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Abstract—We study vertex cut and flow sparsifiers that
were recently introduced by Moitra [23], and Leighton
and Moitra [18]. We improve and generalize their results.
We give a new polynomial-time algorithm for constructing
O(log k/ log log k) cut and flow sparsifiers, matching the best
known existential upper bound on the quality of a sparsi-
fier, and improving the previous algorithmic upper bound
of O(log2 k/ log log k). We show that flow sparsifiers can be
obtained from linear operators approximating minimum metric
extensions. We introduce the notion of (linear) metric extension
operators, prove that they exist, and give an exact polynomial-
time algorithm for finding optimal operators.

We then establish a direct connection between flow and
cut sparsifiers and Lipschitz extendability of maps in Ba-
nach spaces, a notion studied in functional analysis since
1950s. Using this connection, we obtain a lower bound of
Ω(

√
log k/ log log k) for flow sparsifiers and a lower bound

of Ω(
√

log k/ log log k) for cut sparsifiers. We show that if a
certain open question posed by Ball in 1992 has a positive
answer, then there exist Õ(

√
log k) cut sparsifiers. On the other

hand, any lower bound on cut sparsifiers better than Ω̃(
√

log k)
would imply a negative answer to this question.

I. INTRODUCTION

In this paper, we study vertex cut and flow sparsifiers
that were recently introduced by Moitra [23], and Leighton
and Moitra [18]. A weighted graph H = (U, β) is a Q-
quality vertex cut sparsifier of a weighted graph G = (V, α)
(here αij and βpq are sets of weights on edges of G and
H) if U ⊂ V and the size of every cut (S,U \ S) in
H approximates the size of the minimum cut separating
sets S and U \ S in G within a factor of Q. Moitra [23]
presented several important applications of cut sparsifiers to
the theory of approximation algorithms. Consider a simple
example. Suppose we want to find the minimum cut in a
graph G = (V, α) that splits a given subset of vertices
(terminals) U ⊂ V into two approximately equal parts. We
construct Q-quality sparsifier H = (U, β) of G, and then
find a balanced cut (S,U \ S) in H using the algorithm
of Arora, Rao, and Vazirani [2]. The desired cut is the
minimum cut in G separating sets S and U \ S. The
approximation ratio we get is O(Q ×

√
log |U |): we lose

a factor of Q by using cut sparsifiers, and another factor
of O(

√
log |U |) by using the approximation algorithm for

the balanced cut problem. If we applied the approximation

algorithm for the balanced, or, perhaps, the sparsest cut
problem directly we would lose a factor of O(

√
log |V |).

This factor depends on the number of vertices in the graph
G, which may be much larger than the number of vertices in
the graph H . Note, that we gave the example above just to
illustrate the method. A detailed overview of applications
of cut and flow sparsifiers is presented in the papers of
Moitra [23] and Leighton and Moitra [18]. However, even
this simple example shows that we would like to construct
sparsifiers with Q as small as possible. Moitra [23] proved
that for every graph G = (V, α) and every k-vertex subset
U ⊂ V , there exists a O(log k/ log log k)-quality sparsi-
fier H = (U, β). However, the best known polynomial-
time algorithm proposed by Leighton and Moitra [18]
finds only O(log2 k/ log log k)-quality sparsifiers. In this
paper, we close this gap: we give a polynomial-time al-
gorithm for constructing O(log k/ log log k)-cut sparsifiers
matching the best known existential upper bound. In fact,
our algorithm constructs O(log k/ log log k)-flow sparsifiers.
This type of sparsifiers was introduced by Leighton and
Moitra [18]; and it generalizes the notion of cut-sparsifiers.
Our bound matches the existential upper bound of Leighton
and Moitra [18] and improves their algorithmic upper bound
of O(log2 k/ log log k). If G is a graph with an excluded
minor Kr,r, then our algorithm finds a O(r2)-quality flow
sparsifier, again matching the best existential upper bound
of Leighton and Moitra [18] (Their algorithmic upper bound
has an additional log k factor). Similarly, we get O(log g)-
quality flow sparsifiers for genus g graphs1.

In the second part of the paper (Section V), we estab-
lish a direct connection between flow and cut sparsifiers
and Lipschitz extendability of maps in Banach spaces. Let
Qcutk (respectively, Qmetrick ) be the minimum over all Q
such that there exists a Q-quality cut (respectively, flow)
sparsifier for every graph G = (V, α) and every subset
U ⊂ V of size k. We show that Qcutk = ek(`1, `1)
and Qmetrick = ek(∞, `∞ ⊕1 · · · ⊕1 `∞), where ek(`1, `1)
and ek(∞, `∞ ⊕1 · · · ⊕1 `∞) are the Lipschitz extend-

1Recently, it has come to our attention that, independent of and concur-
rent to our work, Charikar, Leighton, Li, and Moitra [6], and independently
Englert, Gupta, Krauthgamer, Räcke, Talgam and Talwar [7] obtained
results similar to some of our results.



ability constants (see Section V for the definitions). That
is, there always exist cut and flow sparsifiers of quality
ek(`1, `1) and ek(∞, `∞ ⊕1 · · · ⊕1 `∞), respectively; and
these bounds cannot be improved. We then prove lower
bounds on Lipschitz extendability constants and obtain a
lower bound of Ω(

√
log k/ log log k) on the quality of flow

sparsifiers and a lower bound of Ω( 4
√

log k/ log log k) on
the quality of cut sparsifiers (improving upon previously
known lower bound of Ω(log log k) and Ω(1) respectively).
To this end, we employ the connection between Lipschitz
extendability constants and relative projection constants that
was discovered by Johnson and Lindenstrauss [12]. Our
bound on ek(∞, `∞⊕1 · · ·⊕1`∞) immediately follows from
the bound of Grünbaum [11] on the projection constant
λ(`d1, `∞). To get the bound of Ω( 4

√
log k/ log log k) on

ek(`1, `1), we prove a lower bound on the projection con-
stant λ(L, `1) for a carefully chosen subspace L of `1. After
a preliminary version of our paper appeared as a preprint,
Johnson and Schechtman notified us that a lower bound of
Ω(
√

log k/ log log k) on ek(`1, `1) follows from their joint
work with Figiel [10]. With their permission, we present the
proof of the lower bound in the full version of the paper [19].
This result implies a lower bound of Ω(

√
log k/ log log k)

on the quality of cut sparsifiers.
In Section V-C, we note that we can use the connection

between vertex sparsifiers and extendability constants not
only to prove lower bounds, but also to get positive re-
sults. We show that surprisingly if a certain open question
in functional analysis posed by Ball [3] has a positive
answer, then there exist Õ(

√
log k)-quality cut sparsifiers.

This is both an indication that the current upper bound of
O(log k/ log log k) might not be optimal and that improving
lower bounds beyond of Õ(

√
log k) will require solving a

long standing open problem (negatively).
In the full version of the paper [19], we also show that

there exist simple “combinatorial certificates” that certify
that Qcutk ≥ Q and Qmetrick ≥ Q.

Overview of the Algorithm. The main technical ingre-
dient of our algorithm is a procedure for finding linear
approximations to metric extensions. Consider a set of points
X and a k-point subset Y ⊂ X . Let DX be the cone of all
metrics on X , and DY be the cone of all metrics on Y . For
a given set of weights αij on pairs (i, j) ∈ X × X , the
minimum extension of a metric dY from Y to X is a metric
dX on X that coincides with dY on Y and minimizes the
linear functional

α(dX) ≡
∑
i,j∈X

αijdX(i, j). (1)

We denote the minimum above by min-extY→X(dY , α).
We show that the map between dY and its minimum
extension, the metric dX , can be well approximated by a
linear operator. Namely, for every set of nonnegative weights
αij on pairs (i, j) ∈ X ×X , there exists a linear operator

φ : DY → DX of the form

φ(dY )(i, j) =
∑
p,q∈Y

φipjqdY (p, q) (2)

that maps every metric dY to an extension of the metric dY
to the set X such that

α(φ(dY )) ≤ O
(

log k

log log k

)
min-ext
Y→X

(dY , α).

As a corollary, the linear functional β : DX → R defined
as β(dY ) =

∑
i,j∈X αijφ(dY )(i, j) approximates the min-

imum extension of dY up to O(log k/ log log k) factor. We
then give a polynomial-time algorithm for finding φ and β.
(The algorithm finds the optimal φ.) To see the connection
with cut and flow sparsifiers write the linear operator β(dY )
as β(dY ) =

∑
p,q∈Y βpqdY (p, q), then

min-ext
Y→X

(dY , α) ≤
∑
p,q∈Y

βpqdY (p, q)

≤ O
(

log k

log log k

)
min-ext
Y→X

(dY , α). (3)

Note that the minimum extension of a cut metric is a cut
metric (since the mincut LP is integral). Now, if dY is a
cut metric on Y corresponding to the cut (S, Y \ S), then∑
p,q∈Y βpqdY (p, q) is the size of the cut in Y with respect

to the weights βpq; and min-extY→X(dY , α) is the size of
the minimum cut in X separating S and Y \S. Thus, (Y, β)
is a O(log k/ log log k)-quality cut sparsifier for (X,α).

Definition 1 (Cut sparsifier [23]). Let G = (V, α) be a
weighted undirected graph with weights αij; and let U ⊂ V
be a subset of vertices. We say that a weighted undirected
graph H = (U, β) on U is a Q-quality cut sparsifier, if for
every S ⊂ U , the size the cut (S,U \S) in H approximates
the size of the minimum cut separating S and U \ S in G
within a factor of Q i.e.,

1 ≤
∑
p∈S
q∈U\S

βpq

/
min

T⊂V :S=T∩U

∑
i∈T

j∈V \T

αij ≤ Q.

II. PRELIMINARIES

In this section, we remind the reader some basic defini-
tions.

A. Multi-commodity Flows and Flow-Sparsifiers

Definition 2. Let G = (V, α) be a weighted graph with
nonnegative capacities αij between vertices i, j ∈ V , and
let {(sr, tr,demr)} be a set of flow demands (sr, tr ∈ V
are terminals of the graph, demr ∈ R are demands between
sr and tr; all demands are nonnegative). We say that a
weighted collection of paths P with nonnegative weights wp
(p ∈ P) is a fractional multi-commodity flow concurrently
satisfying a λ fraction of all demands, if the following two
conditions hold.



• Capacity constraints. For every pair (i, j) ∈ V × V ,∑
p∈P:(i,j)∈p

wp ≤ αij . (4)

• Demand constraints. For every demand (sr, tr,demr),∑
p∈P:p goes from sr to tr

wp ≥ λ demr . (5)

We denote the maximum fraction of all satisfied demands by
max-flow(G, {(sr, tr,demr)}).

For a detailed overview of multi-commodity flows, we
refer the reader to the book of Schrijver [27].

Definition 3 (Leighton and Moitra [18]). Let G = (V, α)
be a weighted graph and let U ⊂ V be a subset of vertices.
We say that a graph H = (U, β) on U is a Q-quality flow
sparsifier of G if for every set of demands {(sr, tr,demr)}
between terminals in U ,

1 ≤ max-flow(H, {(sr, tr,demr)})
max-flow(G, {(sr, tr,demr)})

≤ Q.

Leighton and Moitra [18] showed that every flow sparsi-
fier is a cut sparsifier.

Theorem 4 (Leighton and Moitra [18]). If H = (U, β) is a
Q-quality flow sparsifier for G = (V, α), then H = (U, β)
is also a Q-quality cut sparsifier for G = (V, α).

B. Metric Spaces and Metric Extensions

Recall that a function dX : X × X → R is a metric
if for all i, j, k ∈ X the following three conditions hold
dX(i, j) ≥ 0, dX(i, j) = dX(j, i), dX(i, j) + dX(j, k) ≥
dX(i, k). Usually, the definition of metric requires that
dX(i, j) 6= 0 for distinct i and j but we drop this requirement
for convenience (such metrics are often called semimetrics).
We denote the set of all metrics on a set X by DX . Note,
that DX is a convex closed cone. Moreover, DX is defined
by polynomially many (in |X|) linear constraints (namely,
by the three inequalities above for all i, j, k ∈ X).

A map f from a metric space (X, dX) to a metric space
(Z, dZ) is C-Lipschitz, if dZ(f(i), f(j)) ≤ CdX(i, j) for
all i, j ∈ X . The Lipschitz norm of a Lipschitz map f equals

‖f‖Lip = sup

{
dZ(f(i), f(j))

dX(i, j)
: i, j ∈ X; dX(i, j) > 0

}
.

Definition 5 (Minimum extension). Let X be an arbitrary
set, Y ⊂ X , and dY be a metric on Y . The minimum (cost)
extension of dY to X with respect to a set of nonnegative
weights αij on pairs (i, j) ∈ X×X is a metric extension dX
of dY that minimizes the linear functional α(dX) (see (1)).
We denote α(dX) by min-extY→X(dY , α).

Lemma 6. Let X be an arbitrary set, Y ⊂ X , and αij
be a set of nonnegative weights on pairs (i, j) ∈ X × X .
Then the function min-extY→X(dY , α) is a convex function
of the first variable.

Proof: Consider arbitrary metrics d∗Y and d∗∗Y in DY .
Let d∗X and d∗∗X be their minimal extensions to X . For every
λ ∈ [0, 1], the metric λd∗X + (1−λ)d∗∗X is an extension (but
not necessarily the minimum extension) of λd∗Y +(1−λ)d∗∗Y
to X , thus min-extY→X(dY , α) ≤ α(λd∗Y + (1− λ)d∗∗Y ) =
λα(d∗Y ) + (1− λ)α(d∗∗Y ).

Later, we shall need the following theorem of Fakcharoen-
phol, Harrelson, Rao, and Talwar [8].

Theorem 7 (FHRT 0-extension Theorem). Let X be a set
of points, Y be a k-point subset of X , and dY ∈ DY
be a metric on Y . Then for every set of nonnegative
weights αij on X × X , there exists a map (0-extension)
f : X → Y such that f(p) = p for every p ∈ Y
and

∑
i,j∈X αij · dY (f(i), f(j)) ≤ O(log k/ log log k) ×

min-extY→X(dY , α).

The notion of 0-extension was introduced by
Karzanov [14]. A slightly weaker version of this theorem
(with a guarantee of O(log k)) was proved earlier by
Calinescu, Karloff, and Rabani [5].

III. METRIC EXTENSION OPERATORS

In this section, we introduce the definitions of “metric
extension operators” and “metric vertex sparsifiers”. We
show that each Q-quality metric sparsifier is a Q-quality
flow sparsifier (see Lemma 12) and vice versa (see the full
version of the paper [19]). In the next section, we prove
that there exist metric extension operators with distortion
O(log k/ log log k) and give an algorithm that finds the
optimal extension operator.

Definition 8 (Metric extension operator). Let X be a set of
points, and Y be a k-point subset of X . We say that a linear
operator φ : DY → DX defined as

φ(dY )(p, q) =
∑
i,j∈X

φipjqdY (i, j)

is a Q-distortion metric extension operator with respect to
a set of nonnegative weights αij , if
• for every metric dY ∈ DY , metric φ(dY ) is a metric

extension of dY ;
• for every metric dY ∈ DY ,

α(φ(dY )) ≤ Q×min-ext
Y→X

(dY , α);

• for all i, j ∈ X , and p, q ∈ Y , φipjq ≥ 0.

Definition 9 (Metric vertex sparsifier). Let X be a set of
points, and Y be a k-point subset of X . We say that a linear
functional β : DY → R defined as

β(dY ) =
∑
p,q∈Y

βpqdY (p, q)

is a Q-quality metric vertex sparsifier with respect to a set
of nonnegative weights αij , if for every metric dY ∈ DY ,

min-ext
Y→X

(dY , α) ≤ β(dY ) ≤ Q×min-ext
Y→X

(dY , α);



and all coefficients βpq are nonnegative.

Recall that the definition of the metric vertex sparsifier
is equivalent to the definition of the flow vertex sparsifier.
However, we shall use the term “metric vertex sparsifier”,
because the new definition is more convenient for us. Also,
the notion of metric sparsifiers makes sense when we restrict
dX and dY to be in special families of metrics. For example,
(`1, `1) metric sparsifiers are equivalent to cut sparsifiers.

Lemma 10. Let X be a set of points, Y ⊂ X , and αij be a
nonnegative set of weights on pairs (i, j) ∈ X×X . Suppose
that φ : DY → DX is a Q-distortion metric extension
operator. Then

min-ext
Y→X

(dY , α) ≤ α(φ(dY )).

Proof: The lower bound min-extY→X(dY , α) ≤
α(dX) holds for every extension dX (just by the definition
of the minimum metric extension), and particularly for
dX = φ(dY ).

We now show that given an extension operator with
distortion Q, it is easy to obtain Q-quality metric sparsifier.

Lemma 11. Let X be a set of points, Y ⊂ X , and αij be a
nonnegative set of weights on pairs (i, j) ∈ X×X . Suppose
that φ : DY → DX is a Q-distortion metric extension
operator. Then there exists a Q-quality metric sparsifier
β : DY → R. Moreover, given the operator φ, the sparsifier
β can be found in polynomial-time.

Proof: Let β(dY ) =
∑
i,j∈X αijφ(dY )(i, j). Then by

the definition of Q-distortion extension operator, and by
Lemma 10, min-extY→X(dY , α) ≤ β(dY ) ≡ α(φ(dY )) ≤
Q×min-extY→X(dY , α).

We now prove that every Q-quality metric sparsifier is a
Q-quality flow sparsifier.

Lemma 12. Let G = (V, α) be a weighted graph and let
U ⊂ V be a subset of vertices. Suppose, that a linear
functional β : DU → R, defined as

β(dU ) =
∑
p,q∈U

βpqdU (p, q)

is a Q-quality metric sparsifier. Then the graph H = (U, β)
is a Q-quality flow sparsifier of G.

Proof: Fix a set of demands {(sr, tr,demr)}. We need
to show, that

1 ≤ max-flow(H, {(sr, tr,demr)})
max-flow(G, {(sr, tr,demr)})

≤ Q.

The fraction of concurrently satisfied demands by the
maximum multi-commodity flow in G equals the maxi-
mum of the following standard linear program (LP) for the
problem: the LP has a variable wp for every path between
terminals that equals the weight of the path (or, in other
words, the amount of flow routed along the path) and a

variable λ that equals the fraction of satisfied demands. The
objective is to maximize λ. The constraints are the capacity
constraints (4) and demand constraints (5). The maximum
of the LP equals the minimum of the (standard) dual LP (in
other words, it equals the value of the fractional sparsest cut
with non-uniform demands).

minimize: ∑
i,j∈V

αijdV (i, j)

subject to:∑
r

dV (sr, tr)× demr ≥ 1

dV ∈ DV i.e., dV is a metric on V

The variables of the dual LP are dV (i, j), where i, j ∈ V .
Similarly, the maximum concurrent flow in H equals the
minimum of the following dual LP.

minimize: ∑
p,q∈U

βpqdU (p, q)

subject to:∑
r

dU (sr, tr)× demr ≥ 1

dU ∈ DU i.e., dU is a metric on U

Consider the optimal solution d∗U of the dual LP for H .
Let d∗V be the minimum extension of d∗U . Since d∗V is a
metric, and d∗V (sr, tr) = d∗U (sr, tr) for each r, d∗V is a
feasible solution of the the dual LP for G. By the definition
of the metric sparsifier:

β(d∗U ) ≥ min-ext
Y→X

(d∗U , α) ≡
∑
i,j∈V

αijd
∗
V (i, j).

Hence,

max-flow(H, {(sr, tr,demr)})
≥ max-flow(G, {(sr, tr,demr)}).

Now, consider the optimal solution d∗V of the dual LP
for G. Let d∗U be the restriction of d∗V (p, q) to the set U .
Since d∗U is a metric, and d∗U (sr, tr) = d∗V (sr, tr) for each
r, d∗U is a feasible solution of the the dual LP for H . By
the definition of the metric sparsifier (keep in mind that d∗V
is an extension of d∗U ),

β(d∗U ) ≤ Q×min-ext
Y→X

(d∗U , α) ≤ Q×
∑
i,j∈V

αijd
∗
V (i, j).



Hence,

max-flow(H, {(sr, tr,demr)})
max-flow(G, {(sr, tr,demr)})

≤ Q.

We are now ready to state the following result.

Theorem 13. There exists a polynomial-time algorithm that
given a weighted graph G = (V, α) and a k-vertex subset
U ⊂ V , finds a O(log k/ log log k)-quality flow sparsifier
H = (U, β).

Proof: Using the algorithm given in Theorem 18,
we find the metric extension operator φ : DY → DX
with the smallest possible distortion. We output the co-
efficients of the linear functional β(dY ) = α(φ(dY ))
(see Lemma 11). Hence, by Theorem 16, the distortion
of φ is at most O(log k/ log log k). By Lemma 11, β is
an O(log k/ log log k)-quality metric sparsifier and, there-
fore, an O(log k/ log log k)-quality flow sparsifier (and an
O(log k/ log log k)-quality cut sparsifier).

IV. ALGORITHMS

In this section, we prove our main algorithmic results:
Theorem 16 and Theorem 18. Theorem 16 asserts that metric
extension operators with distortion O(log k/ log log k) exist.
To prove Theorem 16, we borrow some ideas from the paper
of Moitra [23]. Theorem 18 asserts that the optimal metric
extension operator can be found in polynomial-time.

Let ΦY→X be the set of all metric extension operators
(with arbitrary distortion). That is, ΦY→X is the set of linear
operators φ : DY → DX with nonnegative coefficients φipjq
(see (2)) that map every metric dY on DY to an extension
of dY to X . We show that ΦY→X is closed and convex, and
that there exists a separation oracle for the set ΦY→X .

Corollary 14 (Corollary of Lemma 15 (see below)).
1) The set of linear operators ΦY→X is closed and

convex.
2) There exists a polynomial-time separation oracle for

ΦY→X .

Lemma 15. Let A ⊂ Rm and B ⊂ Rn be two polytopes
defined by polynomially many linear inequalities (polynomi-
ally many in m and n). Let ΦA→B be the set of all linear
operators φ : Rm → Rn, defined as

φ(a)i =
∑
p

φipap,

that map the set A into a subset of B.
1) Then ΦA→B is a closed convex set.
2) There exists a polynomial-time separation oracle for

ΦA→B. That is, there exists a polynomial-time algo-
rithm (not depending on A, B and ΦA→B), that given

linear constraints for the sets A, B, and the n × m
matrix φ∗ip of a linear operator φ∗ : Rm → Rn

• accepts the input, if φ∗ ∈ ΦA→B.
• rejects the input, and returns a separating hy-

perplane, otherwise; i.e., if φ∗ /∈ ΦA→B, then
the oracle returns a linear constraint l such that
l(φ∗) > 0, but for every φ ∈ ΦA→B, l(φ) ≤ 0.

Proof: If φ∗, φ∗∗ ∈ ΦA→B and λ ∈ [0, 1], then for
every a ∈ A, φ∗(a) ∈ B and φ∗∗(a) ∈ B. Since B is convex,
λφ∗(a)+(1−λ)φ∗∗(a) ∈ B. Hence, (λφ∗+(1−λ)φ∗∗)(a) ∈
B. Thus, ΦA→B is convex. If φ(k) is a Cauchy sequence in
ΦA→B, then there exists a limit φ = limk→∞ φ(k) and for
every a ∈ A, φ(a) = limk→∞ φ(k)(a) ∈ B (since B is
closed). Hence, ΦA→B is closed.

Let LB be the set of linear constraints defining B:

B = {b ∈ Rn : l(b) ≡
∑
i

libi + l0 ≤ 0 for all l ∈ LB}.

Our goal is to find “witnesses” a ∈ A and l ∈ LB such
that l(φ∗(a)) > 0. Note that such a and l exist if and only
if φ∗ /∈ Φ. For each l ∈ LB, write a linear program. The
variables of the program are ap, where a ∈ Rm.

maximize: l(φ(a))
subject to: a ∈ A

This is a linear program solvable in polynomial-time
since, first, the objective function is a linear function of a
(the objective function is a composition of a linear functional
l and a linear operator φ) and, second, the constraint a ∈ A
is specified by polynomially many linear inequalities.

Thus, if φ∗ /∈ Φ, then the oracle gets witnesses a∗ ∈ A
and l∗ ∈ LB, such that

l∗(φ∗(a∗)) ≡
∑
i

∑
p

l∗i φ
∗
ipap + l0 > 0.

The oracle returns the following (violated) linear constraint:

l∗(φ(a∗)) ≡
∑
i

∑
p

l∗i φipap + l0 ≤ 0.

Theorem 16. Let X be a set of points, and Y be a k-point
subset of X . For every set of nonnegative weights αij on
X ×X , there exists a metric extension operator φ : DY →
DX with distortion O(log k/ log log k).

Proof: Fix a set of weights αij . Let D̃Y = {dY ∈ D :
min-extY→X(dY , α) ≤ 1}. We shall show that there exists
φ ∈ ΦY→X , such that for every dY ∈ D̃Y

α(φ(dY )) ≤ O
(

log k

log log k

)
, (6)



then by the linearity of φ, for every dY ∈ DY

α(φ(dY )) ≤ O
(

log k

log log k

)
min-ext
Y→X

(dY , α).

The set D̃Y is convex and compact, since the function
min-extY→X(dY , α) is a convex function of the first vari-
able. The set ΦY→X is convex and closed. Hence, by the
von Neumann [25] minimax theorem,

min
φ∈ΦY→X

max
dY ∈D̃Y

∑
i,j∈X

αij · φ(dY )(i, j)

= max
dY ∈D̃Y

min
φ∈ΦY→X

∑
i,j∈X

αij · φ(dY )(i, j).

We will show that the right hand side is bounded by
O(log k/ log log k), and therefore there exists φ ∈ ΦY→X
satisfying (6).

Consider d∗Y ∈ D̃Y for which the maximum above is
attained. By Theorem 7 (FHRT 0-extension Theorem), there
exists a map (0-extension) f : X → Y such that f(p) = p
for every p ∈ Y , and∑

i,j∈X
αij · d∗Y (f(i), f(j)) ≤ O

(
log k

log log k

)
.

Define φ∗(dY )(i, j) = dY (f(i), f(j)). Verify that φ∗(dY )
is a metric for every dY ∈ DY :
• φ∗(dY )(i, j) = dY (f(i), f(j)) ≥ 0;
• φ∗(dY )(i, j) + φ∗(dY )(j, k) − φ∗(dY )(i, k) =
dY (f(i), f(j))+dY (f(j), f(k))−dY (f(i), f(k)) ≥ 0.

Then, for p, q ∈ Y , φ∗(dY )(p, q) = dY (f(p), f(q)) =
dY (p, q), hence φ∗(dY ) is an extension of dY . All coef-
ficients φ∗ipjq of φ∗ (in the matrix representation (2)) equal
0 or 1. Thus, φ∗ ∈ ΦY→X . Now,∑

i,j∈X
αij · φ∗(d∗Y )(i, j) =

∑
i,j∈X

αij · d∗Y (f(i), f(j))

≤ O
(

log k

log log k

)
.

Theorem 17. Let X , Y , k, and α be as in Theorem 16.
Assume further, that for the given α and arbitrary metric
dY ∈ DY , there exists a 0-extension f : X → Y such that∑

i,j∈X
αij · dY (f(i), f(j)) ≤ Q×min-ext

Y→X
(dY , α).

Then there exists a metric extension operator with distortion
Q. Particularly, if the support of the weights αij is a graph
with an excluded minor Kr,r, then Q = O(r2). If the graph
G has genus g, then Q = O(log g).

The proof of this theorem is exactly the same as the proof
of Theorem 16. For graphs with an excluded minor we use a

result of Calinescu, Karloff, and Rabani [5] (with improve-
ments by Fakcharoenphol and Talwar [9]). For graphs of
genus g, we use a result of Lee and Sidiropoulos [17].

Theorem 18. There exists a polynomial time algorithm that
given a set of points X , a k-point subset Y ⊂ X , and a set
of positive weights αij , finds a metric extension operator
φ : DY → DX with the smallest possible distortion Q.

Proof: In the algorithm, we represent the linear operator
φ as a matrix φipjq (see (2)). To find optimal φ, we write a
convex program with variables Q and φipjq:

minimize: Q
subject to:

α(φ(dY )) ≤ Q×min-ext
Y→X

(dY , α), for all dY ∈ DY (7)

φ ∈ ΦY→X (8)

The convex problem exactly captures the definition of
the extension operator. Thus the solution of the program
corresponds to the optimal Q-distortion extension operator.
However, a priori, it is not clear if this convex program can
be solved in polynomial-time. It has exponentially many
linear constraints of type (7) and one convex non-linear
constraint (8). We already know (see Corollary 14) that there
exists a separation oracle for φ ∈ ΦY→X . We now give a
separation oracle for constraints (7).

Separation oracle for (7). The goal of the oracle is given
a linear operator φ∗ : dY 7→

∑
p,q φ

∗
ipjqdY (p, q) and a real

number Q∗ find a metric d∗Y ∈ DY , such that the constraint

α(φ∗(d∗Y )) ≤ Q∗ ×min-ext
Y→X

(d∗Y , α) (9)

is violated. We write a linear program on dY . However,
instead of looking for a metric dY ∈ DY such that con-
straint (9) is violated, we shall look for a metric dX ∈ DX ,
an arbitrary metric extension of dY to X , such that

α(φ∗(dY )) ≡
∑
i,j∈X

αij ·φ∗(dY )(i, j) > Q∗×
∑
i,j∈X

dX(p, q).

The linear program for finding dX is given below.

maximize:∑
i,j∈X

∑
p,q∈Y

αij · φ∗ipjqdX(p, q)−Q∗ ×
∑
i,j∈X

αijdX(i, j)

subject to: dX ∈ DX



If the maximum is greater than 0 for some d∗X , then
constraint (9) is violated for d∗Y = d∗X |Y (the restriction
of d∗X to Y ), because

min-ext
Y→X

(d∗Y , α) ≤
∑
i,j∈X

αijd
∗
X(i, j).

If the maximum is 0 or negative, then all constraints (7) are
satisfied, simply because

min-ext
Y→X

(d∗Y , α) = min
dX :dX is extension of d∗Y

∑
i,j∈X

αijdX(i, j).

V. LIPSCHITZ EXTENDABILITY

In this section, we present exact bounds on the quality of
cut and metric sparsifiers in terms of Lipschitz extendability
constants. We show that there exist cut sparsifiers of quality
ek(`1, `1) and metric sparsifiers of quality ek(∞, `∞ ⊕1

· · · ⊕1 `∞), where ek(`1, `1) and ek(∞, `∞ ⊕1 · · · ⊕1 `∞)
are the Lipschitz extendability constants (see below for the
definitions). We prove that these bounds are tight. Then
we obtain a lower bound of Ω(

√
log k/ log log k) for the

quality of the metric sparsifiers by proving a lower bound
on ek(∞, `∞ ⊕1 · · · ⊕1 `∞).

In the first preprint of our paper, we also proved the bound
of Ω( 4

√
log k/ log log k) on ek(`1, `1). After the preprint

appeared at arXiv.org, Johnson and Schechtman notified us
that a lower bound of Ω(

√
log k/ log log k) on ek(`1, `1)

follows from their joint work with Figiel [10]. With their
permission, we present the proof of this lower bound in
the full version of the paper [19]. This result implies a
lower bound of Ω(

√
log k/ log log k) on the quality of cut

sparsifiers.
On the positive side, we show that if a certain open prob-

lem in functional analysis posed by Ball [3] (see also Lee
and Naor [16], and Randrianantoanina [26]) has a positive
answer then ek(`1, `1) ≤ Õ(

√
log k); and therefore there

exist Õ(
√

log k)-quality cut sparsifiers. This is both an indi-
cation that the current upper bound of O(log k/ log log k)
might not be optimal and that improving lower bounds
beyond of Õ(

√
log k) will require solving a long standing

open problem (negatively).

Question 1 (Ball [3]; see also Lee and Naor [16] and
Randrianantoanina [26]). Is it true that ek(`2, `1) is bounded
by a constant that does not depend on k?

Given two metric spaces (X, dX) and (Y, dY ), the Lip-
schitz extendability constant ek(X,Y ) is the infimum over
all constants K such that for every k point subset Z of
X , every Lipschitz map f : Z → Y can be extended
to a map f̃ : X → Y with ‖f̃‖Lip ≤ K‖f‖Lip. We
denote the supremum of ek(X,Y ) over all separable metric
spaces X by ek(∞, Y ). We refer the reader to Lee and

Naor [16] for a background on the Lipschitz extension prob-
lem (see also Kirszbraun [15], McShane [21], Marcus and
Pisier [20], Johnson and Lindenstrauss [12], Ball [3], Mendel
and Naor [22], Naor, Peres, Schramm and Sheffield [24]).
Throughout this section, `1, `2 and `∞ denote finite dimen-
sional spaces of arbitrarily large dimension.

In Section V-A, we establish the connection between the
quality of vertex sparsifiers and extendability constants. In
Section V-B, we prove lower bounds on extendability con-
stants ek(∞, `1) and ek(`1, `1), which imply lower bounds
on the quality of metric and cut sparsifiers respectively.
Finally, in Section V-C, we show that if Question 1 (the
open problem of Ball) has a positive answer then there exist
Õ(
√

log k)-quality cut sparsifiers.

A. Quality of Sparsifiers and Extendability Constants

Let Qcutk be the minimum over all Q such that there exists
a Q-quality cut sparsifier for every graph G = (V, α) and
every subset U ⊂ V of size k. Similarly, let Qmetrick be the
minimum over all Q such that there exists a Q-quality metric
sparsifier for every graph G = (V, α) and every subset U ⊂
V of size k.

Theorem 19. There exist cut sparsifiers of quality ek(`1, `1)
for subsets of size k. Moreover, this bound is tight. That is,
Qcutk = ek(`1, `1).

Proof: Denote Q = ek(`1, `1). First, we prove the
existence of Q-quality cut sparsifiers. We consider a graph
G = (V, α) and a subset U ⊂ V of size k. Recall that for
every cut (S,U \ S) of U , the cost of the minimum cut
extending (S,U \S) to V is min-extU→V (δS , α), where δS
is the cut metric corresponding to the cut (S,U\S). Let C =
{(δS ,min-extU→V (δS , α)) ∈ DU × R : δS is a cut metric}
be the graph of the function δS 7→ min-extU→V (δS , α); and
C be the convex cone generated by C (i.e., let C be the cone
over the convex closure of C). Our goal is to construct a
linear form β (a cut sparsifier) with non-negative coefficients
such that x ≤ β(dU ) ≤ Qx for every (dU , x) ∈ C and, in
particular, for every (dU , x) ∈ C. First we prove that for
every (d1, x1), (d2, x2) ∈ C there exists β (with nonnegative
coefficients) such that x1 ≤ β(d1) and β(d2) ≤ Qx2. Since
these two inequalities are homogeneous, we may assume by
rescaling (d2, x2) that Qx2 = x1. We are going to show that
for some p and q in U : d2(p, q) ≤ d1(p, q) and d1(p, q) 6= 0.
Then the linear form

β(dU ) =
x1

d1(p, q)
dU (p, q)

satisfies the required conditions: β(d1) = x1; β(d2) =
x1d2(p, q)/d1(p, q) ≤ x1 = Qx2.

Assume to the contrary that that for every p and q,
d1(p, q) < d2(p, q) or d1(p, q) = d2(p, q) = 0. Since
(dt(p, q), xt) ∈ C for t ∈ {1, 2}, by Carathéodory’s
theorem (dt(p, q), xt) is a convex combination of at most



dim C + 1 =
(
k
2

)
+ 2 points lying on the extreme rays of

C. That is, there exists a set of mt ≤
(
k
2

)
+ 2 positive

weights µSt such that dt =
∑
S µ

S
t δS , where δS ∈ DU

is the cut metric corresponding to the cut (S,U \ S);
xt =

∑
S µ

S
t min-extU→V (δS , α). We now define two maps

f1 : U → Rm1 and f2 : V → Rm2 . For every cut (S,U \S)
with µS1 > 0, define fS1 : U → R as follows: fS1 (p) = µS1
if p ∈ S; fS2 (p) = 0, otherwise. Let f1(p) ∈ Rm1 be
the vector with one component for each cut. For every
cut (S,U \ S) with µS2 > 0, let (S∗, V \ S∗) be the
minimum cut separating S and U \ S in G. Define fS2 (i)
as follows: fS2 (i) = µS2 if i ∈ S∗; fS2 (i) = 0, otherwise.
Let f2(i) ∈ Rm2 be the vector with one component for
each cut. Note that ‖f1(p) − f1(q)‖1 = d1(p, q) and
‖f2(p) − f2(q)‖1 = d2(p, q). Consider a map g = f1f

−1
2

from f2(U) to f1(U). For every p and q with d2(p, q) 6= 0,

‖g(f2(p))− g(f2(q))‖1 = ‖f1(p)− f1(q)‖1
= d1(p, q) < d2(p, q) = ‖f2(p)− f2(q)‖1.

That is, g is a strictly contracting map. Therefore, there exists
an extension of g to a map g̃ : f2(V )→ Rm1 such that

‖g̃(f2(i))− g̃(f2(j))‖1 < Q‖f2(i)− f2(j)‖1 = Qd2(i, j).

Denote the coordinate of g̃(f2(i)) corresponding to the
cut (S,U \ S) by g̃S(f2(i)). Note that g̃S(f2(p))/µS1 =
fS1 (p)/µS1 equals 1 when p ∈ S and 0 when p ∈ U \ S.
Therefore, the metric δ∗S(i, j) ≡ |g̃S(f2(i))− g̃S(f2(j))|/µS1
is an extension of the metric δS(i, j) to V . Hence,∑

i,j∈V
αijδ

∗
S(i, j) ≥ min-ext

U→V
(δS , α).

We have,

x1 =
∑
S

µS1 min-ext
U→V

(δS , α) ≤
∑
S

µS1
∑
i,j∈V

αijδ
∗
S(i, j)

=
∑
S

∑
i,j∈V

αij |g̃S(f2(i))− g̃S(f2(j))|

=
∑
i,j∈V

αij‖g̃(f2(i))− g̃(f2(j))‖1

<
∑
i,j∈V

Qαijd2(i, j) = Qx2.

We get a contradiction. We proved that for every
(d1, x1), (d2, x2) ∈ C there exists β such that x1 ≤ β(d1)
and β(d2) ≤ Qx2.

Now we fix a point (d1, x1) ∈ C and consider the set
B of all linear functionals with nonnegative coefficients β
such that x1 ≤ β(d1). This is a convex closed set. We just
proved that for every (d2, x2) ∈ C there exists β ∈ B such
that Qx2−β(d2) ≥ 0. Therefore, by the von Neumann [25]
minimax theorem, there exist β ∈ B such that for every
(d2, x2) ∈ C, Qx2 − β(d2) ≥ 0. Now we consider the set
B′ of all linear functionals β with nonnegative coefficients

such that Qx2 − β(d2) ≥ 0 for every (d2, x2) ∈ C. Again,
for every (d1, x1) ∈ C there exists β ∈ B′ such that β(d1)−
x1 ≥ 0; therefore, by the minimax theorem there exists β
such that x ≤ β(dU ) ≤ Qx for every (d, x) ∈ C. We proved
that there exists a Q-quality cut sparsifier for G.

Now we prove that if for every graph G = (V, α) and a
subset U ⊂ V of size k there exists a cut sparsifier of size
Q (for some Q) then ek(`1, `1) ≤ Q. Let U ⊂ `1 be a set of
points of size k and f : U → `1 be a 1-Lipschitz map. By a
standard compactness argument (see the full version of the
paper for details [19]), it suffices to show how to extend f to
a Q-Lipschitz map f̃ : V → `1 for every finite set V : U ⊂
V ⊂ `1. First, we assume that f maps U to the vertices of a
rectangular box {0, a1}×{0, a2}× . . . {0, ar}. We consider
a graph G = (V, α) on V with nonnegative edge weights
αij . Let (U, β) be the optimal cut sparsifier of G. Denote
d1(p, q) = ‖p − q‖1 and d2(p, q) = ‖f(p) − f(q)‖1. Since
f is 1-Lipschitz, d1(p, q) ≥ d2(p, q).

Let Si = {p ∈ U : fi(p) = 0} (for 1 ≤ i ≤ r). Let S∗i
be the minimum cut separating Si and U \ Si in G. By the
definition of the cut sparsifier, the cost of this cut is at most
β(δSi

). Define an extension f̃ of f by f̃i(v) = 0 if v ∈ S∗i
and f̃i(v) = ai otherwise. Clearly, f̃ is an extension of f .
We compute the “cost” of f̃ :∑
u,v∈V

αuv‖f̃(u)− f̃(v)‖1 =
r∑
i=1

∑
u,v∈V

αuv|f̃i(u)− f̃i(v)|

≤
r∑
i=1

β(aiδSi) = β(d2) ≤ β(d1).

(in the last inequality we use that d1(p, q) ≥ d2(p, q) for
p, q ∈ U and that coefficients of β are nonnegative). On the
other hand, we have∑

u,v∈V
αuv‖u− v‖1 ≥ min-ext

U→V
(d1, α) ≥ β(d1)/Q.

We therefore showed that for every set of nonnegative
weights α there exists an extension f̃ of f such that∑
u,v∈V

αuv‖f̃(u)− f̃(v)‖1 ≤ Q
∑
u,v∈V

αuv‖u− v‖1. (10)

Note that the set of all extensions of f is a closed convex
set; and ‖f(u)− f(v)‖1 is a convex function of f :

‖(f1 + f2)(u)− (f1 + f2)(v)‖1
≤ ‖f1(u)− f1(v)‖1 + ‖f2(u)− f2(v)‖1.

Therefore, by the Sion [28] minimax theorem there exists
an extension f̃ such that inequality (10) holds for every
nonnegative αij . In particular, when αuv = 1 and all other
αu′v′ = 0, we get

‖f̃(u)− f̃(v)‖1 ≤ Q‖u− v‖1.

That is, f̃ is Q-Lipschitz.



Finally, we consider the general case when the image of f
is not necessarily a subset of {0, a1}×{0, a2}× . . . {0, ar}.
Informally, we are going to replace f with an “equivalent
map” g that maps U to vertices of a rectangular box, then
apply our result to g, obtain a Q-Lipschitz extension g̃ of
f , and finally replace g̃ with an extension f̃ of f .

Let fi(p) be the i-th coordinate of f(p). Let b1, . . . , bsi
be the set of values of fi(p) (for p ∈ U ). Define ψi :
{b1, . . . , bsi} → Rsi as ψi(bj) = (b1, b2 − b1, . . . , bj −
bj−1, 0, . . . , 0). The map ψi is an isometric embedding
of {bj} into (Rsi , ‖ · ‖1). Define φi from (Rsi , ‖ · ‖1)
to R as φi(x) =

∑si
t=1 xt. Then φi is 1-Lipschitz and

φi(ψi(bj)) = bj . Now let

g(p) = ψ1(f1(p))⊕ ψ2(f2(p))⊕ · · · ⊕ ψr(fr(p)),

φ(y1 ⊕ · · · ⊕ yr) = φ1(y1)⊕ φ2(y2)⊕ · · · ⊕ φr(yr)

(where r is the number of coordinates of f ). Since ψi are
isometries and f is 1-Lipschitz, g is 1-Lipschitz as well.
Moreover, the image of g is a subset of vertices of a box.
Therefore, we can apply our extension result to it. We obtain
a Q-Lipschitz map g̃ : V →

⊕r
i=1 Rsi .

U� _

⊂

��

f
//

g

((
f(U)� _

⊂
��

ψ1⊕···⊕ψr //
⊕r

i=1 Rsi

V
f̃

//

g̃

55`r1 oo
φ=φ1⊕···⊕φr ⊕r

i=1 Rsi

Note also that φ is 1-Lipschitz and φ(g(p)) = f(p).
Finally, we define f̃(u) = φ(g̃(u)). We have ‖f̃‖Lip ≤
‖g̃‖Lip‖φ‖Lip ≤ Q. This concludes the proof.

Theorem 20. There exist metric sparsifiers of quality
ek(∞, `∞⊕1 · · ·⊕1 `∞) for subsets of size k and this bound
is tight. Since `1 is a Lipschitz retract of `∞ ⊕1 · · · ⊕1 `∞
(the retraction projects each summand Li = `∞ to the first
coordinate of Li), ek(∞, `∞ ⊕1 · · · ⊕1 `∞) ≥ ek(∞, `1).
Therefore, the quality of metric sparsifiers is at least
ek(∞, `1) for some graphs. In other words, Qmetrick =
ek(∞, `∞ ⊕1 · · · ⊕1 `∞) ≥ ek(∞, `1).

The proof follows the lines of Theorem 19. See the full
version of the paper for details.

B. Lower Bounds and Projection Constants

We now prove lower bounds on the quality of metric
and cut sparsifiers. We will need several definitions from
analysis. The operator norm of a linear operator T from a
normed space U to a normed space V is ‖T‖ ≡ ‖T‖U→V =
supu 6=0 ‖Tu‖V /‖u‖U . A linear operator P from a Banach
space V to a subspace L ⊂ V is a projection if the restriction
of P to L is the identity operator on L (i.e., P |L = IL).

Given a Banach space V and subspace L ⊂ V , we
define the relative projection constant λ(L, V ) as: λ(L, V ) =
inf{‖P‖ : P is a linear projection from V to L}.

Theorem 21.

Qmetrick = Ω(
√

log k/ log log k).

Proof: To establish the theorem, we prove lower
bounds for ek(`∞, `1). Our proof is a modification of the
proof of Johnson and Lindenstrauss [12] that ek(`1, `2) =
Ω(
√

log k/ log log k). Johnson and Lindenstrauss showed
that for every space V and subspace L ⊂ V of dimension
d = bc log k/log log kc, ek(V,L) = Ω(λ(L, V )) (Johnson
and Lindenstrauss [12], see the full version of our paper [19]
for details).

Our result follows from the lower bound of
Grünbaum [11] on the relative projection constant
λ(`d1, `

N
∞) (for a certain isometric embedding of `d1 into

`N∞): λ(`d1, `
N
∞) = Θ(

√
d) (for large enough N ). Therefore,

ek(`N∞, `
d
1) = Ω(

√
log k/ log log k).

We prove a lower bound on Qcutk in the full version of the
paper. Note that the argument from Theorem 21 shows that
Qcutk = ek(`d1, `

N
1 ) = Ω(λ(L, `N1 )), where L is a subspace

of `N1 isomorphic to `d1. Bourgain [4] proved that there is a
non-complemented subspace isomorphic to `∞1 in L1. This
implies that λ(L, `N∞) (for some L) and, therefore, Qcutk are
unbounded. However, quantitatively Bourgain’s result gives
a very weak bound of (roughly) log log log k. It is not known
how to improve Bourgain’s bound. In the full version of our
paper, we prove a much stronger bound.

Theorem 22.

Qcutk ≥ Ω(
√

log k/ log log k).

C. Conditional Upper Bound and Open Question of Ball

We show that if Question 1 has a positive answer then
there exist Õ(

√
log k)-quality cut sparsifiers.

Theorem 23.

Qcutk = ek(`1, `1) ≤ O(e(`2, `1)
√

log k log log k).

Proof: We show how to extend a map f that maps
a k-point subset U of `1 to `1 to a map f̃ : `1 → `1
via factorization through `2. In our proof, we use a low
distortion Fréchet embedding of a subset of `1 into `2
constructed by Arora, Lee, and Naor [1]:

Theorem 24 (Arora, Lee, and Naor [1], Theorem 1.1).
Let (U, d) be a k-point subspace of `1. Then there exists
a probability measure µ over random non-empty subsets
A ⊂ U such that for every x, y ∈ U

Eµ[|d(x,A)− d(y,A)|2]1/2 = Ω

(
d(x, y)√

log k log log k

)
.

We apply this theorem to the set U with d(x, y) =
‖x − y‖1. We get a probability distribution µ of sets A.



Let g be the map that maps each x ∈ `1 to the random
variable d(x,A) in L2(µ). Since for every x and y in
`1, Eµ[|d(x,A) − d(y,A)|2]1/2 ≤ Eµ[‖x − y‖21]1/2 =
‖x − y‖1, the map g is a 1-Lipschitz map from `1 to
L2(µ). On the other hand, Theorem 24 guarantees that the
Lipschitz constant of g−1 restricted to g(U) is at most
O(
√

log k log log k).

U� _

⊂
��

g
//

f

))
g(U)� _

⊂
��

h // `1

`1
g

//

f̃

44L2(µ)
h̃ // `1

Now we define a map h : g(U) → `1 as h(y) =
f(g−1(y)). The Lipschitz constant of h is at most
‖f‖Lip‖g−1‖Lip = O(

√
log k log log k). We extend h

to a map h̃ : L2(µ) → `1 such that ‖h̃‖Lip ≤
ek(`2, `1)‖h‖Lip = O(ek(`2, `1)

√
log k log log k). We fi-

nally define f̃(x) = h̃(g(x)). For every p ∈ U , f̃(p) =
h̃(g(p)) = h(g(p)) = f(p); ‖f̃‖Lip ≤ ‖h̃‖Lip‖g‖Lip =
O(ek(`2, `1)

√
log k log log k). This concludes the proof.

Corollary 25. If Question 1 has a positive answer then
there exist Õ(

√
log k) cut sparsifiers. On the other hand,

any lower bound on cut sparsifiers better than Ω̃(
√

log k)
would imply a negative answer to Question 1.

Remark V.1. There are no pairs of Banach spaces (X,Y )
for which ek(X,Y ) is known to be greater than ω(

√
log k)

(see e.g. Lee and Naor [16]). If indeed ek(X,Y ) is always
O(
√

log k) then there exist O(
√

log k)-quality metric spar-
sifiers.
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