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Abstract—A fundamental question in leakage-resilient cryp-
tography is: can leakage resilience always be amplified by
parallel repetition? It is natural to expect that if we have a
leakage-resilient primitive tolerating ` bits of leakage, we can
take n copies of it to form a system tolerating n` bits of leakage.
In this paper, we show that this is not always true. We construct
a public key encryption system which is secure when at most
` bits are leaked, but if we take n copies of the system and
encrypt a share of the message under each using an n-out-
of-n secret-sharing scheme, leaking n` bits renders the system
insecure. Our results hold either in composite order bilinear
groups under a variant of the subgroup decision assumption
or in prime order bilinear groups under the decisional linear
assumption. We note that the n copies of our public key systems
share a common reference parameter.

I. INTRODUCTION

Traditional security definitions for cryptographic schemes
address an adversary who only has black box access to the
scheme, assuming that the secret key and other internal state
remains completely hidden. In practice, the adversary might
gain partial knowledge of the secret key or other internal
state through various side-channel and memory attacks [29],
[8], [5], [7], [34], [6], [30], [39], [22], [25]. Such attacks
might leverage physical phenomena like computation time,
power use, etc. to deduce partial information about the secret
key or state. The cold-boot attack of [25] also demonstrates
that an adversary can learn noisy information about the
memory contents of a machine after the machine is powered
down.

Devising specific countermeasures for each known kind
of attack is an unsatisfying approach, since it may require
frequent updates to cryptographic systems and always leaves
them potentially vulnerable to new attacks which have not
yet been anticipated. A relatively new alternative approach is
to develop new cryptographic security definitions that model
a wide class of attacks by allowing the adversary to specify
a leakage function f and learn the output of f applied to
the secret key or other portions of the internal state. Clearly,
there must be limits placed on the leakage function, or the
adversary could learn the entire secret key and the system
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would be insecure. Typically, we assume that the leakage
function must be efficiently computable and that the size of
its output is bounded by ` bits, where ` is a function of
the security parameter and is less than the bit-length of the
secret key.

This approach has yielded leakage-resilient constructions
of many cryptographic primitives, including stream ciphers,
signatures, symmetric key encryption, and public key en-
cryption [33], [28], [19], [38], [15], [2], [3], [20], [17], [14],
[11], [18], [4]. Given a construction that can tolerate ` bits of
leakage, it is natural to ask: what if we expect even greater
leakage? Recently, Alwen, Dodis, and Wichs [4] and Alwen,
Dodis, Naor, Segev, Walfish, and Wichs [3] successfully
employed parallel repetition to amplify leakage resilience
for particular schemes and raised the fundamental question
of whether leakage resilience can always be amplified by
parallel repetition. More concretely, suppose we are given a
public key encryption scheme which remains secure when `
bits are leaked (i.e. against an adversary who obtains ` bits
of information about the secret key before seeing a challenge
ciphertext). We can take n independent copies of the system
corresponding to n public key, private key pairs. To encrypt,
we now split the message into n shares, and encrypt the ith

share under the ith public key. One may expect that this new
system will remain secure up to n` bits of leakage. Alwen et.
al. [3] successfully apply this technique for specific schemes.
As explained by [4], [3], it would seem quite difficult to
prove this works in general, since a general reduction would
need to simulate n` bits of leakage for the parallel scheme
using only ` bits of leakage from the original scheme.

We note that parallel repetition does hold generically if
we weaken the definition of leakage resilience by restricting
the leakage to a be subset of the bits representing the secret
key, instead of allowing more complicated functions. This
model was previously considered in [10], [16], [27]. In this
setting, parallel repetition can be proven via the pigeonhole
principle, since if ≤ n` bits are leaked from n keys, then
there is some key for which at most ` bits are leaked, and
security can then be proven via a reduction. (In fact, if <
n(`+1) bits are leaked from n keys, then there is some key
for which ≤ ` bits are leaked.)

Though posed in the context of public key encryption,
parallel repetition naturally extends to other primitives, and
would be a powerful general tool for amplifying leakage
resilience while preserving reasonable levels of efficiency.



We note that a more basic approach to improving resilience
might be to artificially increase the security parameter, λ.
The success of this approach will depend on how ` grows
as a function of λ, and it also leads to an unacceptable loss
in efficiency, since many common operations require time
O(λ3) to compute.

Our Contribution: We show that there exist public key
encryption schemes which are `-leakage-resilient, but for
which parallel repetition fails to yield an n`-leakage-resilient
system for any n > 1. In fact, the parameters of our schemes
can be chosen to rule out Ω(n`)-leakage-resilience of the
parallel schemes. Our results hold either under a variant
of the subgroup decision assumption in composite order
bilinear groups or under the decisional linear assumption
in prime order bilinear groups. In both cases, our n parallel
copies of the system share common setup parameters (i.e.
are instantiated over the same group). Assuming a common
group is natural in many settings, e.g. when using curves
recommended by NIST [36].

Often, leakage resilience is established by employing
mostly information-theoretic techniques, e.g. leveraging the
fact that a function f with bounded output length cannot
leak enough useful information about a key with sufficient
min-entropy even if f is computationally unbounded. This
approach is employed by [28], [33], [4], [3], for example.
In the arguments of [3], [33], a computational assumption
is used to argue that a valid ciphertext can be replaced by
an invalid ciphertext. However, since the adversary does not
receive the ciphertext until after the leakage, it is not clear
that even a computationally unbounded leakage function
would allow the adversary to distinguish the two cases.1For
these kinds of arguments, it seems plausible that if ` bits of
leakage is not enough to compromise the security of one key,
then 2` bits of leakage should not be enough to compromise
the security of 2 keys. (We consider the case n = 2 here
for concreteness and will later generalize.) However, secu-
rity against computationally unbounded functions f is not
strictly necessary. It is possible instead to have keys with less
than ` bits of entropy, but where it is computationally hard
to compress all of the information needed for decryption
into only ` bits.

The main idea of our approach is to design a system
where it is computationally hard to represent the needed
information about a single key in ` bits, but where two
keys can be efficiently compressed into 2` bits. As a first
attempt at creating keys with less than ` bits of entropy
which are computationally hard to compress, one might try
using pseudorandom generators. However, it is not clear how
one might find suitable structure to allow compression of
two keys using this approach. Instead, we use the structure

1In fact, we conjecture that their schemes could be proven secure against
a computationally unbounded leakage function under the stronger assump-
tion that the computational problem remains hard against an adversary who
is allowed unlimited preprocessing, given only the public parameters.

of bilinear groups. We describe our approach in terms of
composite order groups for ease of exposition. We suppose
we have a bilinear group G of order N = p1p2q, which is
a product of 3 distinct primes. This group has subgroups
Gp1 , Gp2 , and Gq of orders p1, p2, and q respectively, and
whenever elements of these different subgroups are paired
together under the bilinear map, the result is the identity.
In this sense, the subgroups are orthogonal to each other.
In our system, keys and ciphertexts will take on one of two
types: type 1 keys and ciphertexts will involve only elements
of Gp1 , while type 2 keys and ciphertexts will involve only
elements of Gp2 . Ciphertext elements are paired with key
elements in order to decrypt. A key of type 1 and a key
of type 2 can be efficiently compressed into a single key
by multiplying them together in the group. This new key
will now decrypt ciphertexts for both of the private keys,
since the multiplied Gp2 elements will not affect the result
of the pairing with the type 1 ciphertext, and the multiplied
Gp1 elements will not affect the result of the pairing with
the type 2 ciphertext. Assuming for simplicity that group
elements are represented by approximately log(N) bits, we
can set ` = 1

2 log(N) so that 2` bits is enough to leak a
group element, but ` bits is not.

We now have a system that is attackable when paral-
lelized, but it is not clear that it is leakage-resilient in the first
place. To prove that a single key cannot be compromised by
the leakage of ` bits, we cannot simply make an information-
theoretic argument, since either log(p1) or log(p2) will be
less than ` (hence there is min-entropy < ` in at least one
type of secret key). To overcome this difficulty, we introduce
an expansion technique which leverages the computational
bound on the leakage function. More specifically, we use the
Gq subgroup as what we call an “expansion space” to argue
that the secret keys have sufficiently high pseudo-entropy
(i.e. their distribution is computationally indistinguishable
from a distribution with high min-entropy). Relying on
a close variant of the subgroup decision assumption, we
expand the keys into the Gq space, and argue that an
attacker cannot distinguish between elements of Gp1 and
Gp1q , where Gp1q denotes the subgroup of order p1q in G
(and similarly cannot distinguish between elements of Gp2
and Gp2q). We note that the expansion space Gq is shared
by both key types. In this computational step of the proof,
it is crucial that the leakage function f is computationally
bounded (since a computationally unbounded function could
distinguish the subgroups). We next expand the ciphertexts
into the Gq subgroup as well, and we are then able to finish
our proof with an information-theoretic argument.

Prime Order Groups: We also provide a system follow-
ing this framework in prime order bilinear groups, under
the decisional linear assumption. Again, we expand keys
into an expansion space to obtain sufficient entropy. As in
our composite order system, we accomplish this expansion
through a computational step.



Extension to Signatures and Other Primitives: While
we state and prove our result here in the context of public
key encryption, our methodology is broader and applies to
parallel repetition in other contexts. A natural application
is to parallel repetition for signature systems, where one
realizes parallel repetition by signing the same message
under n different signing keys. In the full version [31],
we sketch how our technique can be extended to provide a
counterexample to parallel repetition for signature schemes,
using the framework developed by Katz and Vaikuntanathan
[28]. An alternate counterexample for signatures (due to
Wichs [41]) is also discussed in Section VIII.

Related Work: Alwen et. al. [3] provide a counterexam-
ple to the security of parallel repetition in a more restricted
setting where the public key setup is done by a single trusted
authority holding a master secret key who additionally
employs an n-out-of-n secret sharing scheme. In this system,
leakage resilience cannot be amplified beyond the size of the
master secret key. Such a setup occurs, for example, when
an IBE scheme is employed. In contrast, our counterexample
requires only that the n copies of the PKE scheme share the
same underlying group.

Once our keys occupy the expansion space, the rest of our
proof strategy is very similar to the machinery of hash proof
systems (HPS), a primitive introduced by Cramer and Shoup
[13] and used by Naor and Segev [33] to obtain leakage
resilient PKE schemes.

More generally, various forms of leakage resilience have
been studied in many previous works [40], [37], [28],
[4], [11], [14], [18], [16], [27], [17], [33], [2], [3], [10],
[15], [19], [26], [32], [38], [20]. Several models of leakage
resilience have been proposed, differing primarily in the
restrictions placed on the leakage functions and the internal
state they are applied to. We discuss the key features and
distinctions of these approaches below, organizing references
according to their models.

Exposure-resilient cryptography [10], [16], [27] consid-
ered an adversary who could only learn a limited subset of
the secret key bits, while [26] considered an adversary who
could only learn the values on certain wires of the circuit
implementing a computation. For models allowing arbitrary
efficiently computable leakage functions f , one can bound
the amount of leakage totally (bounding the total leakage
over the lifetime of the system) or locally (bounding the
amount of leakage per usage, e.g. per signature generated
by a leakage-resilient signature scheme). A local bound is
only reasonable if the internal state is continually updated,
and the amount of leakage between updates is bounded. (If
the secret key is unchanging, and one can leak ` bits of it
many times, an attacker will eventually learn the entire secret
key.) A total bound is employed e.g. by [2], [28], [33], [4],
[3], while a local bound is employed e.g. by [20], [19], [38].

There is also a distinction between models which allow
the leakage function to depend only on the secret key and

models where the leakage function can depend on additional
internal state. For schemes where the secret key is the only
internal state, the secret key is a natural choice for the input
to the leakage functions. For signatures, for example, the
signer may maintain additional state. Micali and Reyzin
[32] introduce the assumption that “only computation leaks
information”. Under this assumption, one may define the
input to the leakage function to be the portion of the internal
state which is accessed on that particular invocation. This
approach is employed by [20] for stateful signatures with a
local leakage bound, for example.

A general approach to tolerating leakage that is less than
the length of the secret key is to guarantee that the secret
key will have sufficient min-entropy conditioned on the
leakage. The works [28], [2], [4], [3], [19], [38], for example,
fall into this framework. Another possibility is considered
by [15], who present schemes that can tolerate leakage of
arbitrary length if the secret key remains sufficiently difficult
to compute from the leakage (in this case, it is possible
the secret key is information-theoretically determined by the
leakage). One difficulty with this approach is that it may be
hard to decide if a particular collection of possible leakage
functions satisfy this criterion.

II. ORGANIZATION

In Section III, we give the necessary background. In
Section IV, we give our PKE system in composite order
bilinear groups. In Section V, we prove it is leakage-resilient
up to ` bits of leakage. In Section VI, we present an attack on
the parallel version of our system with n` bits of leakage. In
Section VII, we give our PKE system in prime order bilinear
groups. In Section VIII, we discuss variations on our system
and attack and an alternative counterexample for signatures.
In Section IX, we discuss possible extensions of our work.

III. BACKGROUND

A. Leakage-resilient Public Key Encryption

We define IND-CPA leakage-resilient public key encryp-
tion schemes in terms of the following game between a
challenger and an attacker. We let λ denote the security
parameter, ` denote the leakage parameter, and (KeyGen,
Encrypt, Decrypt) denote the algorithms of the PKE scheme.
(Typically, ` is a function of λ.)

Key Generation: The challenger computes
(PK,SK)← KeyGen(λ, `) and gives PK to the attacker.

Leakage: The attacker chooses a function f :
{0, 1}∗ → {0, 1}` that can be computed in polynomial time
and receives f(SK) from the challenger.

Challenge: The attacker chooses two messages, M0

and M1, and gives these to the challenger. The challenger
chooses a uniformly random bit β ∈ {0, 1}, and gives the
attacker CT→ Encrypt(Mβ , PK).



Guess: The attacker outputs a bit β′ ∈ {0, 1}.

The attacker succeeds if β = β′. We define the advantage
of an attacker A in this game to be AdvA(λ, `) := |Pr[β =
β′]− 1

2 |.

Definition III.1. A public key encryption system (KeyGen,
Encrypt, Decrypt) is `-leakage-resilient if all polynomial
time attackers A have a negligible advantage in the above
game.

B. Parallel Repetition

We now formally state the parallel repetition question
introduced by [4], [3]. We let (KeyGen, Encrypt, De-
crypt) denote the algorithms of a PKE scheme. For each
positive integer n, we define a new scheme, (KeyGenn,
Encryptn, Decryptn) as follows. KeyGenn calls Key-
Gen n times to produce n pairs of public and secret
keys: (PK1,SK1), . . . , (PKn,SKn). The public key is
PK = (PK1, . . . ,PKn) and the secret key is SK =
(SK1, . . . ,SKn). Encryptn(M,PK) first splits the mes-
sage M into n shares M1, . . . ,Mn, using an n-out-of-
n secret-sharing scheme. It then produces the ciphertext
as: CT = (Encrypt(M1, PK1), . . . ,Encrypt(Mn, PKn)).
Decryptn(CT,SK) calls Decrypt(Encrypt(Mi, PKi), SKi)
for each i to produce Mi, and then reconstructs the secret
M from its shares.

Question III.2. If (KeyGen, Encrypt, Decrypt) is `-leakage-
resilient, then is (KeyGenn, Encryptn, Decryptn) necessarily
n`-leakage-resilient for each positive integer n?

Below, we answer this question in the negative, even for
n` replaced by Ω(n`).

C. Bilinear Groups

We define bilinear groups by using a group generator G,
an algorithm which takes a security parameter λ as input and
outputs a description of a bilinear group G. For prime order
bilinear groups, G outputs (p,G,GT , e) where p is prime,
G and GT are cyclic groups of order p, and e : G2 → GT
is a map such that:

1) (Bilinear) ∀g, h ∈ G, a, b ∈ Zp, e(ga, hb) = e(g, h)ab

2) (Non-degenerate) ∃g ∈ G such that e(g, g) has order
p in GT .

We will also use composite order bilinear groups (first
introduced in [9]), where G outputs (N = p1p2q,G,GT , e)
such that p1, p2, q are distinct primes, G and GT are cyclic
groups of order N , and e : G2 → GT is a bilinear map.

We further require that the group operations in G and GT
as well as the bilinear map e are computable in polynomial
time with respect to λ. Also, we assume the group de-
scriptions of G and GT include generators of the respective
cyclic groups. For composite order groups, we let Gp1 , Gp2 ,
and Gq denote the subgroups of order p1, p2 and q in G

respectively. We note that when two elements coming from
different prime order subgroups are paired together under e,
the result is the identity element in GT . In this sense, the
subgroups Gp1 , Gp2 , and Gq are orthogonal to each other.

D. Complexity Assumptions

We will first present a version of our system in composite
order bilinear groups and prove its security under the follow-
ing assumption, which is a variant of the subgroup decision
problem from [9].

In the assumption below, we let Gp1q denote the subgroup
of order p1q in G.

Subgroup Decision Assumption: Given a group gener-
ator G for composite order bilinear groups, we define the
following distribution:

G = (N = p1p2q,G,GT , e)
R←− G,

gp1 , Y1
R←− Gp1 , gp2

R←− Gp2 , Yq
R←− Gq

P = (G, gp1 , gp2 , Y1Yq),

T1
R←− Gp1q, T2

R←− Gp1 .

We define the advantage of an algorithm A in breaking
the subgroup decision assumption to be:

AdvSDG,A(λ) :=
∣∣Pr[A(P, T1) = 1]−Pr[A(P, T2) = 1]

∣∣.
Definition III.3. We say that G satisfies the subgroup de-
cision assumption if AdvSGG,A(λ) is a negligible function
of λ for any polynomial time algorithm A.

We also provide a translation of our system into prime
order groups, where security is proven from the decisional
linear assumption.

Decisional Linear Assumption: Given a group gen-
erator G for prime order bilinear groups, we define the
following distribution:

G = (p,G,GT , e)
R←− G,

g0, g1, g2
R←− G, r1, r2

R←− Zp,

D = (G, g0, g1, g2, gr11 , g
r2
2 ),

T1 = gr1+r20 , T2
R←− G.

We define the advantage of an algorithm A in breaking
the decisional linear assumption to be:

AdvDLinG,A(λ) :=
∣∣Pr[A(D,T1) = 1]−Pr[A(D,T2) = 1]

∣∣.
Definition III.4. We say that G satisfies the decisional linear
assumption if AdvDLinG,A(λ) is a negligible function of λ
for any polynomial time algorithm A.



E. Min-Entropy and Extractors

We will use strong extractors, which are established in
[35]. We will also need the following standard lemma about
min-entropy (e.g. [28]).

Lemma III.5. Let X be a random variable with min-entropy
h and let f be an arbitrary function with range {0, 1}`. For
any τ ∈ [0, h− `], we define the set

Vτ := {v ∈ {0, 1}` | H∞(X | v = f(X)) ≤ h− `− τ}.

Then:
Pr[f(X) ∈ Vτ ] ≤ 2−τ .

IV. CONSTRUCTION FOR COMPOSITE ORDER GROUPS

Our PKE system for composite order groups consists
of four algorithms, (Setup, KeyGen, Encrypt, Decrypt).
We assume the messages to be encrypted are elements of
{0, 1}m. We build our system in a bilinear group whose
order is a product of three primes, N = p1p2q, and prove
its security for leakage parameter ` (sufficiently smaller
than log(q)) based on the subgroup decision assumption.
We will state the precise conditions on ` that are needed in
the following section. The main idea is that secret keys in
the system will have less than ` bits of entropy, but since
the leakage function is constrained to be computationally
efficient, it cannot be used to break the system with only
` bits of leakage. More specifically, the secret key and
ciphertext will be in subgroup Gp1 (or Gp2 ) in the real
system, but the subgroup decision assumption allows us to
expand them to be in Gp1q (or Gp2q), and now we have min-
entropy greater than `. However, if we make two copies of
our system with a common setup phase, leakage of 2` bits
will allow us to leak a complete element of the group G, and
we can obtain a “compressed” secret key that can decrypt
for both copies of the system at once. The details of this
will be given Section VI.

Setup(λ) → PP: The setup algorithm takes in the
security parameter λ, and chooses distinct, sufficiently large
primes p1, p2, q (it will choose q to be much larger p1, p2

- we will discuss this more precisely later). It chooses a
bilinear group G of order N = p1p2q, along with generators
gp1 , gp2 of the subgroups Gp1 and Gp2 respectively. (We let
Gp1 denote the subgroup of G of order p1, and Gp2 denote
the subgroup of G of order p2.) We let S(G) denote the num-
ber of bits used to represent an element of G, and S(GT )
denote the number of bits used to represent an element of
GT . It also chooses a uniformly random seed D ∈ {0, 1}d
for a (k, ε)-extractor E : {0, 1}S(GT ) × {0, 1}d → {0, 1}m,
where m is the bit length of the messages. We assume the
parameters k, ε,m are chosen so that ε is negligible with
respect to the security parameter λ, and k is significantly
smaller than log(q). It outputs the public parameters:

PP := {N,G, gp1 , gp2 , E,D}.

KeyGen(PP) → (PK,SK): The key generation algo-
rithm produces two types of keys: type 1 and type 2. It
chooses a type t ∈ {1, 2} randomly, and then chooses a
random u ∈ Gpt

. It sets A = e(u, gpt
). The public key is

PK = (t, A), and the secret key is SK = u.
Encrypt(PP,PK,M) → CT: The encryption algo-

rithm takes in the public parameters PP, a public key PK,
and a message M ∈ {0, 1}m. It chooses a random s ∈ ZN
and computes C1 = gspt

(where t is the type of the public
key PK) and C2 = E(As, D)⊕M . It outputs the ciphertext
CT = (C1, C2).

Decrypt(CT,SK) → M : The decryption algorithm
computes:

E(e(C1,SK), D)⊕ C2 = M.

V. LEAKAGE RESILIENCE OF OUR PKE SYSTEM IN
COMPOSITE ORDER GROUPS

We will prove our system is `-leakage-resilient for ` ≤
log(q) − k − τ (where λ is our security parameter, k is
the min-entropy required by our extractor E, and τ is a
parameter chosen so that 2−τ is negligible in λ). We note
that an attacker A who has a non-negligible advantage
against the scheme must have a non-negligible advantage
against type 1 or type 2 keys. Since we treat p1 and p2

symmetrically, we can assume without loss of generality that
such an adversary has a non-negligible advantage against
type 1 keys. Therefore, it suffices to prove security consid-
ering only type 1 keys (the proof for type 2 keys is exactly
the same, with the roles of p1 and p2 interchanged). Our
proof will proceed by a hybrid argument over the following
sequence of games:

Game0: The real security game. Here the private key
SK is a random group element in Gp1 .

Game1: The private key SK is chosen as a random
element in Gp1q .

Game2: The challenge CT is generated by choos-
ing a random C1 ∈ Gp1 and setting C2 =
E(e(SK, C1), D) ⊕ Mβ . (SK is generated as in
Game 1.)

Game3: The challenge CT is generated by choos-
ing a random C1 ∈ Gp1q and setting C2 =
E(e(SK, C1), D) ⊕ Mβ . (SK is generated as in
Game 1.)

Game4: The challenge CT is generated by choosing a
random C1 ∈ Gp1q and setting C2 as a uniformly
random string.

To transition from Game0 to Game1, we employ our
expansion technique: private keys are expanded into the Gq
space, and an adversary cannot notice this without violating
the subgroup decision assumption. The transition to Game2

is made easily, since it is identically distributed to Game1.
To transition from Game2 to Game3, we again employ our
expansion technique, this time expanding the ciphertext into
the Gq space. We note that e(SK, C1) now involves a term



from the Gq subgroup, and this term provides sufficient min-
entropy to transition to Game4 via an information-theoretic
argument. The attacker has advantage 0 in Game4, since the
ciphertext is independent of the bit β. We prove these games
are indistinguishable in the following lemmas.

Lemma V.1. Suppose there exists a polynomial time algo-
rithm A such that Game0AdvA −Game1AdvA = δ. Then
we can build a polynomial time algorithm B with advantage
δ in breaking the subgroup decision assumption.

Proof: B receives N,G, gp1 , gp2 , Y1Yq, T . It chooses a
uniformly random seed D ∈ {0, 1}d and a (k, ε)-extractor
E : {0, 1}S(GT ) × {0, 1}d → {0, 1}m. It sets the public
parameters as

PP := {N,G, gp1 , gp2 , E,D}

and gives these to A. Next, it sets u = T , i.e. SK = T ,
and PK = (1, A = e(u, gp1)). It gives PK to A. When A
chooses the leakage function, B computes f(T ) and sends
this to A. A then sends B two messages, M0 and M1. B
chooses a random bit β and a random s ∈ ZN . It sets C1 =
gsp1 and C2 = E(As, D) ⊕Mβ . It gives A the ciphertext
CT = (C1, C2).

If T ∈ Gp1 , then B has properly simulated Game0. If
T ∈ Gp1q , then B has properly simulated Game1. Thus, B
can use the output of A to achieve advantage δ in breaking
the subgroup decision assumption.

Lemma V.2. For any algorithm A, Game1AdvA =
Game2AdvA.

Proof: This simply follows from the fact that Game1

and Game2 are identically distributed (note that the addi-
tional component of Gq now included in SK will not effect
the value of e(SK, C1), since C1 ∈ Gp1 , and Gp1 and Gq
are orthogonal under the pairing e).

Lemma V.3. Suppose there exists a polynomial time algo-
rithm A such that Game2AdvA −Game3AdvA = δ. Then
we can build a polynomial time algorithm B with advantage
δ in breaking the subgroup decision assumption.

Proof: B receives N,G, gp1 , gp2 , Y1Yq, T . It chooses a
uniformly random seed D ∈ {0, 1}d and a (k, ε)-extractor
E : {0, 1}S(GT ) × {0, 1}d → {0, 1}m. It sets the public
parameters as

PP := {N,G, gp1 , gp2 , E,D}

and gives these to A. It sets u = Y1Yq , i.e. SK = Y1Yq , and
PK = (1, e(u, gp1)), and gives PK to A. When A chooses
the leakage function, B computes f(u) and sends this to A.
A then sends B two messages, M0 and M1. B chooses a
random bit β and a random s′ ∈ ZN . It sets C1 = T s

′
and

C2 = E(e(SK, C1), D) ⊕Mβ . It gives CT = (C1, C2) to
A.

If T ∈ Gp1 , then B has properly simulated Game2. If
T ∈ Gp1q , then B has properly simulated Game3. Thus, B
can use the output of A to achieve advantage δ in breaking
the subgroup decision assumption.

Lemma V.4. For any polynomial time algorithm A,
Game3AdvA −Game4AdvA is negligible.

Proof: We prove that with all but negligible probability,
the distributions of Game3 and Game4 are negligibly close in
A’s view. In Game3, the value u can be written as u = u1uq ,
where u1 ∈ Gp1 and uq ∈ Gq . By the orthogonality of
Gp1 and Gq , the public key element e(u, gp1) only contains
information about u1, and reveals no information about uq ,
which is distributed as a random element of Gq . Thus, even
conditioned on PK and C1, the value e(SK, C1) has min-
entropy log(q) from the attacker’s perspective.

Since the attacker also receives f(u) for the leakage
function f with range {0, 1}`, we invoke Lemma III.5 to
assert that with probability ≥ 1− 2−τ , e(SK, C1) will still
have min-entropy ≥ k as long as log(q) − ` − τ ≥ k, i.e.
` ≤ log(q) − k − τ . Therefore, when ` ≤ log(q) − k − τ ,
E(e(SK, C1), D) has statistical distance at most ε from a
uniformly random string of length m with all but negligible
probability. Since ε and 2−τ are chosen to be negligible
in the security parameter λ, we have that Game3AdvA −
Game4AdvA is negligible as well. (We note here that it
is crucial for the adversary to choose the leakage function
before seeing the ciphertext. Otherwise, the leakage function
f could change when we replace E(e(SK, C1), D) with a
random string of length m, and we would not be able to
argue the indistinguishability of the games.)

This completes our proof of the following theorem:

Theorem V.5. For ` ≤ log(q) − k − τ , our PKE system is
`-leakage-resilient.

VI. ATTACK ON THE PARALLEL SYSTEM FOR n > 1
WITH LEAKAGE n`

We first describe our attack for n = 2 when 2` bits
of leakage is sufficient to return a whole group element.
We then generalize the attack to higher values of n. We
recall that S(G) denotes the number of bits representing an
element of G, and we discuss the value of S(G) for some
particular groups in the full version [31].

A. Attack for n = 2 when 2` ≥ S(G)
We define the system (Setup, KeyGen2, Encrypt2,

Decrypt2) as before, except we additionally assume that
the two copies of the system are generated by a common
setup phase, so the public parameters are shared. In other
words, Setup is called only once, and outputs a single set of
public parameters PP. KeyGen2 then calls KeyGen twice
on the same public parameters PP to generate two keys,
(PK1,SK1) and (PK2,SK2). Encrypt2 splits the message
M into two shares M1 and M2. It encrypts the first share



by calling Encrypt(PK1,M1) and encrypts the second share
by calling Encrypt(PK2,M2). Decrypt2 calls Decrypt on the
first encrypted share with SK1 to obtain the share M1, and
calls Decrypt on the second encrypted share with SK2 to
obtain M2. It then reconstructs M from its shares.

The attacker receives the public parameters, PP, and two
public keys, PK1 and PK2. If the two public keys are of the
same type, the attacker aborts (this occurs with probability
1
2 ) and guesses β′ randomly. Otherwise, we assume PK1 is
of type 1 and PK2 is of type 2. The attacker chooses the
leakage function

f(SK1,SK2) = SK1 · SK2,

which is permitted as long as 2` ≥ S(G) (recall that S(G)
denotes the number of bits used to represent an element of
the group G). Assuming this holds, the attacker receives the
value SK1 ·SK2, and can use this to decrypt both ciphertexts.
For example, to decrypt the ciphertext (C1, C2) for PK1,
the attacker computes:

E(e(C1,SK1 · SK2), D)⊕ C2 = E(e(C1,SK1), D)⊕ C2,

since C1 ∈ Gp1 and SK2 ∈ Gp2 . This yields the first
message share, and the second message share is obtained
similarly, since the first ciphertext value for PK2 will be
orthogonal to SK1. Hence, the attacker can reconstruct the
encrypted message and succeed with probability 1 when the
keys are of different types. This gives the attacker an overall
advantage of 1

4 .
When S(G) ≤ 2(log(q)− k− τ), we can choose a single

value of ` such that ` ≤ log(q)−k−τ and 2` ≥ S(G). This
will yield a PKE system (Setup, KeyGen, Encrypt, Decrypt)
that is `-leakage-resilient, but (Setup, KeyGen2, Encrypt2,
Decrypt2) is not 2`-leakage-resilient. We note that we will
choose q to be significantly larger than p1 and p2 in order
to satisfy S(G) ≤ 2(log(q)− k − τ) for groups G of order
N = p1p2q.

B. General Values of n

We now consider attacking the more general case, where
we have n public and secret key pairs, with a common setup
phase. On average, the attacker can expect that close to half
of the n keys will be of type 1 and the others will be of
type 2. More specifically, a Chernoff bound implies that for
any positive constant c, there will be at least n2 − c

√
n keys

of each type with probability ≥ 1− 2e−2c2 .
When this distribution of keys occurs, the attacker can

organize the keys into at least n2 − c
√
n pairs of keys and at

most 2c
√
n individual keys, where each pair of keys contains

one key of type 1 and one key of type 2. The attacker then
defines the leakage function so that it reveals the product of
each pair of secret keys and all of the remaining unpaired
secret keys. This requires (n2 − c

√
n)S(G) + 2c

√
nS(G) =

S(G)(n2 + c
√
n) bits of leakage. We note that the attacker

can now decrypt messages encrypted under any of the n
public keys.

As long as

n` ≥ S(G)
(n

2
+ c
√
n
)
⇔ ` ≥ S(G)

(
1
2

+
c√
n

)
holds, this is a valid attack with n` bits of leakage that
succeeds with probability ≥ 1− 2e−2c2 .

We recall that ` ≤ log(q)−k−τ is required for our proof
that a single copy of our system is `-leakage-resilient. For
this condition and the attack condition ` ≥ S(G)( 1

2 + c√
n

)
to hold simultaneously for some value of `, it suffices to
have a group G such that:

S(G) ≤ 2
1 + 2c√

n

(log(q)− k − τ).

Improving the Compression Factor: We have thus far
described a system with two key types and a corresponding
attack where two keys of different types can essentially
be “compressed” into one key of the same size. This will
work well for leakage n` when S(G) < 2 log(N) and q is
chosen to be sufficiently large with respect to p1 and p2.
To adapt our attack to work with leakage γ`n for any fixed
constant γ > 0 or for groups where S(G) may be larger
than 2 log(N), we can improve the compression factor by
allowing T > 2 key types, where T keys of distinct types
can be compressed into one key (assuming n ≥ T ). We
discuss this more in Section VIII.

VII. REALIZING OUR CONSTRUCTION IN PRIME ORDER
GROUPS

We now describe a realization of our system in prime
order groups, and prove it is `-leakage-resilient from the
decisional linear assumption. The main idea of our construc-
tion is unchanged: we begin with keys that have less than `
bits of entropy, and we use the decisional linear assumption
to expand them into a larger space, where they will have
entropy much greater than `.

We start with a bilinear group G of prime order p,
generated by g. Previously, we made use of the orthogonal
subgroups Gp1 , Gp2 , and Gq in our bilinear group of order
N . To make suitable analogs of these subgroups using
the prime order group G, we will construct “orthogonal”
subgroups of Gj for some (relatively small) positive integer
j. For a vector ~x = (x1, . . . , xj) ∈ Zjp, we write g~x to
denote the j-tuple of elements (gx1 , . . . , gxj ) in Gj . We let

< g~x, g~y > := {(gax1+by1 , . . . , gaxj+byj ) | a, b ∈ Zj}

denote the subgroup of Gj generated by g~x and g~y . When
we write an expression of the form g~xg~y , we mean compo-
nentwise multiplication, i.e. g~xg~y = g~x+~y.

We define the map ej : Gj ×Gj → GT by:

ej(g~x, g~y) =
j∏
i=1

e(gxi , gyi) = e(g, g)~x·~y,



where e is the bilinear map from G×G into GT . We note
that ej(g~x, g~y) is the identity element in GT when ~x and ~y
are orthogonal as vectors over Zp. The orthogonal subgroups
Gp1 and Gp2 in composite order groups can now be replaced
with subgroups < g~x, g~y > and < g~v, g~z > in Gj where ~v, ~z
are each orthogonal to both ~x and ~y. Gq will be replaced
by the subgroup comprised of elements g ~w ∈ Gj where
~w is orthogonal to all of ~x, ~y,~v, ~z. The technique of using
orthogonal vectors over Zp to simulate orthogonal subgroups
in a prime order group was also employed by Freeman [21],
though his results do not encompass our construction.

A. Construction

Our system in a prime order group G can now be
described as follows:

Setup(λ) → PP: The setup algorithm takes in the se-
curity parameter, and chooses a sufficiently large prime p. It
chooses a bilinear group G of order p, along with a generator
g and a suitable integer j > 5. We let S(G) denote the num-
ber of bits used to represent an element of G, and S(GT )
denote the number of bits used to represent an element of
GT . It also chooses a uniformly random seed D ∈ {0, 1}d
for a (k, ε)-extractor E : {0, 1}S(GT ) × {0, 1}d → {0, 1}m,
where m is the bit length of the messages. We assume the
parameters k, ε,m are chosen so that ε is negligible with
respect to the security parameter λ, and k is ≤ 1

4 log p. It
next chooses uniformly random vectors ~x, ~y ∈ Zjp. Vectors
~v, ~z are then chosen uniformly at random from the space of
vectors which are orthogonal to both ~x and ~y.

It outputs the public parameters:

PP := {G, p, g, j, g~x, g~y, g~v, g~z, E,D}.

KeyGen(PP) → (PK,SK): The key generation al-
gorithm produces two types of keys: type 1 and type 2.
It chooses a type t ∈ {1, 2} randomly, and then chooses
random values u1, u2 ∈ Zp. If the type t = 1, it sets

A1 = ej(gu1~x+u2~y, g~x), A2 = ej(gu1~x+u2~y, g~y).

The public key is PK = (1, A1, A2), and the secret key is
SK = g(u1~x+u2~y). If the type t = 2, it sets

A1 = ej(gu1~v+u2~z, g~v), A2 = ej(gu1~v+u2~z, g~z).

The public key is PK = (2, A1, A2), and the secret key is
SK = g(u1~v+u2~z).

Encrypt(PP,PK,M) → CT: The encryption algo-
rithm takes in the public parameters PP, a public key PK,
and a message M ∈ {0, 1}m. It chooses random values
s1, s2 ∈ Zp. If the type t = 1, it computes

C1 = gs1~x+s2~y, C2 = E(As11 ·A
s2
2 , D)⊕M.

If the type t = 2, it computes

C1 = gs1~v+s2~z, C2 = E(As11 ·A
s2
2 , D)⊕M.

Decrypt(CT,SK) → M : The decryption algorithm
computes:

E(ej(C1,SK), D)⊕ C2 = M.

This system is leakage-resilient up to ` = (j − 5) log p
bits of leakage:

Theorem VII.1. For ` ≤ (j − 5) log(p), our PKE system
in prime order groups is `-leakage-resilient under the deci-
sional linear assumption.

The proof of this theorem is contained in the full version
of this paper [31], and employs the same strategy as our
proof for the composite order case. The attack on the parallel
system for n` bits of leakage is analogous to the attack for
composite order groups. For n = 2 (for example), the attack
is applicable whenever 2` ≥ jS(G).

B. Correctness
Correctness of the algorithm is verified by observing (e.g.

for type 1 keys):

ej(C1,SK) = ej(gs1~x+s2~y, gu1~x+u2~y)

= e(g, g)(s1~x+s2~y)·(u1~x+u2~y)

= e(g, g)s1((u1~x+u2~y)·~x)+s2((u1~x+u2~y)·~y)

= As11 A
s2
2 .

VIII. DISCUSSION

Improving the Compression Factor: We could improve
the compression factor for both prime and composite order
groups by constructing our systems with T key types,
allowing T keys of distinct types to be compressed at once.
In composite order groups, this would be done by choosing a
group order N = p1p2 · · · pT q, where q is much larger than
each of the pi’s. A key of type i would be in the subgroup
Gpi

. The product of T keys, one of each type, would yield
a single element that could be substituted for any of the T
input keys in the decryption algorithm.

This system would still be `-leakage-resilient for ` ≤
log(q) − k − τ , under the analog of the subgroup decision
assumption for groups of order N = p1 · · · pT q. For the
parallel version of the system with n ≥ T keys, the attacker
can expect roughly n

T keys of each type. More precisely, for
any constant c > 0, there will be at least n

T −
c
T

√
n keys

of each type with probability ≥ 1− Te− c2
2T (by a Chernoff

bound). When this occurred, the attacker could group the n
keys into ≥ n

T −
c
T

√
n sets of T keys of distinct types, with

at most c
√
n individual keys remaining. With leakage at least

S(G)( nT +c(1− 1
T )
√
n), the attacker could learn the products

of all the groups of keys and all the remaining individual
keys, and hence decrypt all the shares of the ciphertext.

For any fixed constant γ > 0, we can then mount our
attack on the parallel system with leakage γ`n as long as:

S(G) ≤ γT

1 + c(T−1)√
n

(log(q)− k − τ) .



For prime order groups (of order p), having T key types
instead of T would simply require setting j > 2T + 1 to
create enough space to simulate T +1 orthogonal subgroups
in Zjp with our method. Our system is leakage resilient up
to ` bits of leakage for ` = (j − (2T + 1)) log p, for each
value of T . We note the underlying security assumption
(decision linear) is independent of the number of simulated
subgroups and the value of j. Our attack then requires
jS(G)

(
n
T + c

(
1− 1

T

)√
n
)

bits of leakage, and this will
be ≤ γn` for ` = (j − (2T + 1)) log p as long as:

S(G) ≤ γ(j − (2T + 1))T

j
(

1 + c(T−1)√
n

) log(p).

For any fixed γ > 0, we can choose T and j large
enough to meet this requirement. Hence, our counterexample
shows that leakage Ω(n`) is not always achieved by parallel
repetition.

An Alternate Counterexample for Signatures: One can
also obtain a counterexample to parallel repetition for sig-
natures from any multi-signature scheme secure against
“rogue-key attacks”, as observed by Wichs [41]. One de-
fines an ordinary signature scheme by using the same key
generation algorithm, and having a signer simply sign each
message under a set of size 1, containing only its own
public key. The verification algorithm will accept as valid
any signature under a set containing the correct public key
which verifies under the multi-signature scheme verification
algorithm (note that this accepts signatures which would
never be generated by a honest signer). This scheme is
secure up to some ` bits of leakage (at least logarithmic).
The parallel system (with n copies) can then be broken for
any leakage exceeding the size of a single signature under
the multi-signature scheme (which is independent of n). The
attacker simply asks for leakage which is a multi-signature
of some message under the set containing all n public keys:
this will then verify as a valid signature for each of the n
signers individually. This allows the attacker to forge on only
one message. In contrast, a counterexample for signatures
obtained using our techniques will allow the attacker to forge
as many messages as desired.

IX. FUTURE DIRECTIONS

We now discuss a few approaches for avoiding or extend-
ing our counterexample.

Removing the Common Reference String: The assump-
tion of a common setup for the n copies of a parallel system
is natural, since it is typical to create several public keys
from one group in practical systems. For example, NIST
recommends using certain elliptic curves [36]. However,
it would be interesting to construct a counterexample to
parallel repetition that does not rely on a common setup.

A Black-box Separation: Alwen et. al. [3] suggest
the potential direction of showing a black-box separation
for parallel repetition. Such a result would rule out the
possibility of a general reduction using an attacker who can
break the parallel scheme with n` bits of leakage to break
the original scheme with ` bits of leakage. This would be
incomparable to our result, since a black-box separation does
not imply the existence of a counterexample, and our result
relies on unproven (though commonly used) assumptions for
security.

Alternate Assumptions: We rely on either a variant
of the subgroup decision assumption in composite order
bilinear groups or the decisional linear assumption in prime
order bilinear groups. We also suspect that our results could
be adapted to provide a counterexample under lattice-based
assumptions, given that many results obtained using bilinear
groups have also been instantiated with lattices (e.g. [24],
[23], [1], [12]). Obtaining additional counterexamples under
a variety of assumptions would provide stronger evidence
for the insecurity of parallel repetition as a generic tool.

A Looser Bound: One might ask if parallel repetition
holds for some sublinear bound on the leakage as a function
of n. In other words, can we take n copies of an `-leakage-
resilient system and always build an f(n, `)-leakage-resilient
system for some sufficiently growing function f(n, `) =
o(n`)?

Alternative Leakage Models: One can also ask if par-
allel repetition holds for other interesting leakage models.
For instance, we might strengthen the definition of leakage
resilience by allowing the leakage function f to be compu-
tationally unbounded. Our counterexample no longer applies
in this case. If we instead weaken the definition of leakage
resilience by restricting the leakage to being a subset of
the bits representing the secret key, we recall that parallel
repetition does hold.
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