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Abstract—Given a network, a set of demands and a cost
function f(·), the min-cost network design problem is to route
all demands with the objective of minimizing

∑
e f(�e), where

�e is the total traffic load under the routing. We focus on cost
functions of the form f(x) = σ+xα for x > 0, with f(0) = 0. For
α ≤ 1, f(·) is subadditive and exhibits behavior consistent with
economies of scale. This problem corresponds to the well-studied
Buy-at-Bulk network design problem and admits polylogarithmic
approximation and hardness.

In this paper, we focus on the less studied scenario of α > 1
with a positive startup cost σ > 0. Now, the cost function f(·)
is neither subadditive nor superadditive. This is motivated by
minimizing network-wide energy consumption when supporting
a set of traffic demands. It is commonly accepted that, for
some computing and communication devices, doubling processing
speed more than doubles the energy consumption. Hence, in
Economics parlance, such a cost function reflects diseconomies
of scale.

We begin by discussing why existing routing techniques such
as randomized rounding and tree-metric embedding fail to
generalize directly. We then present our main contribution, which
is a polylogarithmic approximation algorithm. We obtain this
result by first deriving a bicriteria approximation for a related
capacitated min-cost flow problem that we believe is interesting
in its own right. Our approach for this problem builds upon the
well-linked decomposition due to Chekuri-Khanna-Shepherd [1],
the construction of expanders via matchings due to Khandekar-
Rao-Vazirani [2], and edge-disjoint routing in well-connected
graphs due to Rao-Zhou [3]. However, we also develop new
techniques that allow us to keep a handle on the total cost, which
was not a concern in the aforementioned literature.

Index Terms—approximation algorithms; energy-efficient net-
works; diseconomies of scale.

I. INTRODUCTION

We consider a minimum-cost network design problem with

the following familiar formulation. We are given a traffic

matrix that specifies demands to be transported over a network.

We also have a set of network resources that incur cost for

carrying traffic. Specifically, each resource e is associated with

a cost function fe(·) such that a cost of fe(�e) is incurred if e
carries a traffic load of �e. The objective of the design problem

is to choose a route for each traffic demand so that the total

cost
∑

e fe(�e) is minimized.

Buy-at-Bulk network design is a well-studied problem that

falls under this formulation. For Buy-at-Bulk, the cost func-

tions fe(·) exhibit economies of scale. That is, higher traffic

load yields lower cost per unit traffic carried. More precisely,

the functions fe(·) for Buy-at-Bulk are subadditive, i.e.

fe(x) + fe(x
′) ≥ fe(x+ x′)

for any x, x′ ≥ 0. Buy-at-bulk has been extensively studied,

because subadditive functions often model accurately the cost

for purchasing link capacity in a variety of networks, whether

it is a classic commodity network or a modern communication

infrastructure. Polylogarithmic upper and lower bounds on

the approximability of the Buy-at-Bulk problem are known,

see e.g. [4], [5], [6], [7].

In this paper, we focus on a less studied case in which the

cost function exhibits (dis)economies of scale. Our primary

motivation for studying (dis)economies of scale is to take

into account the energy cost of running a network. Energy

conservation is attracting increasing attention in the fields

of computing and networking, both because of the rapidly

increasing monetary costs of powering large networks and

server farms, as well as a desire to decrease the environ-

mental impact of these operations [8], [9]. In this context,

fe(·) models an energy curve, reflecting how much energy

e consumes as a function of its processing speed x. Here, e
stands for a generic networking or computing device such as

a CPU, communication link, edge router, etc. We assume that

devices have the capability of speed scaling, which refers to

adjusting the processing speed according to the traffic load.

Speed scaling is a popular research topic, see e.g. [10], [11],

[12], [13], [14], [15], [16], [17]. It is also a feature in some

commercial products such as the Intel Pentium processors [18],

standards like ADSL2 and ADSL2+ [19], and proposals to the

IEEE 802.3az task forces [20], [21].

Extensive studies have suggested that the energy consump-

tion of some devices may exhibit diseconomies of scale and

thus be characterized by superadditive functions, i.e.

fe(x) + fe(x
′) ≤ fe(x+ x′)

for any x, x′ ≥ 0. This implies, for instance, that doubling

processing speed more than doubles the energy consumption,

which is particularly true if increasing the speed of a device

requires increasing both the clock speed and the supply

voltage of a microprocessor. Many papers model the power

requirements of a microprocessor as a polynomial function of

the clock speed, such as fe(x) = δex
α, where δe and α are

parameters associated with the device. While the exponent α



has been usually assumed to be around 3 [22], more recent

estimates are markedly smaller. In particular, its value is 1.11,

1.66, and 1.62 for the Intel PXA 270, a TCP offload engine,

and the Pentium M 770, respectively [23].

Min-cost network design under superadditive functions was

recently studied in [24]. However, in general the problem can

be inapproximable. For example, if the cost function is given

by fe(x) = 0 for 0 ≤ x ≤ 1 and fe(x) = x−1 for x > 1, then

it was shown in [24] that finding a routing that incurs zero total

cost is equivalent to solving the Edge-Disjoint-Paths (EDP)

problem. Since EDP is NP-hard, it follows that achieving

any finite approximation ratio for the above cost function is

also NP-hard. Nevertheless, this is a rather unnatural function,

especially in the context of energy curves, since the cost

remains zero even for some non-zero speeds. Under cost

functions fe(x) = δex
α, which are more natural for modeling

energy consumption, [24] showed that a variant of randomized

rounding achieves a constant approximation ratio, assuming

that α is a constant.

On the other hand, for an even more accurate energy curve,

a non-negligible startup cost is unavoidable. More specifically,

we are interested in cost functions of the following form:

fe(x) =

{
0 for x = 0

σe + δex
α for x > 0

, (1)

where σe > 0 may represent e.g. the cost required to keep

a device active at an almost-idle state, or a fixed amount

of energy needed to turn on the device. For example, σe
includes the significant energy consumption due to leakage

currents [18]. We remark that if α = 1, we obtain one

of the classic Buy-at-Bulk cost functions, which involves a

startup cost plus a linear function. However, for the case in

which α > 1, fe(x) is obviously no longer subadditive, since

the superadditive term xα dominates for large values of x.

We refer to this problem as min-cost network design with

(dis)economies of scale, putting parentheses around the prefix

“dis-” to stress that fe(x) exhibits behavior consistent with

both economies of scale (for sufficiently small x only) and
with diseconomies of scale (for large x only).

The difficulty in devising approximation algorithms under

(dis)economies of scale comes from the fact that it is hard

to know whether our routing should be aiming for more

aggregation of demands, which would lower the cost coming

from the σe terms, or more separation of demands, which

would lower the cost coming from the δex
α terms. As we

explain later, these aspects of the cost function mean that stan-

dard techniques such as tree metric embedding or randomized

rounding cannot yield a satisfactory approximation, at least

not in a straightforward way.

A. Model and Results

More formally, an instance of min-cost network design with

(dis)economies of scale consists of a network, represented by

an undirected graph G = (V,E), and a set D = {1, 2, . . . , k}
of traffic demands, where the ith demand (1 ≤ i ≤ k) is

associated with an unordered pair of terminals (si, ti) ∈ V ×V

and an integer demi > 0 indicating the requested bandwidth.

We assume links represent the abstracted resources, and each

link e ∈ E is associated with a cost function fe(·). Our goal

is to route all demands in an unsplittable fashion with the

objective of minimizing the total cost
∑

e∈E fe(�e), where

the load �e of link e equals the total amount of traffic routed

through e.
We focus on the uniform version of the cost function (1);

namely, fe(·) differs only by a constant factor from link to

link:

fe(x) =

{
0 for x = 0

ce(σ + xα) for x > 0
. (2)

Our main result is a polylogarithmic approximation algorithm

for α > 1 and σ > 0, in which case fe(·) is neither

superadditive nor subadditive.

As a byproduct, we obtain a polylogarithmic bicriteria

approximation for the capacitated network design problem.

The precise relationship between the two problems is demon-

strated later in Lemma 2. In the capacitated network design

problem, we are given an undirected graph (or multigraph

without self-loops) G◦ = (V ◦, E◦), where each link e ∈ E◦
has cost κe and all links have capacity q, as well as a set

D◦ = {1, 2, . . . , k◦} of traffic demands. Again, the ith demand

(1 ≤ i ≤ k◦) is associated with an unordered pair of terminals

(s◦i , t
◦
i ) ∈ V ◦ × V ◦ and an integer dem◦i > 0 indicating the

requested bandwidth. The goal is to route all demands in an

unsplittable fashion, as before, while ensuring that the sum

of bandwidths of the demands routed through each link e
does not exceed q. Here, our objective is to minimize the

total cost of links used in the routing, i.e. those with non-zero

load. Our main result for this problem is a polylogarithmic

approximation when we allow the capacity on each edge to

be exceeded by a polylogarithmic factor.

B. Related Work

Under uniform subadditive cost functions, the well-studied

Buy-at-Bulk problem has an O(log n)-approximation [4],

where n = |V |, via tree metric embeddings [25], [26]; it is

also hard to approximate to within an Ω
(
log1/4−ε n

)
factor

[7]. Under non-uniform subadditive cost functions, i.e. when

the fe(·) associated with different links may be completely

unrelated to each other, Buy-at-Bulk has polylogarithmic ap-

proximation [6], [27] and is hard to approximate to within an

Ω
(
log1/2−ε n

)
factor [7].

For the superadditive function fe(x) = δex
α, randomized

rounding can lead to a constant approximation for unit de-

mands [24]. On the contrary, for any α > 1, there is a uniform

cost function of the form (2) such that no Ω
(
log1/4−ε n

)
approximation is possible, even for unit demands [24]. This

hardness result follows easily from the hardness of Buy-at-

Bulk. It also indicates that, when α ≥ 1, the introduction of

a startup cost σ > 0 in the cost function makes the problem

intrinsically harder to optimize.

We stress that the capacitated network design problem we

consider in this paper has some important differences from



the Generalized Steiner Network problem for which Jain’s

iterative rounding algorithm provides a 2-approximation. In the

latter problem, a set {rij} of demands is given, and the goal is

to find a minimum cost network such that there are rij disjoint

paths between each node pair (i, j). In another — much more

difficult — version, these paths need not be disjoint, but up to

qe of them may use edge e. This variant was studied by Carr

et al. [28], who showed how to obtain an approximation ratio

dependent on the number of non-zero coefficients in each row

of the integer programming formulation. Observe, however,

that these problems are quite different from ours, since the

connectivity requirements of each demand need to be satisfied

in isolation. By contrast, in our problem we aim to route all
the demands simultaneously, and so the capacity of each edge

must be no less than the total amount of traffic that is routed

through it.

To the best of our knowledge, there are no previous poly-

logarithmic approximation algorithms for either our minimum

cost network design problem with (dis)economies of scale or

our formulation of capacitated network design. Nevertheless,

we remark that the math programming community has studied

cutting plane techniques for our capacitated problem, see e.g.

[29]. Indeed, it is a special case of a problem known as Fixed

Charge Network Flow [30].

C. A Hard Example

We now give a simple example for which neither random-

ized rounding nor routing based on tree metric embeddings

yields a polylogarithmic approximation in the presence of

(dis)economies of scale. This example was already discussed

in [24], but we present it again here for completeness. Consider

a pair of terminals (s, t), m parallel edges between them, and

the cost function f(x) = m + x2 for x > 0. We also have

m unit demands that need to be routed between s and t. The

optimal integral solution for this problem buys
√
m edges and

routes
√
m of the demands on each edge. The total cost is

Θ
(
m3/2

)
.

With randomized rounding, we first solve the corresponding

linear relaxation. The fractional optimal solution may buy a

1/m fraction of each edge and route a 1/m fraction of every

demand through it. The total cost for this fractional routing is

m( 1
m )m+m = 2m, which illustrates that the integrality gap

of this relaxation is at least Ω(
√
m). Moreover, if we apply

randomized rounding by treating the fractional value assigned

to each route as a probability distribution and choosing a

route for every demand according to that distribution, then the

probability that an edge is picked equals the probability that

some demand picks it when all the demands choose a route

uniformly at random. This probability is 1−(1− 1
m )m ≥ 1− 1

e .

Therefore, the expected cost of the rounded solution is at least

m2(1− 1
e ), which is an Ω(

√
m) factor more than the optimal

integral cost.

In the tree metric embedding approach that was used for the

uniform Buy-at-Bulk problem, we approximate the underlying

network with a tree and then solve the problem on that tree,

with the same cost function. However, since our example only

edge
3rd parallel

cost of 

1st parallel
cost of

edge

cost of

edge
2nd parallel

1/ασ 1/ασ1/ασ

Fig. 1. Discretization of the cost function.

has two nodes, the only possible tree on the two nodes consists

of a single edge connecting them. Hence when we solve the

problem on that tree, all m demands are routed on one edge.

Under our cost function, this solution has cost m+m2, which

is again an Ω(
√
m) factor more than the optimal integral cost.

II. OVERVIEW

Given that demands can request different bandwidths, we

first partition them into multiple buckets, each of which

contains demands whose bandwidths are within a factor 2 of

each other. Demands in the same bucket are therefore (almost)

uniform in size, and we treat each bucket separately.

We set a parameter μ = α
√
σ. The significance of μ is that

for loads < μ the startup cost σ becomes the dominant term in

fe(·), whereas the situation is reversed for loads ≥ μ. Hence,

for a bucket of demands with bandwidth ≥ μ each, we may

simply use randomized rounding to route them and achieve a

constant approximation, as proposed in [24].

By contrast, to route a bucket of small demands (with

demi < μ), we begin by aggregating the demands and creating

superterminals, each of which gathers a Θ(μ) amount of

traffic. In order to relate the costs of the aggregated and

the original instances, we make use of a minimum Steiner

forest defined on the original demands. Similar aggregation

approaches have been explored before, e.g. in [31], [1]. We

remark that the significance of aggregation becomes apparent

during a filtering procedure later on.

Subsequently, we convert the aggregated instance into an

instance of capacitated network design, with the same demand

set and the same network, except that we replace every link e
by a set of parallel links with capacity μ each. The cost of the

ith such parallel link is given by fe(iμ)−fe((i−1)μ). This may

be viewed as a discretization of the cost function, as depicted

in Figure 1. Lemma 2 implies that an approximation for the



capacitated instance can be transformed into an approximation

for the aggregated instance. Therefore, most of the technical

exposition in this paper focuses on capacitated network design.

For a capacitated instance where demand sizes are compa-

rable to link capacities, we begin by obtaining a fractional

optimal solution. Using that, we then decompose the network

graph into a number of components, each of which is well-cut-
linked. We say that a graph is well-cut-linked if it has no small

cuts with a large number of terminals on both sides of the cut.

Chekuri et al. [1] introduced this notion of well-linkedness,

and showed that any fractional flow can always be decomposed

into a set of disjoint and well-cut-linked components, without

losing too much of the demand. Henceforth, we consider one

component at a time.

One of the key steps in our analysis is manipulating the frac-

tional flow from the well-linked decomposition. We ensure, via

a filtering procedure, that each of the terminals has at least λ
flow emanating from it, where λ has a carefully chosen inverse

polylogarithmic value. The demand aggregation in the prior

step ensures that a polylogarithmic fraction of the demands

survive this filtering process. We then use the integrality

theorem of minimum-cost flow to argue that there is a flow of
no greater cost than the aforementioned fractional flow, such

that the fraction of each link that is used is a multiple of λ.

This in turn implies that there is an integral solution of cost no

greater than 1/λ times the minimum cost flow. As a result, we

have a technique for obtaining cheap building blocks which,

combined with a method due to Khandekar-Rao-Vazirani [2],

allows us to construct — at low cost — an expander that can

be embedded in the existing graph.

Using this expander, we would like to argue that we can

route a polylogarithmic fraction of the demands in a disjoint

manner, as proposed in Rao-Zhou [3]. The catch here is that

each superterminal collects Θ(μ) traffic, which could prevent

enough demands from simultaneously being routed disjointly.

We therefore resort to a decomposition implied by König’s

Theorem [32] and route in Θ(μ) rounds, where each round

handles demands from distinct superterminals.

Not all demands are yet routed, as the filtering process and

the disjoint routing within the expander only routes a polylog-

arithmic fraction of those. However, since we have an upper

bound on the unrouted demands, it is straightforward to show

that by recursively repeating the procedure a polylogarithmic

number of times (and hence incurring a polylogarithmic factor

in edge capacity violation and a polylogarithmic increase of

the cost), we can in fact route all of them.

III. THE ALGORITHM

Before proceeding, we provide some additional definitions.

In the following, D′ stands for any given subset of the demands

in D. Denote the total demand
∑k

i=1 demi by D, the cost

of the optimal solution by opt, and the minimum cost of a

partial solution that routes the demands in D′ ⊆ D by optD′ .

Furthermore, let μ = α
√
σ and dmax = maxi∈D demi.

Without loss of generality, we assume that each node is a

terminal for at most one demand in D. If that does not hold for

some node v ∈ V , we simply create sufficiently many copies

of v, each connected to v by an edge with zero cost coefficient,

and replace v by a distinct copy of itself in whichever demand

pair it appears. Clearly, this transformation does not affect the

optimal solution cost, and the size of the transformed graph

is only polynomially larger than that of the original one.

A. Preprocessing

a) Bucketing demands: To begin with, partition D into

ζ = �log dmax� + 1 = O(logD) subsets. In particular, for

1 ≤ j ≤ ζ define

Dj =
{
i ∈ D ∣∣ 2j−1 ≤ demi < 2j

}
.

Moreover, for every j and i ∈ Dj , round demi up to 2j ; this

adjustment entails only a constant factor loss in the approxi-

mation. Subsequently, we shall construct a partial solution for

each Dj .

b) Routing large demands: Note that if 2j ≥ μ, then in

any partial solution that routes the demands in Dj only, for

every network link e ∈ E we have either �e = 0 or �e ≥
2j ≥ μ. Consequently, we may approximate each function

fe by f ′e(�e) = 2ce�
α
e , since 1

2f
′
e(�e) ≤ fe(�e) ≤ f ′e(�e) for

the aforementioned range of values of �e. Therefore, using the

algorithm of Andrews et al. [24], we produce a partial solution

that routes the demands in Dj with cost ηαoptDj
, where η is

a constant.

c) Aggregating small demands: On the other hand, sup-

pose that 2j < μ. Let us construct an instance of the well-

known Steiner forest problem on the graph G, with edge

weights ceσ and terminal pairs (si, ti), i ∈ Dj . It is easy to see

that the minimum weight of a Steiner forest is at most optDj
,

hence by applying the 2-approximation algorithm in [33] we

can find a Steiner forest H of weight ≤ 2optDj
efficiently.

Naturally, the connected components of H , say H1, . . . , Hθ,

are trees. Take each component Hp = (Vp, Ep), 1 ≤ p ≤ θ,

root it at an arbitrary leaf node v0 ∈ Vp, and denote by Tp
a depth-first-search traversal of Hp. Then, apply Procedure 1

on Hp to designate certain nodes of Vp as superterminals and

assign each v ∈ Vp to a superterminal.

For any i ∈ Dj , let s̃i and t̃i be the superterminals to which

si and ti are assigned, respectively. For each demand i ∈ Dj ,

create a so-called aggregated demand, simply by replacing

the pair (si, ti) with (s̃i, t̃i). Then, consider an aggregated
instance of the problem on the graph G with those aggregated

demands only. We now derive the lemma below.

Lemma 1. Any solution to the aggregated instance specified
above may be converted into a partial solution that routes the
demands in Dj , and vice versa. If Caggr and Corig are the
respective costs of these solutions, then in one direction we
can guarantee that

Corig ≤ 2α−1
(
Caggr + 2(1 + 4α)optDj

)
,

whereas in the other that

Caggr ≤ 2α−1
(
Corig + 2(1 + 4α)optDj

)
.



Procedure 1 Aggregation of small demands

initially all nodes in Vp are unassigned

for v ∈ Vp do
d(v) ← demi if ∃i ∈ Dj s.t. v = si or v = ti, else 0

w ← 0; W ← ∅
vcurr ← v0
vprev ← vlast ← node visited last in Tp
while

∑
v d(v) ≥ 3μ, summed over unassigned nodes do

while w < μ do
w ← w + d(vcurr)
W ←W ∪ {vcurr}
vprev ← vcurr
vcurr ← node visited after vcurr in Tp

if W 
= ∅ then
declare vprev a superterminal

assign all nodes in W to vprev
w ← 0; W ← ∅

declare vlast a superterminal

assign all currently unassinged nodes to vlast

Sketch of proof: The first direction is established as

follows. Using the edges of H , for i ∈ Dj we route demi

flow between si and s̃i, as well as between ti and t̃i. By the

construction of superterminals, the load on any edge of H is

at most μ+3μ = 4μ in this routing. Hence, its cost is bounded

by ∑
e∈H

(1 + 4α)ceσ ≤ 2(1 + 4α)optDj
,

and when combined with the aforementioned solution to the

aggregated instance, it produces a partial solution for the

demands in Dj with cost not exceeding

2α−1
(
Caggr + 2(1 + 4α)optDj

)
.

Finally, the argument for the opposite direction is entirely

similar.

d) Reduction to capacitated network design: At this

point, let us create an instance of the capacitated min-cost

network design problem. The multigraph G◦ = (V ◦, E◦)
has the same node set V ◦ = V as G. Moreover, for every

link e ∈ E, we add at most ω = |Dj | ≤ k parallel edges

e1, e2, . . . , eω to E◦, where ez has cost ceσ(z
α − (z − 1)α),

1 ≤ z ≤ ω. The edge capacity q is set to μ, and the demand set

D◦ consists of exactly the same (aggregated) demands as in

the aggregated instance discussed earlier. Owing to our choice

of edge costs, the next lemma is readily verified.

Lemma 2. The ratio of the optimal cost of the capacitated
min-cost network design instance defined above to the optimal
cost of the aggregated instance lies between 1 and 2.

B. Solving capacitated network design

A fractional relaxation of the capacitated network design

problem can be formulated as the linear program LP3, where

the variable xe,i indicates the fraction of demand i ∈ D◦ that

is routed along link e ∈ E◦. Provided that LP3 is feasible, let

LP3 : Fractional capacitated network design

minimize
∑
e∈E◦

κe

k◦∑
i=1

xe,i (3a)

subject to

k◦∑
i=1

xe,i ≤ q ∀e ∈ E◦ (3b)

〈
flow conservation

constraints on xe,i

〉
(3c)

0 ≤ xe,i ≤ 1
∀e ∈ E◦,
∀i = 1, 2, . . . , k◦ (3d)

optLP3 be the optimal (fractional) solution cost. Our objective

is to find an integral routing, i.e. one in which all xe,i ∈ {0, 1},
such that the total cost of edges used is at most βoptLP3 and

the load on each edge is at most γq — where β and γ are

specified later.

1) The case q = 1: In this section we describe a solution

to the special case of unit capacity (q = 1) and generalize

it to q > 1 in Section III-B2. For q = 1, dem◦i should be

1 for all i ∈ D◦. Demand aggregation in the preprocessing

step is therefore not necessary. This allows us to continue to

assume without loss of generality that the demand terminals

are distinct. As we shall see in Step 4 of the algorithm, distinct

terminals make edge-disjoint routing in expander graphs more

manageable.

a) Step 1: We obtain a fractional optimal solution xi,e

for the linear program LP3. Let τe =
∑

i xi,e be the load on

edge e in the fractional solution. Take Gτ to be the same graph

as G◦, but with each edge e having capacity τe instead of q.

Clearly, the fractional routing implied by xi,e is still feasible

in Gτ , because τe ≤ q for all e. Moreover, optLP3 =
∑

e κeτe
is a lower bound on the cost of any integral routing in G◦ that

respects edge capacities.

b) Step 2: We apply the following theorem of Chekuri,

Khanna and Shepherd [1].

Theorem 3 ([1]). We can decompose Gτ into node-disjoint
subgraphs Gτ

1 , G
τ
2 , . . . , G

τ
φ and produce a weight function π

on the terminals with the properties listed below. Denote by
D◦r ⊆ D◦ the set of induced terminal pairs in Gτ

r , and by Xr

the set of terminals in D◦r .
• 0 ≤ π(si) = π(ti) ≤ 1 for all i ∈ D◦.
• Each Gτ

r is π-cut-linked. That is, for any A ⊆ V (Gτ
r ),

the capacity on the cut defined by A and Ā = V (Gτ
r )\A

in Gτ
r is at least min{π(A), π(Ā)}.

• If n◦ is the number of nodes in G◦, then
φ∑

r=1

π(Xr) = Ω
(|D◦| log−2 n◦

)
.

In effect, the function π indicates how much of each

terminal’s original demand remains after the decomposition.

Subsequently, we apply a filter to eliminate terminals with



too little demand and ensure that all remaining terminals

have exactly λ = 1
/ ⌈

log3 n◦
⌉

demand. This is achieved by

defining a new function ρ on the terminals, which is closely

related to π. For a terminal u ∈ Xr, let

ρ(u) =

{
0 if π(u) < λ;

λ otherwise.

Lemma 4. The function ρ has properties similar to those of
π. More specifically,

1) 0 ≤ ρ(si) = ρ(ti) ≤ 1 for all i ∈ D◦;
2) each Gτ

r is ρ-cut-linked; and

3)

φ∑
r=1

ρ(Xr) = Ω
(|D◦|λ log−2 n◦

)
.

Proof: The first property follows directly from the fact

that π(si) = π(ti) and the definition of ρ.

To verify the second property, consider any A ⊆ V (Gτ
r )

and Ā = V (Gτ
r ) \ A. Since the component Gτ

r is π-cut-

linked, the capacity of the cut defined by A and Ā is at least

min{π(A), π(Ā)}. By the definition of ρ, π(A) ≥ ρ(A) and

π(Ā) ≥ ρ(Ā). Consequently,

min{ρ(A), ρ(Ā)} ≤ min{π(A), π(Ā)} ,
and hence the cut is at least min{ρ(A), ρ(Ā)}, so every Gτ

r

is ρ-cut-linked as well.

For the last property, observe that

∑
r

ρ(Xr) ≥ λ

(∑
r

π(Xr)− λ|D◦|
)
,

since the sum of π values that were reduced to zero in ρ is

at most λ|D◦| and the remaining π values were reduced by at

most a factor of λ.

c) Step 3: Henceforth, we concentrate on one subgraph

Gτ
r at a time. Recall that Xr is the set of terminals in Gτ

r ,

and let X ′r = {u ∈ Xr | ρ(u) = λ}. Since Gτ
r is ρ-cut-linked,

we deduce that for any partition of X ′r into two equal halves

(A,B), we can support a flow ξGτ
r

such that the amount of

flow emanating from each node in A and the amount of flow

absorbed by each node in B are both exactly λ. The existence

of ξGτ
r

follows from the max-flow/min-cut theorem and the

fact that Gτ
r is ρ-cut-linked. Moreover, if ξGτ

r
(e) indicates the

amount of flow on e ∈ E(Gτ
r ), we have ξGτ

r
(e) ≤ τe.

Now, let Gχ
r have the same sets of nodes and edges as Gτ

r ,

but with capacity 1 for each edge. In Gχ
r we determine a min-

cost flow ξGχ
r

such that, again, the amount of flow emanating

from each node in A and the amount of flow absorbed by each

node in B are both exactly λ. Since 1 is an exact multiple of

λ, the integrality theorem for min-cost flow guarantees that

ξGχ
r

is λ-integral, meaning that ξGχ
r
(e) is an exact multiple of

λ, for every e ∈ E(Gχ
r ). Furthermore,∑

e∈E(Gχ
r )

κeξGχ
r
(e) ≤

∑
e∈E(Gτ

r )

κeξGτ
r
(e) ,

because capacity constraints in Gχ
r are more relaxed than those

in Gτ
r .

Scaling up ξGχ
r

by a factor 1/λ, we obtain an integral flow

ξ′
Gχ

r
, under which the the amount of flow emanating from each

node in A and the amount of flow absorbed by each node in

B are both exactly 1. Therefore, ξ′
Gχ

r
may be decomposed

into |A| paths, each carrying one unit of flow from a (distinct)

node in A to a (also distinct) node in B. We call this a path-
matching between the sets A and B. Note that any edge e ∈
E(Gχ

r ) = E(Gτ
r ) belongs to at most 1/λ paths, and that the

total cost of edges used by these paths is bounded by∑
e∈E(Gχ

r )

κeξ
′
Gχ

r
(e) =

∑
e∈E(Gχ

r )

κeξGχ
r
(e)/λ

≤
∑

e∈E(Gτ
r )

κeξGτ
r
(e)/λ

≤
∑

e∈E(Gτ
r )

κeτe/λ .

Lemma 5. Consider any equal partition (A,B) of X ′r. We
can compute a path-matching between A and B within Gτ

r

such that each edge in Gτ
r ⊆ Gτ is used by no more than

1/λ such paths, and the total cost of links used is at most∑
e∈E(Gτ

r )
κeτe/λ.

d) Step 4: At this point, we will use our above method

for constructing path-matchings as a building block for our

routing, in conjunction with two results stated below, due to

Khandekar-Rao-Vazirani [2] and Rao-Zhou [3].

Theorem 6 ([2]). Given a set V of N nodes and a procedure
that finds a matching for any specified equal partition (A,B)
of V , we may efficiently determine ψ = Θ

(
log2N

)
such

partitions (A1, B1), (A2, B2), . . . , (Aψ, Bψ), so that the union
of their corresponding matches results in a graph with Θ(1)
expansion.

Theorem 7 ([3]). Consider an expander graph G = (V, E),
as in Theorem 6, and a number of pairs (ŝi, t̂i) ∈

(V
2

)
. If each

node belongs to at most one pair, then we may connect at least
a Ω

(
log−2N

)
fraction of these pairs using edge-disjoint paths

in G.

Since a path-matching between two equal-size node sets

can be viewed as a (conceptual) matching, we may use the

procedure implied by Lemma 5 in Theorem 6 to produce an

“expander”, each of whose edges represents in effect a path

in Gτ
r . The union of these paths forms a subgraph of Gτ

r with

total edge cost not exceeding

O
(
log2 n◦/λ

) · ∑
e∈E(Gτ

r )

κeτe ,

and every edge is contained in no more than O
(
log2 n◦/λ

)
paths. Theorem 7 suggests that we can route at least an

Ω
(
log−2 n◦

)
fraction of the |X ′r|/2 demands with termi-

nals in X ′r, using each of the aforementioned paths at

most once. Across all node-disjoint subgraphs Gτ
1 , . . . , G

τ
φ,

Ω
(|D◦| log−4 n◦

)
demands may thus be routed. Hence, we

can route all the demands in D◦ by recursively applying this



entire process O
(
log5 n◦

)
times, because

|D◦| (1− Ω
(
log−4 n◦

))O(log5 n◦)
< |D◦|/n◦ ≤ 1 .

The total cost of this solution is bounded by O
(
log7 n◦/λ

) ·
optLP3, and the load on each link is at most O

(
log7 n◦/λ

)
.

Theorem 8. We have found an integral routing such that the
total cost of edges used is at most βoptLP3 and the load on
each edge is at most γ, with β = γ = polylog(n◦).

2) The case q = μ: We now generalize our algorithm

for the case q = 1 to the case q = μ. Recall that demand

aggregation in the preprocessing step in Section III-A creates

superterminals, each of which terminates demands of size

between μ and 3μ. This creates an additional complication that

not all of the demand at one superterminal X is necessarily

destined to the same superterminal Y . We highlight the

necessary changes in our algorithm.

For the aggregated instance on the superterminals, we first

obtain an optimal fractional solution as before. We again per-

form the Chekuri et al. decomposition to obtain a set of well-

linked instances. After this step some of the superterminals

may only have a small amount of aggregate demand left. We

therefore filter out all of the superterminals whose aggregate

demand is less than λ, where λ is redefined to be μ/�log3 n◦�.
The new λ value and the fact that each superterminal initially

had Θ(μ) aggregated demands allow us to show that at least a

Ω
(
λ log−2 n◦

)
fraction of aggregated demands are not filtered

out. For those remaining demands, we again use the integrality

theorem of min-cost flow and well-linkedness to show that

there is a low-cost integral matching between any equal-sized

partition of the superterminals.

However, due to aggregation each superterminal is not

unique to some aggregated demand. In order to apply The-

orem 7, we note that demands within a single bucket have

size equal to 2j for some fixed j. König’s lemma [32]

states that we can decompose any bipartite graph with edge

degree at most 3μ/2j into 3μ/2j disjoint matchings. Hence,

we can decompose the problem on the superterminals into

3μ/2j separate problems such that in each separate problem

each superterminal represents at most one demand. Then,

whenever we construct an expander, we look at the separate

problems one-by-one and disjointly route the demands for

each. Whenever a demand is routed, it consumes 2j of the

capacity on each edge along its route. Consequently, in order

to route all of the 3μ/2j separate problems, we need at most

3 copies of each edge and the cost at most triples.

Therefore, Theorem 8 extends to q = μ.

3) Wrapping up: Going back to the original network design

problem with (dis)economies of scale, recall that we process

one bucket of demands at a time. For the jth bucket, 1 ≤ j ≤ ζ,

we have a partial solution of cost at most polylog(n) optDj
.

Combining these partial solutions yields a routing with cost

ζαpolylog(n) opt = polylog(n,D) opt, assuming that α is a

constant.

Theorem 9. Uniform network design with (dis)economies of
scale has a polylog(n,D) approximation.

IV. CONCLUSION

In this paper, we have derived a (β, γ)-bicriteria approxi-

mation for the uniform capacitated problem, where β, poly-

logarithmic in value, gives the cost guarantee and γ, also

polylogarithmic in value, bounds the blowup in link capac-

ity. We have also shown that this approximation implies a

poly(β, γ) approximation for the uniform min-cost network

design problem under the cost function (2). We have focused

on this particular cost function as it provides a natural model

when considering the energy cost of a network.

However, other cost functions can directly benefit from the

(β, γ)-bicriteria approximation as well. For example, if

f(�x/μ�μ) ≤ ν1f(x) ,

f(γx) ≤ ν2γf(x) ,

and f((i+ 1)μ)− f(iμ) ≥ f(iμ)− f((i− 1)μ)

for some parameter μ and every positive integer i, then min-

cost network design admits an O(βν1ν2) approximation under

the cost function f(·). If ν1 and ν2 are polylogarithmic in size,

then the resulting approximation is again polylogarithmic.

Of course, the main open question is how to handle the

non-uniform versions of the capacitated problem and the min-

cost network design problem with (dis)economies of scale,

respectively. We leave them both as challenging future work.
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