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Abstract—We consider the problem of testing if a
given function f : Fn

2 → F2 is close to any degree d
polynomial in n variables, also known as the Reed-
Muller testing problem. Alon et al. [1] proposed and
analyzed a natural 2d+1-query test for this problem.
This test turned out to be intimately related to the
Gowers norm. Alon et. al. showed that this test
accepts every degree d polynomial with probability
1, while it rejects functions that are Ω(1)-far with
probability Ω(1/(d2d)). We give an asymptotically op-
timal analysis of this test, and show that it rejects
functions that are (even only) Ω(2−d)-far with Ω(1)-
probability (so the rejection probability is a universal
constant independent of d and n). This implies a tight
relationship between the (d + 1)st-Gowers norm of a
function and its maximal correlation with degree d
polynomials, when the correlation is close to 1.
Our proof works by induction on n and yields a new
analysis of even the classical Blum-Luby-Rubinfeld [2]
linearity test, for the setting of functions mapping Fn

2

to F2. The optimality follows from a tighter analysis
of counterexamples to the “inverse conjecture for the
Gowers norm” constructed by [3], [4].
Our result has several implications. First, it shows
that the Gowers norm test is tolerant, in that it
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also accepts close codewords. Second, it improves
the parameters of an XOR lemma for polynomials
given by Viola and Wigderson [5]. Third, it implies a
“query hierarchy”result for property testing of affine-
invariant properties. That is, for every function q(n),
it gives an affine-invariant property that is testable
with O(q(n))-queries, but not with o(q(n))-queries,
complementing an analogous result of [6] for graph
properties.
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ing, Reed-Muller codes, Gowers norm, Low-degree
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I. Introduction

Can the proximity of a function to a low-degree poly-
nomial be estimated by sampling the function in few
places? Variants of this question have been studied in
two different communities for different purposes.

A. Gowers norm

In the additive combinatorics community, this issue
arose in Gowers’ notable improvement of Szemerédi’s
theorem, that any subset of the integers with positive
density has infinitely long arithmetic progressions. To
make his advance, Gowers introduced his uniformity
norms, now usually called Gowers norms. The motiva-
tion for these norms is that if a function f has degree d,
then its derivative in direction a, f(x + a) − f(x), has
degree at most d−1. Hence the (d+1)-fold derivative is 0.
Thus, a natural test to decide if a function f has degree
d is to set k = d+ 1, evaluate the k-fold derivative of f
in k random directions, and accept only if the derivative



evaluates to 0. This is what we call the kth Gowers norm
test, TGN(k), for k = d+ 1.
Our paper focuses on the field F2 of two elements, and
we now restrict to this case. The kth Gowers norm of
f : F2 → F2, denoted ‖f‖Uk , is given by the expression

‖f‖Uk
def
= (Pr[TGN(k) accepts]− Pr[TGN(k) rejects])

1

2k .

Gowers [7] (see also [8]) showed that the correlation
of f to the closest degree d polynomial is at most
‖f‖Ud+1 . The well-known Inverse Conjecture for the
Gowers Norm states that some sort of converse holds:
if ‖f‖Ud+1 = Ω(1), then the correlation of f to some
degree d polynomial is Ω(1). Lovett et al. [4] and Green
and Tao [3] disproved this conjecture as stated, but a
modification of the conjecture remains open, and was
recently proven in high characteristic [9], [10]. These
conjectures and the Gowers norms have been extremely
influential. For example, Green and Tao [11] used the
Gowers norms over the integers to prove that the primes
contain arbitrarily long arithmetic progressions.
Study of the Gowers norms over F2 has led to impressive
results in theoretical computer science. Samorodnitsky
and Trevisan [12] used Gowers norms to obtain very
strong PCPs for Unique-Games-hard languages. This
implied that Maximum Independent Set in graphs of
maximum degree ∆ could not be approximated within
∆/polylog(∆) under the Unique Games Conjecture. Us-
ing Gowers norms, Bogdanov and Viola [13] gave a pseu-
dorandom generator fooling low-degree polynomials over
F2. They could only prove their result under the inverse
conjecture for the Gowers norm, but later Lovett [14] and
Viola [15] used related ideas to prove an unconditional
result. Finally, Viola and Wigderson [5] used Gowers
norms to prove “XOR” lemmas for correlation to low-
degree polynomials and to low communication protocols.

B. Local testing of Reed-Muller codes

Traditionally the Gowers norm is used in what Green
and Tao call the 1% setting, where the correlation of
a function to its closest low-degree polynomial is non-
negligible but small. The 99% setting, where the corre-
lation is close to 1, was addressed by Alon, Kaufman,
Krivelevich, Litsyn, and Ron [1], and is the focus of our
work. More precisely, Alon et al. considered the question
of testing if a Boolean function f : Fn2 → F2, given by
an oracle, is close to a degree d multivariate polynomial.
They proposed a test that turned out to be a variation
of the Gowers norm test1, where all the derivative di-
rections are linearly independent, and showed that this

1Gowers originally defined the Gowers norm as a norm on func-
tions from Zn → C. Green and Tao later extended the definition
of this norm to functions from an arbitrary abelian group G to C.
In the case of G = Fn

2 , this norm is closely related to the success
probability of the Gowers norm test TGN.

test suffices for that setting. Thus, their analysis gave
the only known relationship between the Gowers norm
and the proximity to low-degree polynomials in the 99%
setting.
However, their analysis was not optimal. In this work,
we give an improved, asymptotically optimal, analysis
of the Gowers norm test. This gives a tight connection
with the Gowers norm in the 99% setting. Before we
elaborate, let us introduce our framework.
Our question is also called testing of Reed-Muller codes,
which are codes based on low-degree polynomials. The
Reed-Muller codes are parameterized by two parameters:
n, the number of variables, and d, the degree parameter.
The Reed-Muller codes consist of all functions from
Fn2 → F2 that are evaluations of polynomials of degree
at most d. We use RM(d, n) to denote this class, i.e.,
RM(d, n) = {f : Fn2 → F2|deg(f) ≤ d}.
The proximity of functions is measured by the (frac-
tional Hamming) distance. Specifically, for functions
f, g : Fn2 → F2, we let the distance between them, de-
noted by δ(f, g), be the quantity Prx←UFn

2
[f(x) 6= g(x)].

For a family of functions F ⊆ {g : Fn2 → F2} let
δ(f,F) = min{δ(f, g)|g ∈ F}. We say f is δ-close to
F if δ(f,F) ≤ δ and δ-far otherwise.
Let δd(f) = δ(f,RM(d, n)) denote the distance of f to
the class of degree d polynomials. The goal of Reed-
Muller testing is to “test”, with “few queries” of f ,
whether f ∈ RM(d, n) or f is far from RM(d, n).
Specifically, for a function q : Z+ × Z+ × (0, 1] → Z+,
a q-query tester for the class RM(d, n) is a randomized
oracle algorithm T that, given oracle access to some
function f : Fn2 → F2 and a proximity parameter
δ ∈ (0, 1], queries at most q = q(d, n, δ) values of f
and accepts f ∈ RM(d, n) with probability 1, while if
δ(f,RM(d, n)) ≥ δ it rejects with probability at least,
say, 2/3. The function q is the query complexity of the
test and the main goal here is to minimize q, as a function
possibly of d, n and δ. We denote the test T run using
oracle access to the function f by T f .
As mentioned earlier, Alon et al. [1] gave a tester with
query complexity O(dδ · 4d). Their tester consists of
repetitions of a basic test, which we denote TGN. TGN

is a modification of the Gowers norm test TGN(d+1) so
that the (d + 1)-fold derivatives are evaluated in d + 1
random linearly independent directions. This modified
tester, whose rejection probability differs from that of
the original Gowers norm tester by only a constant
factor, can be described alternatively as follows. Given
oracle access to f , TGN selects a random (d + 1)-
dimensional affine subspace A, and accepts if f restricted
to A is a degree d polynomial. This requires 2d+1 queries
of f (since that is the number of points contained in
A). Alon et al. show that if δ(f) ≥ δ then TGN rejects
f with probability Ω(δ/(d · 2d)). Their final tester then



simply repeated TGN O(dδ · 2
d) times and accepted if all

invocations of TGN accepted. The important feature of
this result is that the number of queries is independent
of n, the dimension of the ambient space. Alon et al.
also show that any tester for RM(d, n) must make at
least Ω(2d + 1/δ) queries. Thus their result was tight to
within almost quadratic factors, but left a gap open. We
close this gap in this work.

C. Main Result

Our main result is an optimal analysis of the Gowers
norm test, up to constants. We show that if δd(f) ≥ 0.1,
in fact even if it’s at least 0.1 · 2−d, then in fact the
Gowers norm test rejects with probability lower bounded
by some absolute constant. We now formally state our
main theorem.
Theorem 1: There exists a constant ε1 > 0 such that for
all d, n, and for all functions f : Fn2 → F2, we have2

Pr[T fGN rejects] ≥ min{2d · δd(f), ε1}.

Therefore, to reject functions δ-far from RM(d, n) with
constant probability, a tester can repeat the test TGN

at most O(1/min{2dδd(f), ε1}) = O(1 + 1
2dδ

) times,
making the total query complexity O(2d + 1/δ). This
query complexity is asymptotically tight in view of the
earlier mentioned lower bound in [1].
Our error analysis is also asymptotically tight. Note that
our theorem effectively states that functions that are
accepted by TGN with constant probability (close to 1)
are (very highly) correlated with degree d polynomials.
To get a qualitative improvement, one could hope that
every function that is accepted by TGN with probability
strictly greater than half is somewhat correlated with a
degree d polynomial. Such stronger statements, however,
are effectively ruled out by the counterexamples to the
“inverse conjecture for the Gowers norm” given by [4],
[3]. Since the analysis given in these works does not
match our parameters asymptotically, we show (see the
full version of this paper [16]) how an early analysis due
to the authors of [4] can be used to show the asymptotic
tightness of the parameters of Theorem 1.
Our analysis of the Gowers norm test implies a tight
relationship between the Gowers norm and distance to
degree d in the 99% setting. In particular, we show the
following theorem.
Theorem 2: There exists ε > 0 such that if ‖f‖Ud+1 ≥
1− ε/2d, then δd(f) = Θ(1− ‖f‖Ud+1).
For comparison, the best previous lower bound comes
from the Alon et al. work, whose result can be inter-
preted as showing that there exists ε > 0 such that if
‖f‖Ud+1 ≥ 1− ε/4d, then δd(f) = O(4d(1− ‖f‖Ud+1)).

2For a tester T and a function f , the notation T f indicates the
execution of T with oracle access to f .

Before explaining our technique, we describe some ap-
plications of our result.

D. Tolerant testing of RM codes

Parnas, Ron, and Rubinfeld [17] introduced the notion
of tolerant testing, and Guruswami and Rudra [18]
studied this in the coding theoretic setting. Standard
testers are required to reject strings that are far from
codewords, but are not required to accept strings that
are close to codewords. A tolerant tester is required to
accept close codewords. In particular, for a code with
minimum (relative) distance δmin, there exists constants
c1 and c2 such that the test must accept strings within
distance c1δmin with probability at least 2/3 (called the
acceptance condition), and reject strings that are at
least (c2δmin)-far with probability at least 2/3 (called
the rejection condition).
Any tester which satisfies the rejection condition must
make at least Ω(1/δmin) queries. We observe that a tester
that satisfies the rejection condition and makes C/δmin

queries for a constant C is also tolerant. This follows
because a string with distance δmin/(3C) will be rejected
with probability at most 1/3. It even suffices to have the
rejection condition with a constant probability (instead
of 2/3), because the test can be repeated a constant
number of times to boost the probability to 2/3.
In particular, for Reed-Muller codes, δmin = 2−d, and
so, the Gowers norm test is also tolerant. No tolerant
tester for binary Reed-Muller codes appears to have been
known.
Theorem 3: TGN is a tolerant tester for RM(d, n).

E. XOR lemma for low-degree polynomials

As mentioned earlier, Viola and Wigderson [5] used the
Gowers norm and the Alon et al. analysis to give an
elegant “hardness amplification” result for low-degree
polynomials. Let f : Fn2 → F2 be such that δd(f) is
noticeably large, say ≥ 0.1. Viola and Wigderson showed
how to use this f to construct a g : Fm2 → F2 such
that δd(g) is significantly larger, around 1

2 − 2−Ω(m). In
their construction, g = f⊕t, the t-wise XOR of f , where
f⊕t : (Fn2 )t → F2 is given by:

f⊕t(x1, . . . , xt) =
t∑
i=1

f(xi).

In particular, they showed that if δd(f) ≥ 0.1, then

δd(f
⊕t) ≥ 1/2 − 2−Ω(t/4d). Their proof proceeded by

studying the rejection probabilities of TGN on the func-
tions f and f⊕t. The analysis of the rejection probability
of TGN given by [1] was a central ingredient in their
proof. By using our improved analysis of the rejection
probability of TGN from Theorem 1 instead, we get the
following improvement.



Theorem 4: Let ε1 be as in Theorem 1. Let f : Fn2 → F2.
Then

δd(f
⊕t) ≥ 1− (1− 2 min{ε1/4, 2d−2 · δd(f)})t/2d

2
.

In particular, if δd(f) ≥ 0.1, then δd(f
⊕t) ≥ 1/2 −

2−Ω(t/2d).

F. Query hierarchy for affine-invariant properties

Our result falls naturally in the general framework of
property testing [2], [19], [20]. Goldreich et al. [6] asked
an interesting question in this broad framework: Given
an ensemble of properties F = {FN}N where FN is
a property of functions on domains of size N , which
functions correspond to the query complexity of some
property? That is, for a given complexity function q(N),
is there a corresponding property F such that Θ(q(N))-
queries are necessary and sufficient for testing member-
ship in FN? This question is interesting even when we
restrict the class of properties being considered.

For completely general properties, this question is easy
to solve. For graph properties, Goldreich et al. [6]
show that for every efficiently computable function
q(N) = O(N), there is a graph property for which
Θ(q(N)) queries are necessary and sufficient (on graphs
on Ω(

√
N) vertices). Thus this gives a “hierarchy theo-

rem” for query complexity.

Our main theorem settles the analogous question in the
setting of “affine-invariant” properties. Given a field F,
a property F ⊆ {Fn → F} is said to be affine-invariant
if for every f ∈ F and affine map A : Fn → Fn, the
composition of f with A, i.e, the function f ◦ A(x) =
f(A(x)), is also in F . Affine-invariant properties seem
to be the algebraic analog of graph-theoretic properties
and generalize most natural algebraic properties (see
Kaufman and Sudan [21]).

Since the Reed-Muller codes form an affine-invariant
family, and since we have a tight analysis for their
query complexity, we can get the affine-invariant ver-
sion of the result of [6]. Specifically, given any (rea-
sonable) query complexity function q(N), consider N
that is a power of two and consider the class of func-
tions on n = log2N variables of degree at most d =
dlog2 q(N)e. We have that membership in this family
requires Ω(2d) = Ω(q(N))-queries, and on the other
hand O(2d) = O(q(N))-queries also suffice, giving an
ensemble of properties PN (one for every N = 2n) that
is testable with Θ(q(N))-queries.

Theorem 5: For every q : N → N that is at most linear,
there is an affine-invariant property that is testable with
O(q(n)) queries (with one-sided error) but is not testable
in o(q(n)) queries (even with two-sided error). Namely,
this property is membership in RM(dlog2 q(n)e, n).

G. Technique

Our main theorem (Theorem 1) is obtained by a novel
proof that gives a (yet another!) new analysis even of
the classical linearity test of Blum, Luby, Rubinfeld [2].
The heart of our proof is an inductive argument on
n, the dimension of the ambient space. While proofs
that use induction on n have been used before in the
literature on low-degree testing (see, for instance, [22],
[23], [24]), they tend to have a performance guarantee
that degrades significantly with n. Indeed no inductive
proof was known even for the case of testing linearity
of functions from Fn2 → F2 that showed that functions
at Ω(1) distance from linear functions are rejected with
Ω(1) probability. (We note that the original analysis of
[2] as well as the later analysis of [25] do give such
bounds, but they do not use induction on n.) In the
process of giving a tight analysis of the [1] test for Reed-
Muller codes, we thus end up giving a new (even if
weaker) analysis of the linearity test over Fn2 . Below we
give the main idea behind our proof.

Consider a function f that is δ-far from every degree
d polynomial. For a “hyperplane”, i.e., an (n − 1)-
dimensional affine subspace A of Fn2 , let f |A denote the
restriction of f to A. We first note that the test can be
interpreted as first picking a random hyperplane A in
Fn2 and then picking a random (d+1)-dimensional affine
subspace A′ within A and testing if f |A′ is a degree d
polynomial. Now, if on every hyperplane A, f |A is still
δ-far from degree d polynomials then we would be done
by the inductive hypothesis. In fact our hypothesis gets
weaker as n → ∞, so that we can even afford a few
hyperplanes where f |A is not δ-far. The crux of our
analysis is when for several (but just O(2d)) hyperplanes
f |A is close to some degree d polynomial PA. In this case
we manage to “sew” the different polynomials PA (each
defined on some (n−1)-dimensional subspace within Fn2 )
into a degree d polynomial P that agrees with all the
PA’s. We then show that this polynomial is close to f ,
completing our argument.

To stress the novelty of our proof, note that this is
not a “self-correction” argument as in [1], where one
defines a natural function that is close to P , and then
works hard to prove it is a polynomial of appropriate
degree. In contrast, our function is a polynomial by
construction and the harder part (if any) is to show
that the polynomial is close to f . Moreover, unlike other
inductive proofs, our main gain is in the fact that the
new polynomial P has degree no greater than that of
the polynomials given by the induction.

Organization of this paper:: We prove our main theo-
rem, Theorem 1, in Section II assuming three lemmas,
two of which study the rejection probability of the
k-dimensional affine subspace test, and another that



relates the rejection probability of the basic (d + 1)-
dimensional affine subspace test to that of the k-
dimensional affine subspace test. These three lemmas are
proved in the following section, Section III.
We give the relationship to the Gowers norm in Sec-
tion V, and we prove our improved hardness amplifica-
tion theorem, Theorem 4, in Section VI. Some proofs
that are abbreviated in this version may be found in
more detail in the full version of this paper [16].

II. Proof of Main Theorem

In this section, we prove Theorem 1. We start with an
overview of our proof. Recall that a k-flat is an affine
subspace of dimension k, and a hyperplane is an (n−1)-
flat.
The proof of the main theorem proceeds as follows. We
begin by studying a variant of the basic tester TGN,
which we call Td,k or the k-flat test. For an integer

k ≥ d + 1, T fd,k picks a uniformly random k-flat in Fn2 ,
and accepts if and only if the restriction of f to that flat
has degree at most d. In this language, the tester TGN

of interest to us is Td,d+1. To prove Theorem 1, we first

show that for k ≈ d + 10, the tester T fd,k rejects with

constant probability if δd(f) is Ω(2−d) (see Lemma 9).
We then relate the rejection probabilities of T fd,k and

T fGN (see Lemma 10).
The central ingredient in our analysis is thus Lemma 9
which is proved by induction on n, the dimension of the
ambient space. Recall that we want to show that the two
quantities (1) δd(f) and (2) Pr[T fd,k rejects], are closely
related. We consider what happens to f when restricted
to some hyperplane A. Denote such a restriction by
f |A. For a hyperplane A we consider the corresponding

two quantities (1) δd(f |A) and (2) Pr[T
f |A
d,k rejects]. The

inductive hypothesis tells us that these two quantities are
closely related for each A. Because of the local nature
of tester Td,k, it follows easily that Pr[T fd,k rejects] is

the average of Pr[T
f |A
d,k rejects] over all hyperplanes A.

The main technical content of Lemma 9 is that there
is a similar tight relationship between δd(f) and the
numbers δd(f |A) as A varies over all hyperplanes A.
This relationship suffices to complete the proof. The
heart of our analysis focuses on the case where for many
hyperplanes (about 2k of them, independent of n), the
quantity δd(f |A) is very small (namely, for many A, there
is a polynomial PA of degree d that is very close to
f |A). In this case, we show how to “sew” together the
polynomials PA to get a polynomial P on Fn2 that is also
very close to f . In contrast to prior approaches which
yield a polynomial P with larger degree than that of the
PA’s, our analysis crucially preserves this degree, leading
to the eventual tightness of our analysis.
We now turn to the formal proof.

A. Preliminaries

We begin by formally introducing the k-flat test and
some related notation.
Definition 6 (k-flat test Td,k): The test T fd,k picks a ran-
dom k-flat A ⊆ Fn2 and accepts if and only if f |A (f
restricted to A) is a polynomial of degree at most d.
The rejection probability of T fd,k is denoted Rejd,k(f). In
words, this is the probability that f |A is not a degree
d polynomial when A is chosen uniformly at random
among all k-flats of Fn2 .
Although we don’t need it for our argument, we note that
TGN = Td,d+1 accepts if and only if the 2d+1 evaluations
f |A sum to 0. The following folklore proposition shows
that for k ≥ d+ 1, Td,k has perfect completeness.
Proposition 7: For every k ≥ d+1, δd(f) = 0 if and only
if Rejd,k(f) = 0.

B. Key Lemmas

We now state our three key lemmas, and then use them
to finish the proof of Theorem 1. The first is a simple
lemma that says if the function is sufficiently close to
a degree d polynomial, then the rejection probability is
linear in its distance from degree d polynomials.
Lemma 8: For every k, `, d such that k ≥ ` ≥ d + 1,
if δ(f) = δ then Rejd,k(f) ≥ 2` · δ · (1 − (2` − 1)δ). In

particular, if δ ≤ 2−(d+2) then Rejd,k(f) ≥ min{ 1
8 , 2

k−1 ·
δ}.
The proof uses pairwise-independence in a straightfor-
ward way to argue that, with good probability, the
randomly chosen flat will contain exactly one point
where f and the closest degree d polynomial differ, in
which case the test will reject. Details are omitted from
this version of the paper.
The next lemma is at the heart of our analysis and allows
us to lower bound the rejection probability when the
function is bounded away from degree d polynomials.
Lemma 9: There exist positive constants β < 1/4, ε0, γ
and c such that the following holds for every d, k, n, such
that n ≥ k ≥ d + c. Let f : Fn2 → F2 be such that
δ(f) ≥ β · 2−d. Then Rejd,k(f) ≥ ε0 + γ · 2d/2n.
The final lemma relates the rejection probabilities of
different dimensional tests.
Lemma 10: For every n, d and k ≥ k′ ≥ d+1, and every
f : Fn2 → F2, we have

Rejd,k′(f) ≥ Rejd,k(f) · 2−(k−k′).

Given the three lemmas above, Theorem 1 follows easily
as shown below.

Proof of Theorem 1: Let ε0 and c be as in Lemma 9.
We prove the theorem for ε1 = ε0 · 2−(c−1). First note
that if δ(f) ≤ 2−(d+2), then we are done by Lemma 8.
So assume δ(f) ≥ 2−(d+2) ≥ β · 2−d, where β is
the constant from Lemma 9. By Lemma 9, we know



that Rejd,d+c(f) ≥ ε0. Lemma 10 now implies that

Rejd,d+1(f) ≥ ε0 · 2−(c−1), as desired.

III. Analysis of the k-flat test

Throughout this section we fix d, so we suppress it in the
subscripts and simply use δ(f) = δd(f) and Rejk(f) =
Rejd,k(f).

A. Lemma 9: When f is bounded away from RM(d, n)

The main idea of the proof of Lemma 9 is to consider
the restrictions of f on randomly chosen “hyperplanes”,
i.e., (n− 1)-flats. If on an overwhelmingly large fraction
(which will be quantified in the proof) of hyperplanes,
our function is far from degree d polynomials, then
the inductive hypothesis suffices to show that f will
be rejected with high probability (by the k-flat test).
The interesting case is when the restrictions of f to
several hyperplanes are close to degree d polynomials.
In Lemma 12 we use the close polynomials on such hy-
perplanes to construct a polynomial that has significant
agreement with f on the union of the hyperplanes.
We start by first fixing some terminology. We say A
and B are complementary hyperplanes if A ∪ B = Fn2 .
Recalling that a hyperplane is the set of points {x ∈
Fn2 |L(x) = b} where L : Fn2 → F2 is a nonzero linear
function and b ∈ F2, we refer to L as the linear part
of the hyperplane. We say that hyperplanes A1, . . . , A`
are linearly independent if the corresponding linear parts
are independent. The following proposition lists some
basic facts about hyperplanes that we use. The proof
is omitted.
Proposition 11 (Properties of hyperplanes): We have
the following:

1) There are exactly 2n+1− 2 distinct hyperplanes in
Fn2 .

2) Among any 2` − 1 distinct hyperplanes, there are
at least ` independent hyperplanes.

3) There is an affine invertible transform that maps
independent hyperplanes A1, . . . , A` to the hyper-
planes x1 = 0, x2 = 0, . . . , x` = 0.

We are now ready to prove Lemma 9. We first recall the
statement.
Lemma 9 (recalled): There exist positive constants β <
1/4, ε0, γ and c such that the following holds for every
d, k, n, such that n ≥ k ≥ d+ c. Let f : Fn2 → F2 be such
that δ(f) ≥ β · 2−d. Then Rejd,k(f) ≥ ε0 + γ · 2d/2n.

Proof of Lemma 9: We prove the lemma for every
β < 1/24, ε0 < 1/8, γ ≥ 72, and c such that 2c ≥
max{4γ/(1 − 8ε0), γ/(1 − ε0), 2/β}. (In particular, the
choices β = 1/25, ε0 = 1/16, γ = 72 and c = 10 work.)
The proof uses induction on n − k. When n = k we
have Rejk(f) = 1 ≥ ε0 + γ · 2d−k as required, because
2c ≥ γ

1−ε0 . So we move to the inductive step.

Let H denote the set of hyperplanes in Fn2 . Let N =
2(2n−1) be the cardinality of H. Let H∗ be the set of all
the hyperplanes A ∈ H such that δ(f |A,RM(d, n−1)) <
β · 2−d. Let K = |H∗|.
Now because a random k-flat of a random hyperplane
is a random k-flat, we have Rejk(f) = EA∈H[Rejk(f |A)].
By the induction hypothesis, for any A ∈ H \ H∗, we

have Rejk(f |A) ≥ ε0 + γ · 2d

2n−1 . Thus, Rejk(f) ≥ ε0 + γ ·
2d

2n−1 −K/N . We now take cases on whether K is large
or small:

1) Case 1: K ≤ γ · 2d.
In this case, Rejk(f) ≥ ε0 + γ · 2d/2n−1 −K/N ≥
ε0 + γ · 2d/2n as desired.

2) Case 2: K > γ · 2d.
Lemma 12 (below) shows that in this case, δ(f) ≤
3
2β · 2

−d + 9/(γ2d)
def
= δ0, provided β · 2−d < 2−(d+2)

(which holds since β < 1/24 < 1/4). Note that
since β < 1/24 and 9/γ < 1/8, we get δ0 < 2−(d+2)

and so Lemma 8 implies that Rejk(f) ≥ min{2k−1 ·
δ(f), 1

8} ≥ min{2k−1 ·β ·2−d, 1
8}. It is easy to check

that both these quantities above are at least ε0 +
γ/2(c+1) ≥ ε0 + γ2d/2n. This completes the proof
of the lemma.

Lemma 12: For f : Fn2 → F2, let A1, . . . , AK be hy-
perplanes such that f |Ai

is α-close to some degree d
polynomial on Ai. If K > 2d+1 and α < 2−(d+2), then
δ(f) ≤ 3

2α+ 9/K.
Proof: Let Pi be the degree d polynomial such that

f |Ai is α-close to Pi.
Claim 13: If 4α < 2−d then for every pair of hyperplanes
Ai and Aj , we have Pi|Ai∩Aj = Pj |Aj∩Ai .

Proof: If Ai and Aj are complementary then this
is vacuously true. Otherwise, |Ai ∩ Aj | = |Ai|/2 =
|Aj |/2. So δ(f |Ai∩Aj , Pi|Ai∩Aj ) ≤ 2δ(f |Ai , Pi) ≤
2α and similarly δ(f |Ai∩Aj

, Pj |Ai∩Aj
) ≤ 2α. So

δ(Pi|Ai∩Aj
, Pj |Ai∩Aj

) ≤ 4α < 2−d. But these are both
degree d polynomials and so if their proximity is less
than 2−d then they must be identical.
Let ` = blog2(K + 1)c. Thus ` > d. By Proposition 11
there are at least ` linearly independent hyperplanes
among A1, . . . , AK . Without loss of generality let these
be A1, . . . , A`. Furthermore, by an affine transformation
of coordinates, for i ∈ [`] let Ai be the hyperplane
{x ∈ Fn2 | xi = 0}. For i ∈ [`] extend Pi to a function on
all of Fn2 by making Pi independent of xi. We will sew
together P1, . . . , P` to get a polynomial close to f .
Let us write all functions from Fn2 → F2 as polynomials
in n variables x1, . . . , x` and y where y denotes the last
n− ` variables. For i ∈ [`] and S ⊆ [`], let Pi,S(y) be the
monomials of Pi which contain xi for i ∈ S, and no xj
for j 6∈ [`]. That is, Pi,S(y) are polynomials such that
Pi(x1, . . . , x`,y) =

∑
S⊆[`] Pi,S(y)

∏
j∈S xj . Note that



the degree of Pi,S is at most d − |S|. (In particular, if
|S| > d, then Pi,S = 0.) Note further that since Pi is
independent of xi, we have that Pi,S = 0 if i ∈ S.
Claim 14: For every S ⊆ [`] and every i, j ∈ [`] − S,
Pi,S(y) = Pj,S(y).

Proof: Note that Pi|Ai∩Aj (x,y) =∑
S⊆[`]−{i,j} Pi,S(y)

∏
m∈S xm. Similarly

Pj |Ai∩Aj
(x,y) =

∑
S⊆[`]−{i,j} Pj,S(y)

∏
m∈S xm.

Since the two functions are equal (by Claim 13), we
have that every pair of coefficients of

∏
m∈S xm must

be the same. We conclude that Pi,S = Pj,S .
Claim 14 above now allows us to define, for every S (
[`], the polynomial PS(y) as the unique polynomial Pi,S
where i 6∈ S. We define

P (x1, . . . , x`,y) =
∑
S([`]

PS(y)
∏
j∈S

xj .

By construction, the degree of P is at most d. This is
the polynomial that we will eventually show is close to
f .
Claim 15: For every i ∈ [K], P |Ai

= Pi|Ai
.

Proof: First note that for each i ∈ [`], P |Ai
= Pi|Ai

.
This is because the coefficients of the two polynomials
become identical after substituting xi = 0 (recall that
Ai is the hyperplane {x ∈ Fn2 | xi = 0}).
Now consider general i ∈ [K]. For any point x ∈ Ai ∩
(
⋃`
j=1Aj), letting j∗ ∈ [`] be such that x ∈ Aj∗ , we

have Pi(x) = Pj∗(x) (by Claim 13) and Pj∗(x) = P (x)
(by what we just showed, since j∗ ∈ [`]). Thus P and Pi
agree on all points in Ai ∩ (

⋃`
j=1Aj). Now since ` > d,

we have that |Ai ∩ (
⋃`
j=1Aj)|/|Ai| ≥ 1− 2−` > 1− 2−d,

and since P |Ai and Pi|Ai are both degree d polynomials,
we conclude that P |Ai

and Pi|Ai
are identical. Thus for

all i ∈ [K], P |Ai
= Pi|Ai

.
We will show below that P is close to f , by considering
all the hyperplanes A1, . . . , AK . If these hyperplanes uni-
formly covered Fn2 , then we could conclude δ(f, P ) ≤ α,
as f is α-close to P on each hyperplane. Since the Ai
don’t uniformly cover Fn2 , we’ll argue that almost all
points are covered approximately the right number of
times, which will be good enough. To this end, let

Bad = {z ∈ Fn2 |z is contained in less than

K/3 of the hyperplanes A1, . . . , AK}.

Let τ = |Bad|/2n.
Claim 16: δ(f, P ) ≤ 3/2 · α+ τ .

Proof: Consider the following experiment: Pick z ∈
Fn2 and i ∈ [K] uniformly and independently at random
and consider the probability that “z ∈ Ai and f(z) 6=
Pi(z)”. A simple analysis (whose details we omit in this
version of the paper), using the fact that P |Ai = Pi,
shows that

1

3
· (δ(f, P )− τ) ≤ Pr

z,i
[z ∈ Ai & f(z) 6= Pi(z)] ≤

1

2
· α.

Claim 17: τ ≤ 9/K.
The proof is a straightforward “pairwise independence”
argument, which we omit in this version of the paper.
The lemma follows from the last two claims above.

IV. Lemma 10: Relating different dimensional
tests

Lemma 18: Let k ≥ d + 1 and let f : Fk+1
2 → F2 have

degree greater than d. Then Rejd,k(f) ≥ 1/2.
Proof: Assume for contradiction that there is a strict

majority of hyperplanes A on which f |A has degree d.
Then there exists two complementary hyperplanes A and
Ā such that f |A and f |Ā both have degree d. We can
interpolate a polynomial P of degree at most d+ 1 that
now equals f everywhere. If P is of degree d, we are done,
so assume P has degree exactly d+1 and let Ph be the ho-
mogeneous degree d+1 part of P (i.e

”
P = Ph+Q where

deg(Q) ≤ d and Ph is homogeneous). Now consider all
hyperplanes A such that f |A = P |A has degree at most
d. Since these form a strict majority, there are at least
1
2 (2k+2 − 2) + 1 > 2k+1 − 1 such hyperplanes. It follows
that there are at least k+1 ≥ d+2 linearly independent
hyperplanes such that this condition holds. By an affine
transformation we can assume these hyperplanes are of
the form x1 = 0, . . . , xd+2 = 0. But then

∏d+2
i=1 xi divides

Ph which contradicts the fact that the degree of Ph is at
most d+ 1.
Lemma 19: Let n ≥ k ≥ d+ 1 and let f : Fn2 → F2 have
degree greater than d. Then Rejd,k(f) ≥ 2k−n.

Proof: The proof is a simple induction on n. The
base case of n = k is trivial. Now assume for n−1. Pick a
random hyperplane A. With probability at least 1/2 (by
the previous lemma), f |A is not a degree d polynomial.
By the inductive hypothesis, a random k-flat of A will
now detect that f |A is not of degree d with probability
2k−n+1. We conclude that a random k-flat of Fn2 yields
a function of degree greater than d with probability at
least 2k−n.
We now have all the pieces needed to prove Lemma 10.
Lemma 10 (recalled): For every n, d and k ≥ k′ ≥ d+ 1,
and every f : Fn2 → F2, we have

Rejd,k′(f) ≥ Rejd,k(f) · 2−(k−k′).

Proof of Lemma 10: We view the k′-flat test as the
following process: first pick a random k-flat A1 of Fn2 ,
then pick a random k′-flat A of A1, and accept iff f |A
is a degree d polynomial. Note that this is completely
equivalent to the k′-flat test.
To analyze our test, we first consider the event that
f |A1 is not a degree d polynomial. The probability that
this happens is Rejd,k(f). Now conditioned on the event
that f |A1

is not a degree d polynomial, we can now



use Lemma 19 to conclude that the probability that
(f |A1

)|A is not a degree d polynomial is at least 2−(k−k′).
We conclude that Rejd,k′(f) ≥ Rejd,k(f) · 2−(k−k′). The
lemma follows.

V. Gowers norms

Our main theorem can be interpreted as giving a tight
relationship between the Gowers norm of a function f
and its proximity to some low degree polynomial. In this
section, we describe this relationship.
We start by recalling the definition of the test T fGN(k) and

the Gowers norm ‖f‖Uk . On oracle access to function
f , the test TGN(k) picks x0 and directions a1, . . . , ak
uniformly and independently in Fn2 and accepts if and
only if f |A is a degree k − 1 polynomial, where A =
{x0 + span(a1, . . . , ak)}. The Gowers norm is given by
the expression

‖f‖Uk
def
= (Pr[T fGN(k) accepts]− Pr[T fGN(k) rejects])

1

2k .

Our main quantity of interest is the correlation of f with
degree d polynomials, i.e., the quantity 1− 2δd(f).
Our theorem relating the Gowers norm to the correlation
is given below.
Theorem 20: There exists ε > 0 such that if ‖f‖Ud+1 ≥
1− ε/2d, then δd(f) = Θ(1− ‖f‖Ud+1).
To prove the theorem we first relate the rejection prob-
ability of the test TGN(d+1) with that of the test TGN.
Proposition 21: For every n ≥ d + 1 and for every f ,
Pr[T fGN(d+1)rejects] ≥ 1

4 · Pr[T fGNrejects].

Proof: We show that with probability at least 1/4,
the ai are linearly independent. Consider picking d inde-
pendent vectors a1, . . . , ad in Fn2 . For fixed β1, . . . , βd ∈
F2 (not all zero), the probability that

∑
i βiai = 0 is at

most 2−n. Taking the union bound over all sequences
β1, . . . , βd we find that the probability that a1, . . . , ad
have a linear dependency is at most 2d−n ≥ 1

2 if
n ≥ d+ 1. For any fixed a1, . . . , ad, the probability that
ad+1 ∈ span(a1, . . . , ad) is also at most 1

2 . Thus we find
with probability at least 1/4, the vectors a1, . . . , ad+1 are
linearly independent provided n ≥ d+1. The proposition
follows since the rejection probability of T fGN(d+1) equals

the rejection probability of T fGN times the probability
that a1, . . . , ad+1 are linearly independent.
We are now ready to prove Theorem 20.

Proof of Theorem 20: The proof is straightforward
given our main theorem and the work of Gowers et
al. [7], [8]. As mentioned earlier, Gowers already showed
that 1 − 2δd(f) ≤ ‖f‖Ud+1 [7], [8], i.e., δd(f) ≥ (1 −
‖f‖Ud+1)/2.
For the other direction, suppose ‖f‖Ud+1 = 1 − γ,
where γ ≤ ε/2d for small enough ε. Let ρ denote the
rejection probability of T fGN(d+1). By Proposition 21 we

have ρ ≥ 1
4 ·Rejd,d+1(f). By choosing ε small enough, we

also have 1− 2ρ = ‖f‖2d+1

Ud+1 > 1− ε1/2, i.e., ρ < ε1/4, so
Rejd,d+1(f) < ε1. Thus, by Theorem 1,

δd(f) ≤ 1

2d
Rejd,d+1(f)(f)

≤ 1

2d−2
ρ

=
1

2d−1
(1− ‖f‖2

d+1

Ud+1)

=
1

2d−1
(1− (1− γ)2d+1

)

≤ 1

2d−1
(1− (1−O(2d+1γ)))

= O(γ),

as required.

VI. XOR lemma for low-degree polynomials

In this section, we reproduce an argument of Viola and
Wigderson [5] and show, taking our improved Reed-
Muller test into account, an improved XOR lemma for
low-degree polynomials.
A crucial feature of the test TGN(k) (that is not a feature
of the k-flat test for k > d + 1) is that the rejection
probability of f⊕t can be exactly expressed as a rapidly
growing (in t) function of the rejection probability of f .
Let Rej0d(f) denote the rejection probability of T fGN(d+1).
Then we have:
Proposition 22:

(1− 2Rej0d(f
⊕t)) = (1− 2Rej0d(f))t.

Proof: We first note that the proposition is equiv-
alent to showing that ‖f⊕t‖Ud+1 = (‖f‖Ud+1)

t
. It is a

standard fact (e.g., Fact 2.6 in [5]) that for functions
f, g on disjoint sets of inputs, ‖f(x) + g(y)‖Ud+1 =
‖f(x)‖Ud+1 · ‖g(y)‖Ud+1 . This immediately yields the
proposition.
We also use the following well-known relationship be-
tween the Gowers norm and the correlation of a function
to the class of degree d polynomials. (We state it in terms
of the rejection probability of the test TGN(d+1).)
Lemma 23 ([7], [8]):

1− 2δd(g) ≤ (1− 2Rej0d(g))
1

2d .

We are now ready to prove Theorem 4 which we recall
below.
Theorem 4 (recalled): Let f : Fn2 → F2. Then

δd(f
⊕t) ≥ 1− (1− 2 min{ε1/4, 2d−2 · δd(f)})t/2d

2
.

In particular, if δd(f) ≥ 0.1, then δd(f
⊕t) ≥ 1−2−Ω(t/2d)

2 .
Proof of Theorem 4: By Theorem 1 and Proposi-

tion 21,

Rej0d(f) ≥ min{ε1/4, 2d−2 · δd(f)}.



Thus by Proposition 22,

(1− 2Rej0d(f
⊕t))

1

2d = (1− 2Rej0d(f))
t

2d

≤ (1− 2 min{ε1/4, 2d−2 · δd(f)})
t

2d .

Finally, Lemma 23 shows that

δd(f
⊕t) ≥

1−
(
1− 2 min{ε1/4, 2d−2 · δd(f)}

) t

2d

2
.

Conclusions

We gave an optimal analysis of a natural test for low-
degree polynomials over F2, and in the process deter-
mined the optimal query complexity for testing this class
of properties.
Low-degree tests over general fields have also been stud-
ied extensively [19], [26], [27]. It would be interesting to
determine the optimal query complexity for testing low-
degree polynomials over other fields too.
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