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Abstract—For an undirected n-vertex planar graph G with
non-negative edge-weights, we consider the following type of
query: given two vertices s and t in G, what is the weight of
a min st-cut in G? We show how to answer such queries
in constant time with O(n log5 n) preprocessing time and
O(n log n) space. We use a Gomory-Hu tree to represent all
the pairwise min st-cuts implicitly. Previously, no subquadratic
time algorithm was known for this problem. Our oracle can
be extended to report the min st-cuts in time proportional to
their size. Since all-pairs min st-cut and the minimum cycle
basis are dual problems in planar graphs, we also obtain an
implicit representation of a minimum cycle basis in O(n log5 n)
time and O(n log n) space and an explicit representation with
additional O(C) time and space where C is the size of the
basis. To obtain our results, we require that shortest paths be
unique; this assumption can be removed deterministically with
an additional O(log2 n) running-time factor.

Keywords-Graph theory; Algorithms; Networks;

I. INTRODUCTION

A minimum cycle basis is a minimum-cost representation
of all the cycles of a graph whereas the all-pairs min cut
problem asks to find all the minimum cuts in a graph. In
planar graphs the problems are intimately related (in fact,
equivalent [1]) via planar duality. In this paper, we give the
first sub-quadratic algorithm for these problems, running in
O(n log5 n) time. In the following, we consider undirected
graphs with non-negative edge weights. Several details are
omitted from this version of the paper; the full version is
available on arXiv [2].

All-pairs min cut: The all-pairs min cut problem is
to find the min st-cut for every pair s, t of vertices in a
graph G. Gomory and Hu [3] showed that these cuts can be
represented by an edge-weighted tree such that:
• the nodes of the tree correspond one-to-one with the

vertices of G,
• for any distinct vertices s and t, the minimum edge-

weight on the unique, simple s-to-t path in the tree has
weight equal to the min st-cut weight in G, and

• removing the corresponding minimum-weight edge
from the tree creates a partition of the nodes into two
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sets that is a partition of the vertices in G corresponding
to a min st-cut.

We call such a tree a Gomory-Hu tree or GH tree; GH
trees are also called cut-equivalent and cut trees in the
literature. Gomory and Hu also showed how to find such
a tree with n − 1 calls to a min st-cut algorithm. To
date, this is the best known method for general graphs
and results in an O(n2 log n)-time algorithm for planar
graphs using the best-known algorithm for min st-cuts in
planar graphs [4], [5]. There is an algorithm for unweighted,
general graphs that beats the n − 1 times min st-cut time
bound [6]; the corresponding time for planar graphs, how-
ever, is O(n2poly log n) time.

Minimum cycle basis: A cycle basis of a graph is a
maximal set of independent cycles. Viewing a cycle as an
incidence vector in {0, 1}E , a set of cycles is independent
if their vectors are independent over GF (2). The weight of
a set of cycles is the sum of the weights of the cycles. The
minimum-cycle basis (MCB) problem is to find a cycle basis
of minimum weight. This problem dates to the electrical
circuit theory of Kirchhoff [7] in 1847 and has been used
in the analysis of algorithms by Knuth [8]. For a complete
survey, see [9]. The best known algorithm in general graphs
takes O(mω) time where ω is the exponent for matrix
multiplication [10].

The best MCB algorithms for planar graphs use basic
facts of planar embeddings: a simple cycle C in a planar
embedded graph creates two bounded subsets of the plane
corresponding to the bounded (int(C)) and unbounded
(ext(C)) subsets. Hartvigsen and Mardon [1] prove that if G
is planar, then there is a minimum cycle basis whose cycles
are simple and nested1 in the drawing in the embedding. As
such, one can represent a minimum cycle basis of a planar
embedded graph as an edge-weighted tree, called the MCB
tree, such that:
• the nodes of the tree correspond one-to-one with the

faces2 of the planar embedded graph, and

1A set of simple cycles of G is called nested if, for any two distinct cycles
C and C′ in that set, either int(C) ⊂ int(C′), int(C′) ⊂ int(C), or
int(C) ⊂ ext(C′).

2Faces are defined as usual by the planar embedding.



• each edge in the tree corresponds to a cycle in the
basis, namely the cycle that separates the faces3 in the
components resulting from removing said edge from
the tree.

Hartvigsen and Mardon also gave an O(n2 log n)-time al-
gorithm for the problem that was later improved to O(n2)
by Amaldi et. al. [10].

A. Planar duality

In planar graphs, the MCB and GH problems are related
via planar duality. Corresponding to every connected planar
embedded graph G (the primal) there is another connected
planar embedded graph (the dual) denoted G∗. The faces of
G are the vertices of G∗ and vice versa. Two vertices in G∗

are connected if the corresponding faces in G share a border.
Note that the edges of G correspond one-to-one with those
of G∗. Cycles and cuts are equivalent through duality:

In a connected planar graph, a set of edges forms
a cycle in the primal iff it forms a cut in the
dual. [11]
Equivalence between MCB and GH trees: Just as cuts

and cycles are intimately related via planar duality, so are
the all-pairs min cut and minimum cycle basis problems:

Theorem 1 (Corollary 2.2 [1]): For a planar embedded
graph G, a tree T represents a minimum cycle basis of G if
and only if T is a GH tree for G∗ (via mapping node-face
relationships to node-vertex relationships).

Herein, we focus on the frame of reference of the min-
imum cycle basis. Our algorithm works by finding a min-
imum (weight) cycle that separates two as-yet unseparated
faces f and g. By duality, this cycle is a min fg-cut in
G∗. We recurse on unseparated faces, gradually building
the tree that represents the minimum cycle basis which,
by Theorem 1, is the GH tree for the dual graph. This
alone will not achieve a sub-quadratic running time. In order
to beat quadratic time, we guide the recursion with planar
separators and use precomputed distances to efficiently find
the minimum separating cycles.

B. Planar separators

A decomposition of a graph G is a set of subgraphs
P1, . . . , Pk such that the union of vertex sets of these
subgraphs is the vertex set of G and such that every edge of
G is contained in a unique subgraph. We call P1, . . . , Pk

the pieces of the decomposition. The boundary vertices
of a piece Pi is the set of vertices u in that piece such
that there exists an edge (u, v) in G with v /∈ Pi. We
use a recursive subdivision. When piece P is decomposed
into child subpieces, the boundary nodes of a child are
the boundary vertices inherited from P as well as the

3We say that a pair of faces of G are separated by C in G and that C
separates this pair if one face is contained in int(C) and the other face is
contained in ext(C).

boundary vertices introduced by the decomposition of P . By
recursively applying Miller’s Cycle Separator Theorem [12]
we get:

Definition 1 (Balanced recursive subdivision [13]): A
decomposition of G such that at each level a piece with n
nodes and r boundary nodes is divided into two subpieces
each containing no more than 2

3n + c
√
n nodes and no

more than 2
3r + c

√
n boundary nodes.

A piece inherits an embedding from G’s embedding.
For simplicity of presentation, we assume that pieces are
connected and have no holes (bounded faces containing only
boundary vertices). While it is not possible to guarantee this
with a balanced recursive subdivision, these assumptions can
be dropped; see the full version.

We define the O(log n) levels of the recursive subdivision
in the natural way: level 0 consists of one piece (G)
and level i-pieces are obtained by decomposing each level
i − 1-piece. We represent the recursive subdivision as a
binary tree, the subdivision tree (of G), with level i-pieces
corresponding to vertices at level i in tree. Parent/child and
ancestor/descendant relationships between pieces correspond
to their relationships in the subdivision tree.

C. Precomputed distances

For a piece P , the internal dense distance graph of P or
intDDG(P ) is the complete graph on the set of boundary
vertices of P , where the weight of each edge (u, v) is equal
to the shortest path distance between u and v in P . The
union of internal dense distance graphs of all pieces in the
recursive subdivision of G is the internal dense distance
graph (of G), or simply intDDG. Fakcharoenphol and Rao
showed how to compute intDDG in O(n log3 n) time [13];
Klein improved this to O(n log2 n) [14].

Fakcharoenphol and Rao used a Dijkstra-like algorithm
(Section 3.2.2 [13]) that runs in time O(|∂P | log2 |P |) in
intDDG(P ), where ∂P is the set of boundary vertices of P .
We use this algorithm in graphs composed of dense distance
graphs and pieces of the original graph:

Corollary 1: Dijkstra can implemented in O((
∑

i |∂Gi|+
|E|) log2 |V |) time on a set of dense distance graphs Gi and
a set of edges E over the vertex set V .

The external dense distance graph of P or extDDG(P )
is the complete graph on the set of boundary vertices
of P where the weight of an edge (u, v) is the shortest
path distance between u and v in G \ E(P ). The external
dense distance graph of G or extDDG is the union of all
external dense distance graphs of the pieces in the recursive
subdivision of G.

Theorem 2: The external dense distance graph of G can
be computed in O(n log3 n) time.

Proof: Fakcharoenphol and Rao compute intDDG
bottom-up by applying a variant of Dijkstra to ob-
tain intDDG(P ) for a piece P from the internal
dense distance graphs of its children. Similarly, we



can compute extDDG(P ) from extDDG(P ’s parent) and
intDDG(P ′s siblings). After computing intDDG, extDDG
can be computed top down.

D. Overview of the algorithm

We gradually build up the tree representing the minimum
cycle basis. Initially the tree is a star centered at a root r and
each leaf corresponding to a face in the graph (including the
infinite face). We update the tree to reflect the cycles that we
add iteratively to the basis. When the first cycle C is found,
we create a new node xC for the tree, make xC a child of
the root and make all the faces that C encloses children of
xC . Each non-face node in the tree corresponding to a cycle
C defines a region R: the subgraph of G contained in the
closed subset of the plane defined by the interior of C and
the exterior of the children (if any) of C. We say that R is
bounded by C, that C is a bounding cycle of R, and that R
contains the child regions and/or child faces defined by the
tree. The tree of regions is called the region tree. Observe
that a pair of faces not yet separated by a basis cycle belong
to the same region.

The root r will remain a special region that represents
the entire plane. We only add cycles to the basis that nest
with the cycles found so far. Whenever the basis is updated,
the region tree is updated accordingly. This is illustrated in
Figure 1. We show how to efficiently update the region tree
in Section V.

In the final tree, all faces have been separated: each face
is the only face-child of a region. We call such a region
tree a complete region tree. Mapping each face to its unique
parent, creating a tree with one node for each face in the
graph, will create the MCB tree.
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Figure 1. A graph with faces a through g; four nesting cycles A through
D (left). A region tree for cycles A,B and C (center). A region tree for
cycles A through D (right).

Our algorithm is guided by the recursive subdivision of
G. Starting at the deepest level of the recursive subdivision,
we separate all pairs of faces of G that have an edge in a
common piece of the subdivision. Suppose we are at level i
and that our algorithm has been applied to all levels deeper
than i; consider a level-i piece P . Unseparated faces in P
must belong to distinct children of P (of which there are at
most two) and must belong to a common region R. We get:

Lemma 1: There are at most two unseparated faces of R
in P .

Let the region subpieces of a piece P be the subgraphs
defined by the non-empty intersections between P and
regions defined by the region tree (Figure 2). We say that a
region R is associated with a region subpiece PR and that
PR is associated with R if PR = P ∩ R is not empty. By
Lemma 1, at most one pair of faces in a region subpiece
needs to be separated. In Section III, we show how to
separate such a pair of faces in O((|∂PR|2+|PR|) log3 |PR|)
time assuming that pieces are connected. Without this as-
sumption, we require O(|PR| log4 |PR|) time. This amounts
to O(|P | log4 |P |) time over all region subpieces of P ,
O(n log4 n) time at level i and O(n log5 n) time overall.

f g

Figure 2. Dotted edges belong to boundaries of a piece P and children
P1 and P2. f and g are unseparated faces. Solid black edges bound region
R. Shaded areas are child regions of R. Thick grey edges belong to region
subpiece PR. The intersection of a minimum fg-separating cycle with P
uses only edges of PR.

E. Results

The bulk of the paper will be devoted to presenting the
details of the algorithm outlined in the previous section.
In Section III, we describe an efficient way to compute
minimum separating cycles for pairs of unseparated faces
given region subpieces. In Section IV, we show how to find
the region subpieces. In Section V, we show how to update
the region tree with a new nesting separating cycle. This
proves our main result:

Theorem 3: A complete region tree, MCB tree and GH
tree of a planar undirected n-vertex graph with non-
negative edge weights can be found in O(n log5 n) time and
O(n log n) space.

In order to find the weight of a min st-cut using the GH
tree, we need to find the minimum-weight edge on the s-to-t
path in the tree. With an additional O(n log n) preprocessing
time, one can answer such queries in O(1) time using a tree-
product data structure [15], giving:

Theorem 4: With O(n log5 n) time and O(n log n) space
for preprocessing, the weight of a min st-cut between for any
two given vertices s and t of an n-vertex planar, undirected
graph with non-negative edge weights can be reported in
constant time.

In the full version of this paper, we show how our
algorithm can be adapted to report the edges of min st-cuts
and basis cycles in time proportional to their size.



II. PRELIMINARIES

A. Simplifying structural assumptions

To simplify the presentation of the algorithm and the
analysis, we make a few structural assumptions on the input
graph. These assumptions are not truly restrictive.

Simple faces: achieved by triangulating with infinite-
weight edges.

Degree three: achieved by triangulating the dual graph
with ε weight edges, where ε is much smaller than the
smallest weight of an edge. We use ε > 0 to coordinate with
the next assumption. Triangulating the dual will increase the
size of faces in the primal but they will remain simple.

Unique shortest paths: achieved by adding a small,
random perturbation to the weight of each edge, making the
probability of having non-unique shortest paths arbitrarily
small. In the full paper version, we show how to determin-
istically ensure shortest path uniqueness at the cost of an
extra O(log2 n) running-time factor.

B. Isometric cycles

A cycle is isometric if for any pair of vertices on the
cycle, one of the distinct paths between those vertices in
the cycle is a shortest path in the graph. The following two
lemmas imply that the minimum cycle basis we construct is
isometric and nested.

Lemma 2: If shortest paths are unique, the intersection
between an isometric cycle and a shortest path in G is a
(possibly empty) shortest path, the intersection between two
distinct isometric cycles is a (possibly empty) shortest path,
and (in planar graphs) isometric cycles nest.
The proof is left as an exercise.

Lemma 3 (Proposition 4.4 [1]): Any minimum cycle ba-
sis of a graph is isometric.

C. Representing Regions

We represent the region tree using the top tree data
structure [16] which support the following operations in
logarithmic time:

• lca(x, y): find the lowest common ancestor of nodes x
and y

• jump(x, y, d): find the node that is d edges away from
x on the path between nodes x and y

• find the weight of a path between nodes x and y

For each region, we maintain a compact representation:
vertices with degree 2 are removed by merging the incident
edges creating super edges, which are associated with the
first and the last edge on the corresponding path.

In Section V, we show how to efficiently add cycles to the
basis using top-tree operations and how to maintain compact
representations of regions.

III. SEPARATING A PAIR OF FACES

In this section we show how to find the minimum fg-
separating cycle for the unique pair of unseparated faces
f, g (Lemma 1) in a region subpiece PR by emulating an
algorithm due to Reif [17].

We use an operation of cutting open a planar embedded
graph G along a path X: duplicate every edge and vertex
of X and create a new, simple face whose boundary is
composed of edges of f , g, X , and the duplicate of X .
The resulting graph is denoted GX .

Paths P and Q cross if there is a quadruple of
faces incident to P and Q that cover the set product
{left of P , right of P} × {left of Q, right of Q}.

A. Reif’s minimum separating cycle algorithm

Let X be the shortest path between any vertex on the
boundary of f and any vertex on the boundary of g.
Reif’s algorithm is based on the observation that there is
a minimum gf -separating cycle that crosses X only once:

Theorem 5 (Proposition 3 [17]): Let X be the shortest g-
to-f path. For each vertex x ∈ X , let Cx be the minimum
weight cycle that crosses X exactly once and does so at
x. Then a minimum fg-separating cycle is a cycle Cx of
minimum weight. Further, Cx is the shortest path between
duplicates of x in GX .
Reif computes, for every vertex x ∈ X , the minimum
separating cycle Cx. Finding Cx amounts to finding a
shortest x-to-x′ path in GX , where x′ is the duplicate of
x. The running time of the algorithm is bounded by divide
and conquer: start with x, the midpoint of X in terms of the
number of vertices, and recurse on the subgraphs obtained
by cutting along Cx. The algorithm takes O(n log n) time
using the linear-time algorithm for shortest paths in planar
graphs [18].

Corollary 1 will allow us to emulate Reif’s algorithm in
time O((|∂PR|2 + |PR|) log3 |PR|). In order to attain this
running time, we must deal with the following peculiarities:
• X is not contained entirely in PR. For a vertex x ∈ X

that is outside PR, we will compute Cx by composing
distances in extDDG and intDDG between restricted
pairs of boundary vertices of PR. We call such cycles
external cycles. We show how to find these cycles in
Section III-D.

• For vertices x ∈ X that are inside PR, Cx may not
be contained by PR. We find Cx by first modifying
extDDG to disallow paths from crossing X . We call
such cycles internal cycles. We show how to find these
cycles in Section III-C.

• extDDG defines distances in G, not GX . We compute
modified dense distance graphs to account for this in
Section III-B.

We can compute X using Dijkstra in O((|∂PR|2 +
|PR|) log2 |PR|) time. In the next two sections we show how



to find all the internal cycles and external cycles in time
O((|∂PR|2 + |PR|) log3 |PR|) time. The minimum weight
cycle over all internal and external cycles is the minimum
fg-separating cycle in G.

f g

external
cycle

internal
cycle

X

Figure 3. An external and internal cycle separating faces f and g in a
region subpiece, whose boundary vertices are given by the bold vertices.

B. Modifying the external dense distance graph
We use extDDG to compute extDDGX , the dense dis-

tance graph that corresponds to distances between boundary
vertices of PR when the graph is cut open along X .
However, we do not compute extDDGX explicitly as it can
take too much time. We simply show how to determine its
values when needed.

Let B be the set of boundary vertices of PR. Cutting G
open along X duplicates vertices of B that are in X , creating
B′. extDDGX can be represented as a table of distances
between every pair of (x, y) vertices of B′:

extDDGX(x, y) =

 ∞, x and y separated in Gx \ PR

∞, x is a copy of y
extDDG(x, y), otherwise

Only the first condition is non-trivial to determine. The
portions of X that appear outside PR form a parenthesis of
(a subset of) the boundary vertices (Figure 4). By walking
along X we can label the start and endpoints of these
parentheses. By walking along the boundary of the subpiece
we can label a group of boundary vertices that are not
separated by X by pushing the vertices onto a stack with a
label corresponding to the start of a parenthesis and popping
them off when the end of the parenthesis is reached, labelling
the boundary vertices with the corresponding parenthesis.
Two boundary vertices are not separated if they have the
same parenthesis label.

Figure 4. Modifying the external dense distance graph. (Left) X is given
by the solid line and the boundary of the subpiece is given by the dotted
line. The parts of X outside the subpiece form a parenthesis. (Right) In
GX , the only finite distances from a in extDDGX correspond to the thick
lines. The shaded area represents the new face created by cutting along X .

C. Finding internal cycles

Let D = V (X ∩ PR). Let D be ordered according
to the order of the vertices along X . For each vertex
x ∈ D, we compute the shortest x-to-x′ paths in GX

where x′ is the copy of x in GX . We do this using
Dijsktra’s algorithm on the cut-open graph induced by
the vertices in PR (i.e. GX [PR]) and the modified dense
distance graph extDDGX . Each cycle can then be found
in O((|PR| + |∂PR|2) log |PR|) time. Let xm be the mid-
point vertex of D according to the order inherited from
X . Cxm

splits PR and extDDGX into two parts (not
necessarily balanced). Recursively finding the cycles through
the midpoint of D in each graph part4 results in log |D|
levels for a total of O((|PR| + |∂PR|2) log |PR| log |D|) =
O((|PR| + |∂PR|2) log2 |PR|) time to find all the internal
cycles.

D. Finding external cycles

We use the following structural property (proof in full
version) to efficiently find the shortest external cycle.

Lemma 4: The shortest external cycle is composed of a
single edge ab in the unmodified extDDG and a shortest
path πab between boundary vertices of PR in G that does
not cross X .
Let intDDGX be obtained from intDDG by cutting it
open along X . We can compute πab, ∀a, b using the
modified Dijkstra algorithm of Fakcharoenphol and Rao
(Section 3.2.2 and 3.2.2 [13]) in O(|∂PR|2 log2 |PR|) time
if extDDGX and intDDGX are given: for each a, find
a shortest path tree in extDDGX ∪ intDDGX rooted at
a in O(|∂PR| log2 |PR|) time. intDDGX can be found
in O((|∂PR|2 + |PR|) log3 |PR|) time by cutting open X ,
setting δP as border nodes and using the recursive internal
dense distance graph algorithm of Fakcharoenphol and Rao.

In order to compute all the external cycles, one enumer-
ates over all pairs a, b of vertices that are split exactly once
by the parenthesis given by X , summing the weights of πab

and of edge (a, b) in extDDG. Since there are O(|∂PR|)
boundary vertices, there are O(|∂PR|2) pairs to consider.
The minimum-weight external cycle then corresponds to the
pair with minimum weight. By the above, this cycle can be
found in O((|∂PR|2 + |PR|) log3 |PR|) time.

IV. FINDING REGION SUBPIECES

In Section I-D, we defined the region subpieces of a piece
as the intersection between a region and a piece (Figure 2).
In this section, we show how to identify the region subpieces
and the edges that are in them. We start by identifying the
set of regions RP whose corresponding region subpieces
of piece P each contain a pair of unseparated faces (Sec-
tion IV-A). For each region R ∈ RP we initialize the

4In order to properly bound the running time, one must avoid repeating
long paths in the subproblems: in a subproblem resulting from divide and
conquer, we remove degree-two vertices by merging the incident edges.



corresponding region subpiece PR as an empty graph. For
each edge e of P we determine to what region subpieces
e belongs using lowest common-ancestor and ancestor-
descendent queries in the region tree (Section IV-B). In
Section IV-C we show how to do all this in O(r log2 n)
time where r is the size of P .

A. Identifying region subpieces

Since each edge is on the boundary of two faces, we start
by marking all the faces of G that share edges with P in
O(r) time. Since a pair of unseparated faces in P are siblings
in the region tree, we can easily determine the set RP of
regions that contain unseparated faces in P .

There are O(
√
r) boundary vertices in P , so by a

“chocolate-breaking” argument there cannot be more than
O(
√
r) regions in RP as well. We get the following bound

(illustrated in Figure 5, formal proof in full version):
Lemma 5: |RP | = O(

√
r).

P1 P2

Figure 5. Shown: boundaries of sibling pieces P1 and P2 (dotted); RP

(solid cycles), each containing a pair of unseparated faces (grey). Since
these faces must be separated by the child pieces (Lemma 1), each bounding
cycle (except for one outer cycle) in RP must cross the dotted boundaries,
bounding |RP |.

B. Identifying edges of region subpieces

Having identified the set RP of regions defining region
subpieces, we now show how to identify the edges of these
subpieces. To do this, we consider two types of edges of
regions: internal edges and boundary edges. Let C be the
bounding cycle of a region R. An edge e is an internal
edge of R if the faces on either side of e are enclosed by
C. An edge e is a boundary edge of R if e is an edge of
C. Every edge is an internal edge of exactly one region:
Lemma 6 shows how we can identify this region. Such an
edge can belong to at most one region subpiece. We can
also determine if an edge is a boundary edge of some region
(Lemma 7). However, an edge can be a boundary edge of
several regions and hence of several region subpieces. For
performance reasons, we need the total number of edges over
all region subpieces to be small. We deal with this problem
in Section IV-C.

Lemma 6: Let e be an edge of G and let f1 and f2 be the
faces incident to e. Then e is an internal edge of a region
R iff R is the lowest common ancestor of f1 and f2 in the
region tree.

Proof: There must exist some region R satisfying the
lemma. Let C be its bounding cycle. Then both f1 and f2 are
contained in int(C) and it follows that R must be a common
ancestor of f1 and f2. If R′ is another common ancestor then
either R is an ancestor of R′ or R′ is an ancestor of R. If
R is an ancestor of R′ then R′ is contained in a face of R
so e cannot belong to R. But this contradicts the choice of
R. Hence, R = lca(f1, f2).

Iterating over each edge e of P , we can find the region
R for which e is an internal edge. If R ∈ RP , we add e to
the corresponding region subpiece PR. Applying Lemma 6
with the top tree data structure, the total time to add internal
edges to their corresponding region subpieces is O(r log n).

Lemma 7: Let e be an edge of G and let f1 and f2 be the
faces incident to e. Let R′ be the lowest common ancestor
of f1 and f2 in the region tree. Then e is a boundary edge
of a region R iff R is a descendant of R′ and one of f1, f2
is a descendant of R.

Proof: Assume first that e ∈ C, where C is the cycle
bounding R. Then exactly one of the faces f1 and f2 is
in int(C) and the other is in ext(C). Assume w.l.o.g. that
f1 ∈ int(C) and f2 ∈ ext(C). Then f1 is a descendant of
R and since f2 is not, R must be a descendant of R′.

Now assume that R is a descendant of R′ and that, say,
f1 is a descendant of R. Then f2 is not a descendant of
R since otherwise, R′ could not be an ancestor of R. This
implies that e ∈ C.

Let R be a region in RP and let C be the bounding
cycle of R. Let P1 and P2 be the children of P and let B
be the union of boundary vertices of P1 and P2. We have
seen (Lemma 5) that the intersection between C and P are
subpaths in P between pairs of vertices of B. We shall refer
to these as cycle paths (of C). Note that the edges we still
need to add in order to form the region subpieces all belong
to cycle paths. To identify these edges, we start by finding
starting points of cycle paths with the following algorithm.

Cycle path starting points identification algorithm:
Pick a boundary vertex u ∈ B. For every edge e incident to
u (there are at most three such edges), check to see if e is
a boundary edge of R. If there is no such edge, then there
is no cycle path through u. Otherwise, mark e as a starting
point of a cycle path for R. Repeat this process for every
vertex in B.

This process takes O(
√
r log n) time for each region R

using a constant number of tree queries for every vertex in B
(Lemma 7). Repeating for all regions inRP takes O(r log n)
time (Lemma 5).

After identifying staring points of cycle-paths we can find
all edges belonging to them by linear search (ie. simply
walking along the cycle-path). If the cycles are edge-disjoint
over all regions R ∈ RP , then the cycle paths will also be
edge-disjoint and the time for linear search is O((|RP |

√
r+

|P |) log n) = O(r log n). This is also a bound on the time to
identify the remaining edges of region subpieces. However,



the cycles are not necessarily edge disjoint. We overcome
this complication in the next section.

C. Efficiently identifying boundaries of region subpieces

Since cycles will share edges, the total length of cycle
paths over all cycles can be as large as O(r3/2). However, we
can maintain efficiency by using a compact representation
of each cycle path. The compact representation consists of
edges of P and cycle edges that represent paths in P shared
by multiple cycle paths.

View each edge of G as two oppositely directed darts and
view the cycle bounding a region as a clockwise cycle of
darts. By Lemma 2:

Corollary 2: If two isometric cycles C and C ′ of G share
a dart, then either int(C) ⊆ int(C ′) or int(C ′) ⊆ int(C).

Let F be the forest representing the ancestor/descendant
relationship between the bounding cycles of regions in RP .
By Lemma 5, there are O(

√
r) bounding cycles and since we

can make descendent queries in the region tree in O(log n)
time per query, we can find F in O(r log n) time. Let d be
the maximum depth of a node in F . For i = 0, . . . , d, let Ci
be the set of cycles corresponding to nodes at depth i in F .
By Corollary 2:

Corollary 3: For any i ∈ {0, . . . , d}, cycles in Ci are
pairwise dart-disjoint.

Bottom-up algorithm: We find cycle paths for cycles in
Cd, then Cd−1, and so on. The cycles in Cd are dart disjoint,
so any edge appears in at most two cycles of Cd. We find
the corresponding cycle paths using the above algorithm.
While Corollory 3 ensures that the cycles in Cd are mutually
dart-disjoint, they can share darts with cycles in Cd−1. In
order to efficiently walk along subpaths of cycle paths Q
that we have already discovered, we use a balanced binary
search tree (BBST) to represent Q. We augment the BBST
to store in each node the length of the subpath it represents.
Now, given two nodes in Q, the weight of the corresponding
subpath of Q can be determined in logarithmic time.

linear

binary

Figure 6. Finding a cycle path (highlighted straight line) for a cycle
C ∈ Cd−1 between boundary nodes of P1 and P2 (grey dashed lines)
is found by alternating linear (solid) and binary (dotted) searches. Binary
searches corrrespond to cycle paths of region subpieces (shaded) bounded
by cycles in Cd.

To find the cycle paths of a cycle C ∈ Cd−1 that bounds
a region R, we emulate the above cycle path identification
algorithm: start walking along a cycle path Q of C, starting

from a vertex of B, and stop if reaching an edge e = uv
that has already been visited (linear search). In this case,
e must be an edge of a cycle path Q′ of a cycle C ′ ∈
Cd. By Lemma 2, the intersection of Q and Q′ is a single
subpath and so we can use the BBST to find the last vertex
w common to Q and Q′ (binary search). We add to PR

an edge uw of weight equal to the weight of the u-to-w
subpath of Q to compactly represent this subpath. If w ∈ B,
we stop our walk along Q. Otherwise we continue walking
(and adding edges to the corresponding region subpiece) in a
linear fashion, alternating between linear and binary searches
until a boundary vertex is reached. See Figure 6.

In order to repeat the above idea to find cycle paths for
cycles in Cd−2, we need to build BBSTs for cycle paths of
cycles in Cd−1. Let Q be one such cycle path. Q can be de-
composed into subpaths Q1Q

′
1 · · ·QkQ

′
k, where Q1, . . . , Qk

are paths obtained with linear searches and Q′1, . . . , Q
′
k are

paths obtained with binary searches (possibly Q1 and/or Q′k
are empty). To obtain a binary search tree T for Q, we start
with T the BBST for Q1. We extract a BBST for Q′1 from
the BBST we used to find Q′1 and merge it into T . We
continue merging with BBSTs representing the remaining
subpaths.

Running time: We now show that the bottom-up algo-
rithm runs in O(r log2 n) time over all region subpieces by
bounding time required for linear and binary searches and
BBST construction.

A subpath identified by a linear search consists only of
darts that have not yet been discovered. Since each step of
a linear search takes O(log n) time, the total time for linear
searches is O(r log n).

The number of cycle paths corresponding to a cycle C is
bounded by the number of boundary vertices, O(

√
r). We

consider three types of cycles paths. Those where

1) all edges are shared by a single child of C in F ,
2) no edges are shared by a child, and
3) some but not all edges are shared by a single child.

Cycle paths of the first type are identified in a single binary
search for a total of O(r) binary searches (Lemma 5) over
all cycles C ∈ F . Cycle paths of the second type do not
require binary search. For a cycle path Q in the third group,
Q can only share one subpath with each child (in F) cycle
(Lemma 2); hence, there can be at most two binary searches
per child.

In total there are O(r) binary searches. Each BBST
has O(r) nodes. In traversing the binary search tree, an
edge is checked for membership in a given cycle path in
O(log n) time (Lemma 7). Each binary search therefore
takes O(log r log n) = O(log2 n) time. The total time spent
performing binary searches is O(r log2 n).

It remains to bound the time needed to construct
all BBSTs. BBSTs T1 and T2 are merged in
time O(min{|T1|, |T2|} log(|T1| + |T2|})) =



O(min{|T1|, |T2|} log n) by inserting elements from
the smaller tree into the larger.

When forming a BBST for a cycle path of a cycle C, it
may be necessary to delete parts of cycle paths of children
of C. By Lemma 2, these parts intersect int(C)\C and will
not be needed for the remainder of the algorithm. The total
number of deletions is O(r) and they take O(r log r) time
to execute. Ignoring deletions, paths represented by BBSTs
are pairwise dart disjoint (Corollary 3). Theorem 6 follows
from the next lemma with k = log n and W = r.

Lemma 8: Consider a set of objects, where each object o
is assigned a positive integer weight w(o). Let merge(o, o′)
be an operation that replaces two distinct objects o and o′

by a new object whose weight is at most w(o) + w(o′).
Assume that the time to execute merge(o, o′) is bounded by
O(min{w(o), w(o′)}k) for some value k. Then repeating
the merge-operation on pairs of objects in any order until
at most one object remains takes O(kW logW ) time where
W is the total weight of the original objects.
The proof follows by backward simulation of the algorithm
and by a “join by rank” charging argument.

Theorem 6: The region subpieces of a piece of size r can
be identified in O(r log2 n) time.

V. ADDING A SEPARATING CYCLE TO THE REGION TREE

In Section III, we showed how to find a compact repre-
sentation of a minimum cycle cycle C separating a pair of
faces in a region R. Now we show how to add this cycle to
the basis by updating the region tree T accordingly. As in
the previous section, let PR be the region subpiece P ∩ R
of piece P .

When C is added to the partial basis, R is split into two
regions, R1 and R2. Equivalently, in T , R will be replaced
by two nodes R1 and R2. The children F of R will be
partitioned into children F1 of R1 and F2 of R2. Define
R1 to be the region defined by the children of R that are
contained to the left of C for the orientation of C inherited
by the shortest path computed in Section III. Likewise define
R2 to be the region for the children to the right of C. We
describe an algorithm that finds F1 and detects whether F1

is contained by int(C) or ext(C). Finding F2 is symmetric.
The algorithms take O(|Fi| log3 n+ (|PR|+ |∂PR|2) log n)
time; we can identify the smaller side of the partition
in O(min{|F1|, |F2|} log3 n+ (|PR|+ |∂PR|2) log n) time.
By Lemma 8 the total time for all region tree updates is
O(n log4 n).

Updating the region tree: Given the smaller side of
the partition (wlog, F1), we use cut-and-link operations to
update T (Figure 1) in O(|F1| log n) additional time. If F1

is contained by int(C) then update T by: cutting the edges
between R and each element in F1, linking each element in
F1 to R1, making R the parent of R1, identifying R with
R2. If F1 is contained by ext(C) then update T by: cutting
the edges between R and each element in F1, linking each

element in F1 to a new node u, making u the parent of R;
identifying R with R1 and u with R2.

A. Partitioning the faces

Regions are represented compactly: vertices of degree 2
are removed by merging the incident edges creating super
edges, which are associated with the first and last edge on
the corresponding path. In addition to partitioning the faces
when adding a cycle to the basis, we must find the compact
representation for the resultant new regions, R1 and R2.

R

C

left of C

right
of C

Figure 7. C (bold cycle) is given with a counterclockwise orientation.
The children of R (boundary given by thin cycle) incident and to the right
of C are grey. The edges to the left of C (and not on C) will never reach
a boundary edge of R: therefore the left of C forms int(C). Vertices of
L are given by dark circles.

The algorithm for finding F1 starts with an empty set and
consists of three steps:

Left-root vertices Identify the set L of vertices v on C
having an edge emanating to the left of C; also identify, for
each v ∈ L, the two edges on C incident to v (in G, not the
compact representation).

Search Start a search (say, depth first) in R from each
vertex of L avoiding edges on C or emanating to the right
of C; for each super edge ê of R visited, find the first (or
last) edge e on the path represented by ê.

Add For the pair of faces f1, f2 incident to e, find the
two children of R in T having f1 and f2 as descendants,
respectively, and add these nodes to F1.

Above we assume that L 6= ∅ since otherwise, identify-
ing F1 is trivial. This algorithm correctly builds F1: The
algorithm visits all super edges ê that are strictly inside R
and on the left side of C. Let A1 and A2 be the children
of R that are added corresponding to edge e. Ai is a region
or a face of G; let Ci be the bounding cycle. Since fi is a
descendent of Ai, fi is contained by int(Ci). Since e is in
C1 and C2, so must ê. A1 and A2 are therefore the child
regions of R on either side of ê.

The algorithm can easily determine if F1 is contained by
int(C) or ext(C): let f1 and f2 be the incident faces of a
searched edge e. Lemma 7 tells us if e is in the bounding
cycle of R. If it is, then F1 must be contained by ext(C):
otherwise, the search could never reach an edge on the cycle
bounding R (since edges of C are not visited) and F1 must
be contained by int(C).



Analysis: The above-described algorithm can be imple-
mented in O(|F1| log3 n + (|PR| + |∂PR|2) log n) time.
Finding the left-root vertices is the trickiest part; while
|L| = O(|F1|), |L| could be much smaller than the number
of vertices in C, even in the compact representation, so
searching through all of C to find L is too slow. We give
details in Section V-B. Assuming that left-root vertices can
be found quickly, we analyze the remaining steps.

Lemma 9: The number of super edges to be searched in
C is O(|F1|).

Proof: Since G has degree three and degree-2 vertices
are removed, the compact representation of R is 3-regular.
Therefore, the number of edges is 3

2 times the number of
vertices. The lemma follows from Euler’s formula.

The search step can be done in O(|F1|) time starting with
vertices of L. Given a super edge ê found by this search, we
find the first or last edge e (of G) on the path the super edge
represents; this takes O(1) time since e is associated with
ê. For this to work, we need to identify, for each v ∈ L,
the set of super edges incident to v which are not on C and
which do not emanate to the right of C. Since the compact
representation of R is three-regular, no super edge incident
to v emanates to the right of C. We identify the super edge
incident to v which is not on C, by using Lemma 7 on the
first edge on each of the three super edge paths.

The total time spent in the Add step is O(|F1| log n):
Faces f1 and f2 incident to e can be found in constant time
using the graph representation of G. Applying Lemma 7 to
e (to check if F1 is contained by int(C) or ext(C)) takes
O(log n) time. Finding the children of R that are ancestors
of f1 and f2 also takes O(log n) time using the operations
jump(R, f1, 1) and jump(R, f2, 1) in the top tree for T .

B. Finding left-root vertices

We show how to find the set L of left-root vertices
along C in O(|F1| log3 n + |C| log n) time where |C| is
the number of super edges in the compact representation of
C. As a result of Section III, C has O(|PR|+ |∂PR|2) super
edges and of three different types corresponding to: edges
in extDDG and intDDG(PR) and edges and cycle paths
in PR. We will show how to use binary search to prune
certain super edges of C that do not contain vertices of L.
We assume that each super edge is on the boundary of a
child region (as opposed to a child face) of R that is to the
left of C. We extend the algorithm to child faces in the full
version of the paper.

The following lemma is the key to using binary search
along C:

Lemma 10: Let P be the shortest u1-to-u2 path in G that
is also a subpath of C. For i = 1, 2, let ei be the edge on
P incident to ui and let ri be the child-region of R that is
left of C and is bounded by ei. Then r1 = r2 if and only if
no interior vertex of P belongs to L.

Proof: The “if” part is trivial.

By our assumption, r1 and r2 are regions, not faces. Their
bounding cycles must therefore be isometric. If r1 = r2 then
Lemma 2 implies that P is a subpath of the boundary of r1
so no interior vertex of P can belong to L. This shows the
“only if” part.

1) Shortest path covering: In order to use Lemma 10, we
cover the left-root vertices of C with two shortest paths P
and Q. Let r be a vertex that is the endpoint of a super edge
of C. Since C is isometric, there is a unique edge e such
that C is the union of e and two shortest paths P ′ and Q′

between r and the endpoints of e. Note that e could be in
the interior of a super edge of C. The paths P and Q that
we use to cover L are prefixes of P ′ and Q′.

To find e, we first find ê, the super edge that contains
e. Since P and Q are shortest paths and shortest paths are
unique, the weight of each path is at most half the weight of
the cycle. To find ê, simply walk along the super edges of C
and stopping when more than half the weight is traversed:
ê is the last super edge on this walk.

Given ê, we continue this walk according to the type of
super edge that ê is. If ê corresponds to a cycle path, then,
by definition, all the interior vertices of ê have degree two
in R and so cannot contain a left-root vertex; there is no
need to continue the walk. P and Q are simply the paths
along C from r to ê’s endpoints. This takes O(|C|) time.

If ê is an edge of intDDG(PR) or extDDG, we continue
the walk. We describe the process for intDDG(PR) as
extDDG is similar: we continue the walk started above
through the subdivision tree of PR that is used to find
intDDG(PR). ê is given by a path of edges in the internal
dense distance graph of PR’s children in the subdivision tree.
We may assume that we have a top tree representation of
the shortest path tree containing this path and so we can find
the child super edge êc that contains e using binary search
taking O(log2 n) time. Recursing through the subdivision
tree finds a cycle path or edge that contains e for a total of
O(log3 n) time.

When we are done, P and Q are paths of super edges from
extDDG or intDDG(PR). They each have O(|C|+ log n)
super edges and they are found in O(|C|+ log3 n) time.

2) Building L: Using Lemma 10, we will decompose
P into maximal subpaths P1, . . . , Pk such that no interior
vertex of a subpath belongs to L. Each subpath Pi will be
associated with the child region of R to the left of C that
is bounded (partly) by Pi. We repeat this process for Q and
find L in O(k) time by testing the endpoints of the subpaths.

Let ê be one of the O(|C|+log n) super edges of P . ê is
either an edge of extDDG or intDDG(PR). Suppose ê is in
intDDG(PR). We can apply Lemma 10 to the first and last
edges on the path that ê represents, and stop if there are no
vertices of L in the interior of the path. Otherwise, with the
top tree representation of the shortest path tree containing
the shortest path representing ê, we find the midpoint of this
path and recurse. If ê is in extDDG, the process is similar.



Adjacent subpaths may still need to be merged after the
above process, but this can be done in time proportional to
their number.

How long does it take to build L? Let ê be a super edge
representing subpath Pê of P and let m be the number
of interior vertices of Pê belonging to L. Then there are
m leaves in the recursion tree for the search applied to ê.
We claim that the height of the recursion tree is O(log2 n).
Let S be some root-to-leaf path in the recursion tree. If
ê is in intDDG(PR), S is split into O(log n) subpaths,
one for each level of the subdivision tree; in each level,
the corresponding subpath is halved O(log n) times before
reaching a single edge. If ê is in extDDG, the search may
go root-wards in the subdivision tree but once we traverse
down, we are in intDDG and will thus not go up again.
The depth of the recursion tree is still O(log2 n).

At each node in the recursion tree, we apply two top tree
operations to check the condition in Lemma 10 and one top
tree operation to find the midpoint of a path for a total of
O(log n) time. The total time spent finding the m vertices
of L in Pê is O(m log3 n) time. If m = 0, we still need
O(log n) time to check the condition in Lemma 10. Sum-
ming over all super edges of P and Q, the time to identify
L is O(|C| log n+ |L| log3 n) = O(|C| log n+ |F1| log3 n).

C. Obtaining new regions
While we have found the required partition of the children

of R and updated the region tree accordingly, it remains to
find compact representations of the new regions R1 and R2.
Recall that we only explicitly find one side of the partition,
w.l.o.g., F1.

To find R1, start an initially empty graph. In the search
step, we explicitly find all the super edges of R1 that are
not on the boundary of C. Remove these edges from R
and add them to R1. The remaining super edges are simply
subpaths of C between consecutive vertices of L. Edges
corresponding to these subpaths are added to R1.

The super edges left in R are exactly those in R2.
However, there may be remaining degree-two vertices that
should be removed by merging adjacent super edges. All
such vertices, by construction, must be in L, and so can be
removed in O(|F1|) time.

That super edges are associated with the first and last
edges on their respective paths is easy to maintain given
the above construction. The entire time required to build the
new compact representation is O(|F1|).
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