Horizontal composition step: Next, we combine the trees

TAs
for all horizontal children {As}ks=1 of A, to obtain TA.

Let Pt be the trunk of A. Observe that there exists a non-
empty horizontal child At of A. For any l ∈ {1, . . . , k},
with l 6= t, we connect rAl

with rAt
via an edge of length

2i. Let TA be the resulting tree, and fA be the induced
injection from

⋃k
s=1As to V (TA). Note that the root of A

is rA = rAt
. See Figure 3(b).

It is easy to verity that the inductive invariant (I) is
maintained. Finally, we set T = T{X}, and f = f{X}. This
concludes the description of the embedding f : X → V (T ).

A. Bounding the distortion

It is straight-forward to verify that the mapping f : X →
V (T ) is non-contracting, so it remains to bound the expected



(a) Vertical composition. (b) Horizontal composition.

Figure 3. Vertical and horizontal compotition steps.

expansion for every pair of vertices. We begin with a useful
Lemma.

Lemma IV.1. Let i ∈ {0, . . . , 2 + log ∆}, let A ∈ Ci, and
let Q be the stem of A. Then, for any v ∈ A, we have
dT (f(v), Q) ≤ 2i+2.

Proof: For any j ∈ {0, . . . , i}, let Aj = Cj(v). We
have that TA0 is the tree containing only f(v). For any
j ∈ {0, . . . , i}, let Qj be the stem of Aj . We have len(Qj) <
2j−2, and dT (rAj

, Qj+1) ≤ dT (rAj
, rAj+1

) ≤ 2j+1.
Thus dT (f(v), Q) ≤

∑i−1
j=0

(
len(Qj) + dT (rAj

, Qj+1)
)
<∑i−1

j=0

(
2j−2 + 2j+1

)
< 2i+2

For the remaining of the analysis, we fix two vertices
u, v ∈ X . We wish to bound E[dT (f(u), f(v))], where the
expectation is taken over the randomness used in construct-
ing the alternating partitions {Ci}i (i.e. α, β, and σ).

We begin by introducing some notation. We say that a path
Ps ∈ P settles {u, v} at level i if u and v are in the same
cluster in Ci+1, and Ps is the first path w.r.to the ordering
σ such that Ps is the trunk of at least one of the clusters
Ci(u), Ci(v). Moreover, we say that Ps cuts horizontally
{u, v} at level i if it settles {u, v} at level i, and exactly
one of the clusters Ci(u), Ci(v) has Ps as its trunk (i.e. u
and v get separated during the horizontal partitioning step,
while constructing Ci).

Similarly, we say that Ps saves {u, v} at level i if u and
v are in the same cluster in Ci+1, and Ps is the trunk of
a hozirontal child of a cluster in Ci+1 containing both u
and v. We say that Ps cuts vertically {u, v} at level i if
it saves {u, v} at level i, and Ci(u) 6= Ci(v) (i.e. u and
v get separated during the vertical partitioning step, while
constructing Ci).

Let γis, resp. δis, be the supremum of dT (f(u), f(v)) when
s cuts {u, v} at level i horizontally, resp. vertically, taken
over all possible random choices of the algorithm. That is,

γis = sup
α,β,σ
{dT (f(u), f(v)) :

s cuts horizontally {u, v} at level i}

δis = sup
α,β,σ
{dT (f(u), f(v)) :

s cuts vertically {u, v} at level i}

Then, we have

E[dT (f(u), f(v))] ≤ Φ1 + Φ2, (2)

where

Φ1 =
k∑
s=1

2+log ∆∑
i=0

γis·Pr[Ps cuts horizontally {u, v} at level i]

Φ2 =

k∑
s=1

2+log ∆∑
i=0

δis · Pr[Ps cuts vertically {u, v} at level i]

We will bound each one of these quantities separately.

Lemma IV.2. Φ1 ≤ O(log k) · dG(u, v).

Proof: Define the interval

Is = [min{dG(u, Ps), dG(v, Ps)},max{dG(u, Ps), dG(v, Ps)})

In order for Ps to cut horizontally {u, v} at level i it must
be the case that β · 2i−3 ∈ Is. Since β is chosen from [1, 2)
uniformly at random, it follows by the triangle inequality
that this happens with probability at most

Pr[β · 2i−3 ∈ Is] ≤ |Is|/2i−3 ≤ dG(u, v)/2i−3 (3)

Assume w.l.o.g. that dG(P1, {u, v}) ≤ . . . ≤
dG(Pk, {u, v}). Conditioned on the event that β · 2i−3 ∈ Is,
any of the paths P1, . . . , Ps can settle {u, v}. Therefore,

Pr[Ps settles {u, v} | β · 2i−3 ∈ Is] ≤ 1/s (4)

Next we bound γis. Suppose that a path Ps cuts horizon-
tally {u, v} at level i. Let Q be the stem of the cluster in
Ci+1 containing both u and v. By Lemma IV.1 we conclude
that

γis ≤ dT (f(u), f(v))

≤ dT (f(u), Q) + len(Q) + dT (f(v), Q)

≤ 2i+5 (5)



Observe that since β ∈ [1, 2), it follows that for every
s ∈ {1, . . . , k}, there exists an integer is such that the path
Ps can cut horizontally {u, v} only at level is, or is + 1.
Therefore

Φ1 ≤
k∑
s=1

1∑
i=0

2is+j+5

· Pr[Ps settles {u, v} at level is and β · 2is+j−3 ∈ Is]

≤
k∑
i=1

1∑
j=0

2is+j+5

· Pr[Ps settles {u, v} at level is + j | β · 2is+j−3 ∈ Is]
· Pr[β · 2is+j−3 ∈ Is]

≤ O

(
k∑
s=1

2is · 1

s
· dG(u, v)

2is

)
= O(log k) · dG(u, v)

Lemma IV.3. Φ2 ≤ O(log k) · dG(u, v).

Proof: Define

Js = [max{dG(u, Ps), dG(v, Ps)},∞)

Ris =

∞⋃
j=0

[j · 2i−2 + min{dG(r, u), dG(r, v)},

j · 2i−2 + max{dG(r, u), dG(r, v)})

Denote by E i1 the event β · 2i−3 ∈ Js, and by E i2 the event
α · 2i−2 ∈ Ris. In order for Ps to cut vertically {u, v} at
level i, both E i1 and E i2 must hold.

Assume w.l.o.g. that dG(P1, {u, v}) ≤ . . . ≤
dG(Pk, {u, v}). Conditioned on E i1, any of P1, . . . , Ps can
save {u, v}. Therefore,

Pr[Ps saves {u, v} | E i1] ≤ 1/s (6)

By the triangle inequality we have

Pr[E i2] ≤ dG(u, v)/2i−2 (7)

We next upper bound δis. Suppose that Ps cuts vertically
{u, v} at level i. Let Ls = max{dG(u, Ps), dG(v, Ps))}, and
js = 2+dlogLse. Assume w.l.o.g. that dG(r, u) ≤ dG(r, v).
If follows by the construction of T that Ps is the trunk
of Cjs+1(u) and Cjs+1(v). Therefore, there exist clusters
U1, . . . , Ut ∈ Cjs+1 with u ∈ U1, v ∈ Ut, such that Ps is
the trunk of every Ui, and such that the stems of U1, . . . , Ut
are consecutive subpaths of Ps. Let Qi be the stem of Ui. For
any j ∈ {1, . . . , t−1}, the path Qj is connected to the path
Qj+1 via a path Wj , such that len(Qj) + len(Wj) ≤ 2js−1.

By lemma IV.1 we have

δis ≤ dT (f(u), Q1) + dT (f(v), Qt)

+
t−1∑
j=1

(len(Qj) + len(Wj)) + len(Qt)

≤ 2js+4 + |dG(r, u)− dG(r, v)|+ 2 · 2js−1

≤ 28 · Ls + dG(u, v) (8)

Let τs = max{js, dlog dG(u, v)e − 1}. Observe that
for any i < js, we have Pr[E i1] = 0. Moreover, if Ps
saves {u, v} at level i, it must be the case that there
exists A ∈ Ci+1 containing both u and v, and thus with
diamG(A) ≥ dG(u, v). By Lemma III.1 we have i ≥
dlog dG(u, v)e − 1. Therefore, for any i < τs we have
Pr[Ps cuts {u, v} at level i] = 0. Combining with (6), (7),
and (8), we have

Φ2 ≤
k∑
s=1

2+log ∆∑
i=τs

δis

·Pr[Ps saves {u, v} at level i | E i1 and E i2]

·Pr[E i1 and E i2]

≤
k∑
s=1

1

s

2+log ∆∑
i=τs

δis ·
dG(u, v)

2i−2

≤ dG(u, v) ·
k∑
s=1

1

s

2+log ∆∑
i=τs

28 · Ls + dG(u, v)

2i−2

< dG(u, v) ·
k∑
s=1

1

s
· 28 · Ls + dG(u, v)

2τs−3

≤ O(log k) · dG(u, v)

Combining (2) with lemmas IV.2 and IV.3 we obtain the
main result of this section.

Theorem IV.4. Let G be a graph, and let P = {P1, . . . , Pk}
be a collection of shortest-paths in G, sharing a common
end-point. Then, the metric space

(⋃k
i=1 V (Pi), dG

)
admits

a stochastic embedding into a distribution over trees with
distortion O(log k).

V. PLANARIZATION

Let (X, d) be a metric space. A distribution F over
partitions of X is called (β,∆)-Lipschitz if every partition
in the support of F has only clusters of diameter at most
∆, and for every x, y ∈ X ,

Pr
C∈F

[C(x) 6= C(y)] ≤ β · d(x, y)

∆
.

We denote by β(X,d) the infimum β such that for any
∆ > 0, the metric (X, d) admits a (∆, β)-Lipschitz random
partition, and we refer to β(X,d) as the modulus of decom-
posability of (X, d). The following theorem is due to Klein,
Plotkin, and Rao [21], and Rao [22].



Theorem V.1 ( [21], [22]). For any planar graph G, we
have β(V (G),dG) = O(1).

Let G be a graph, and let A ⊆ V (G). The dilation of A
is defined to be

dilG(A) = max
u,v∈V (G)

dG[A](u, v)

dG(u, v)

For a graph G and a graph family F we write G
D
 

F to denote the fact that G stochastically embeds into a
distribution over graphs in F , with distortion D.

For two graphs G,G′, a 1-sum of G with G′ is a graph
obtained by taking two disjoint copies of G and G′, and
identifying a vertex v ∈ V (G) with a vertex v′ ∈ V (G′).
For a graph family X , we denote by ⊕1X the closure of X
under 1-sums.

Lemma V.2 (Peeling Lemma [6]). Let G be a graph, and
A ⊆ V (G). Let G′ = (V (G), E′) be a graph with E′ =
E(G)\E(G[A]), and let β = β(V,dG′ ) be the corresponding
modulus of decomposability. Then, there exists a graph
family F such that G D

 F , where D = O(β · dilG(A)),
and every graph in F is a 1-sum of isometric copies of the
graphs G[A] and {G[V \A ∪ {a}]}a∈A.

We will use the following auxiliary Lemma.

Lemma V.3 (Composition Lemma). Let G be a graph, and
let X , Y , Z be graph families. If G α

 ⊕1(X ∪Y), and for
any G′ ∈ X , G′

β
 Z , then G

α·β
 ⊕1(Z ∪ Y).

Proof sketch: It follows by direct composition of the
two embeddings.

Proof of Theorem I.1: Let G be a genus-g graph, drawn
on a genus-g surface S. Let H be the subgraph of G given by
Lemma II.1. Recall that there exists r ∈ V (G) and shortest
paths P1, . . . , P4g in G, having r as a common end-point,
such that V (H) =

⋃4g
i=1 V (Pi).

Let us write G1 = G, and X = V (H). By Theorem IV.4,
we have

(X, dG1
)
O(log g)
 Trees (9)

After scaling the lengths of the edges in G1, we may
assume that the minimum distance is one. Let G2 be the
graph obtained from G1 as follows. For every edge {u, v} ∈
E(G1) with u ∈ X1 and v /∈ X1, we replace {u, v} with
two edges {u,w} and {w, v}, with len({u,w}) = 1/2, and
len({w, v}) = len({u, v}) − 1/2. Let Y = X ∪ NG2

(X),
i.e. the set X , together with all new vertices w introduced
above.

Observe that for any x, y ∈ X , we have dG1
(x, y) =

dG2
(x, y). Therefore by (9),

(X, dG2
)
O(log g)
 Trees

This embedding can be extended to Y as follows. For every
tree T in the support of the distribution, and for every vertex

w ∈ Y \X , we attach w to T by adding an edge of length
1/2 between w and the unique neighbor of w in X . Since
we only add leaves to T , the new graph is still a tree.
It is straight-forward to verify that the resulting stochastic
embedding has distortion O(log g), and thus

(Y, dG2
)
O(log g)
 Trees (10)

Let G3 be the graph obtained from G2 by adding an
edge {u, v} of length dG(u, v), between every pair of
vertices u, v ∈ Y . Let E′3 = E(G3) \ E(G3[Y ]), and
G′3 = (V (G3), E′3). By cutting the surface S along H we
obtain a drawing of G \H into the interior of a disk. Since
every vertex in Y \X is attached to G\H via a single edge,
it follows that this planar drawing can be extended to G′3.
Thus, the graph G′3 is planar, and by theorem V.1 we have
β(V (G′

3),dG′
3
) = O(1).

Similarly, we have that for any y ∈ Y , the graph
G3[V (G3) \ Y ∪ {y}] is planar.

Observe that dilG3(Y ) = 1. By the Peeling Lemma
(Lemma V.2) we have that G3 can be stochastically em-
bedded with distortion O(dilG3

(Y ) · βG′
3
) = O(1) into a

distribution over graphs J , where J is obtained by 1-sums of
isometric copies of G3[Y ] and {G3[V (G3) \Y ∪{y}]}y∈Y .
Each graph in {G3[V (G3) \ Y ∪ {y}]}y∈Y is planar, and
therefore

G3
O(1)
 ⊕1(Planar, {G3[Y ]}) (11)

By (10), and since the metric (Y, dG3
) is the same as the

metric (Y, dG2
), we have that

G3[Y ]
O(log g)
 Trees (12)

Note that the 1-sum of two planar graphs is also planar.
Therefore, combining (11), (12) and Lemma V.3, we obtain

G3
O(log g)
 ⊕1(Trees ∪ Planar) = ⊕1Planar = Planar

Since G3 contains an isometric copy of G, this implies

G
O(log g)
 Planar,

concluding the proof.
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