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Abstract—In this paper we show how the complexity of
performing nearest neighbor (NNS) search on a metric space is
related to the expansion of the metric space. Given a metric space
we look at the graph obtained by connecting every pair of points
within a certain distance r . We then look at various notions of
expansion in this graph relating them to the cell probe complexity
of NNS for randomized and deterministic, exact and approximate
algorithms. For example if the graph has node expansion Φ then
we show that any deterministic t-probe data structure for n points
must use space S where (St/n)t > Φ. We show similar results for
randomized algorithms as well. These relationships can be used to
derive most of the known lower bounds in the well known metric
spaces such as l1, l2, l∞, and some new ones, by simply computing
their expansion. In the process, we strengthen and generalize
our previous results [18]. Additionally, we unify the approach
in [18] and the communication complexity based approach. Our
work reduces the problem of proving cell probe lower bounds
of near neighbor search to computing the appropriate expansion
parameter.

In our results, as in all previous results, the dependence on t
is weak; that is, the bound drops exponentially in t. We show a
much stronger (tight) time-space tradeoff for the class of dynamic
low contention data structures. These are data structures that
supports updates in the data set and that do not look up any
single cell too often. A full version of the paper could be found
in [19].

I. INTRODUCTION

In the Nearest Neighbor Problem we are given a data set
of n points x1, ..., xn lying in a metric space V . The goal is
to preprocess the data set into a data structure such that when
given a query point y ∈ V , it is possible to recover the data
set point which is closest to y by querying the data structure
at most t times. The goal is to keep both the querying time t
and the data structure space m as small as possible. Nearest
Neighbor Search is a fundamental problem in data structures
with numerous applications to web algorithms, computational
biology, information retrieval, machine learning, etc. As such
it has been researched extensively.

The time space tradeoff of known solutions crucially depend
upon the underlying metric space. Natural metric spaces
include the spaces <d equipped with the `1 or `2 distance,
but other metrics such as `∞, edit distance and earth mover
distance may also be useful. The known upper bounds exhibit
the ‘curse of dimensionality’:for d dimensional spaces either
the space or time complexity is exponential in d. More efficient
solutions are known when considering approximations e.g.

[11], [13], [10], [2], however, in general these algorithms still
demonstrate a relatively high complexity.

There is a substantial body of work on lower bounds
covering various metric spaces and parameter settings; we
discuss the known bounds in Section I-C. Traditionally, cell
probe lower bounds for data structures have been shown
using communication complexity arguments [15]. Pătraşcu and
Thorup [20] use a direct sum theorem along with the richness
technique to obtain lower bounds for deterministic algorithms.
Andoni, Indyk and Pătraşcu [3] showed randomized lower
bounds using communication complexity lower bounds for
Lopsided Set Disjointness. In a previous work [18], the
authors used a more direct geometric argument to show lower
bounds for randomized algorithms for the search version of
the problem.

In this work we strengthen and significantly generalize our
previous results. We give a common framework that unifies
almost all known cell probe lower bounds for near neighbor
search. At one extreme, it gives us the communication com-
plexity lower bounds, and implies e.g. the result of [3]. At
the other extreme, we get direct data structure lower bounds
leading to a strengthening to the decision problem of our
results in [18]. Our work in fact shows that all near neighbor
lower bounds follow from basic expansion properties of the
metric space. Vertex expansion translates to lower bounds for
deterministic data structures. Edge expansion can be translated
to lower bounds for randomized data structures, and this lets
us strengthen [18]. It also allows us to prove lower bounds
when the dimension is o(log n). We also identify a new (to our
knowledge) graph parameter that interpolates between vertex
and edge expansion, that we call robust expansion. We show
that robust expansions suffices to prove NNS lower bounds.
Additionally, for random inputs in highly symmetric metrics,
robust expansion also translates to upper bounds in the cell
probe model, that match our lower bounds for constant t.
Thus, in many cases, NNS lower bounds imply isoperimetric
inequalities. Finally, we present a natural conjecture regarding
the complexity of approximate near neighbor search and show
tight bounds for dynamic low contention data structures.

A. Basic Definitions

The Near Neighbor Problem is parameterized by a number
r. As in the Nearest Neighbor Search Problem the input to



the preprocessing phase is a data set of n points in a metric
space. Given a query point y the goal is to determine whether
the data set contains a point of distance at most r from y. In
the approximation version (ANNS) the preprocessing phase
receives as input also an approximation ratio c. Given a query
point y the goal is to differentiate between the case where the
closest data set point is of distance at most r from y, to the
case where the closest data set point is of distance at least cr
from y. Clearly a lower bound for these problems holds also
for nearest neighbor search.

We prove lower bounds for a generalization we call Graph-
ical Neighbor Search (GNS) which we define shortly. We then
show that lower bounds on GNS imply ANNS lower bounds.
In the GNS problem we are given an undirected bipartite
graph G = (U, V,E) where the data set comes from U and
queries come from V . For a node u the set N(u) denotes its
neighbors in G. In the preprocessing phase we are given a
set of pairs (x1, b1), . . . , (xn, bn) where xi is a vertex in U
and bi ∈ {0, 1}. The goal is to build a data structure such
that given a node y ∈ V , if there is a unique i such that
y ∈ N(xi) then it is possible to query the data structure t
times and output bi. If there is no such i or it is not unique
any output is considered correct.

We observe that ANNS reduces to GNS when assuming a
query point is at distance at most r from some xi and a least
cr from all other xj . In this case we have the nodes of U and
V correspond to the points in the metric space, and the set of
edges consists of all pairs of nodes at distance at most r. A
formal reduction is proven in Section IV where we also show
that average instances of ANNS translate to average instances
of GNS for which our lower bounds hold. The bounds we
show depend only on the expansion properties of G. We need
the following definitions:

Definition 1 (Vertex expansion). Let µ be a probability
measure over U and ν be a probability measure over V . The
δ−vertex expansion of the graph with respect to µ, ν is defined
as

Φv(δ) := min
A⊂V,ν(A)≤δ

µ(N(A))

ν(A)
.

The vertex-expansion Φv is defined as the largest k such that
for all δ ≤ 1

2k , Φv(δ) ≥ k.

Let A ⊂ V , B ⊂ U and δ = ν(A). Observe that if
E(A,B) = E(A,U) then µ(B) ≥ Φv(δ)ν(A). In other words
Φv(δ) bounds the measure of the sets that cover all the edges
incident on a set of measure δ. The notion of robust expansion
relaxes this by requiring B to cover at least a γ-fraction of
the edges incident on A. This idea is captured in the definition
below. For simplicity we assume that V = U and that µ and
ν are the uniform distribution and that G is regular. A more
subtle definition which takes into account other measures is
presented in Section III.

Definition 2 (Robust expansion). G has robust-expansion
Φr(δ, γ) if ∀A,B ⊆ V satisfying |A| ≤ δ|V |, |B| ≤
Φ(δ, γ)|A|, it is the case that |E(A,B|

|E(A,V )| ≤ γ. Note that

Φr(δ, 1) = Φv(δ).

B. Our Contributions

1) Bounds for Deterministic Algorithms: In this section we
require that the algorithm always output the correct answer.
We show time space tradeoffs based on the vertex expansion
properties of G. Our lower bounds are in the average case.
Given a distribution µ over U , a data set is built by sampling
n data set points independently from µ.

Note that in order for the problem to be interesting we must
have that N(xi) and N(xj) are likely to be disjoint. We thus
have the following definition:

Definition 3. A distribution µ over U is said to be strongly
independent for G if

Pr
x∼µ
z∼µ

{N(x) ∩N(z) 6= ∅} ≤ 1/100n2.

Note that if µ is strongly independent and x1, . . . , xn are
sampled independently by µ then with probability at least 0.99
N(xi)∩N(xj) = ∅ for all i 6= j. In the following m denotes
the number of cells in the data structure and w denotes the
word size in bits, t is the number of cell probes used by the
algorithm.

Theorem 4. For a given G, let µ, ν be probability measures
such that µ is strongly independent, and the vertex expansion
with respect to µ, ν is Φv(·). Then any deterministic algorithm
solving GNS must satisfy the following inequalities(

mwt

n

)t
≥ Φv (1)

mttw

n
≥ Φv(1/m

t) (2)

These theorems, combined with known isoperimetric in-
equalities yield most known cell probe lower bounds for near
neighbor problems, and generalize them to general expanding
metrics. To see this consider for example the d−dimensional
hypercube equipped with the Hamming distance. It is shown
in [20], [14] that any deterministic solution for ANNS with
approximation 1/ε must satisfy t ≥ dε3/ log(mwd/n). This
bound can be slightly improved by creating the following GNS
instance: Let U and V both equal the set of nodes of the
hypercube, and let E = {(u, v) : |u − v|1 ≤ εd}. Let µ
and ν be the uniform distribution. Chernoff bounds implies
that for d = Ω(log n), |u − v|1 ≥ 0.49d with overwhelming
probability, so (G,µ) is a strongly independent instance. A
lower bound on this instance of GNS implies a lower bound
on ANNS with approximation 1/ε.

Now we use known isoperimetric properties: Harper’s the-
orem (see e.g. [6]) implies that there is a constant a > 1
such that Φv ≥ aε

2d. Plugging this in (1) we have that
t ≥ dε2 log a/ log(mwd/n). In Section IV we discuss how
to apply these theorems in greater length.



2) Bounds for Randomized Algorithms: Assume that G is
regular. Let x and z be vertices drawn uniformly at random,
and y be a random neighbor of x. We say G has the property
of being weakly independent if Pr[y ∈ N(z)] ≤ γ/n for a
small enough constant γ.

Theorem 5. There exists an absolute constant γ such that
the following holds. Any randomized algorithm for a weakly
independent instance of GNS which is correct with probability
at least half (where the probability is taken over the sampling
of the input and the algorithm), satisfies the following inequal-
ities:

(
mwt4

n
)2t ≥ Φr(

1

m
,
γ

t
) (3)

mtw

n
≥ Φr(

1

mt
,
γ

t
) (4)

As an example, we show in Section IV that for the Hyper-
cube with E = {(u, v) : |u − v|1 ≤ ( 1

2 − ε)d}, the robust
expansion Φr(

1
mt , o(1)) ≥ 1

mt(1−4ε2)
. For d = Ω(log n/ε2),

the weak independence property is easy to verify. Plugging
this into Equations 4, we conclude that m4tε2w ≥ n so that
m ≥ ( nw )

1
4tε2 . This result was previously shown by [3] for

slightly larger d.

Our framework suggests a natural conjecture on the com-
plexity of approximate near neighbor problems.

Conjecture 6. Any randomized t-probe datastructure for
a weakly independent GNS instance must satisfy mw

n t ≥
Φr(

1
m ,

1
2t )

Ω(1).

We point out that for some interesting metric spaces such
as the Hamming cube and Euclidean space, the known upper
bound matches the lower bound in the conjecture for a wide
range of parameters. We next present some evidence in support
of this conjecture.

3) An Upper Bound: There are cases where the bounds
above are known to be tight when t = O(1). We show that
this is no coincidence: In Section V we show that if G is
symmetric, there is an algorithm in the cell probe model that
solves random instances of GNS using space that matches the
lower bound in equation (4) for t = 1.

4) Dynamic Data Structure: In the dynamic version of the
problem we want the data structure to support the operation
of inserting and deleting a point in the data-set. Let tU denote
the update time. A weaker version of the conjecture is the
following:

Conjecture 7. For any dynamic randomized t-probe data-
structure for weakly independent GNS on n points, it holds
that tU t ≥ Φr(

1
ntU

, 1
2t )

Ω(1)

To see why this conjecture follows from the stronger one,
observe that a data structure with update time tU uses space
mw ≤ ntU after n inserts. We show that this weaker
conjecture holds for a restricted family of algorithms which we
call low contention; i.e., on those where no memory location
of the data structure is accessed by too many query points (see

Section VI for a formal definition). While this may seem like a
severe limitation, we remark that known LSH data structures,
and our upper bound in Section V, are in fact dynamic and
low contention under our definition.

We show that

Theorem 8. For any low contention, dynamic t-probe datas-
tructure for GNS on n points, the update time is at least
Ω
(
Φr(τ,

1
4t2 )/32t4

)
.

Plugging in the expansion of the hypercube, we see that
for a wide range of parameters Locality Sensitive Hashing
is optimal for the class of the low contention dynamic data
structures over the hypercube.

C. Related Work

Most previous papers are concerned with the Hamming
distance over the d-dimensional hypercube. The cases of
exact or deterministic algorithms were handled in a series
of papers [8], [7],[14], [4]. These lower bounds hold for
any polynomial space. In contrast the known upper bounds
are both approximate and randomized, and with polynomial
space can retrieve the output with one query. Chakrabarti and
Regev [9] allow for both randomization and approximation,
with polynomial space and show a tight bound for the nearest
neighbor problem. Pătraşcu and Thorup[20] showed lower
bounds on the query time of near neighbor problems with
a stronger space restriction (near linear space), although their
bound holds for deterministic or exact algorithms. The metric
`∞ is considered in an intriguing paper by Andoni et al. [1]
who prove a lower bound for deterministic algorithms. The
paper uses the richness lemma though the crux of the proof
is an interesting isoperimetric bound on `∞ for a carefully
chosen measure.

We are aware of only two papers which prove time-space
lower bounds for near neighbor problems where both random-
ization and approximation are allowed.

Andoni, Indyk and Pătraşcu [3] show that for small
ε > 0, any O(1)-probe algorithm for (1+ ε)-approximate near
neighbor problem must use space nΩ( 1

ε2
). This bound is tight

for small enough ε > 0 [3]. Panigrahy et al. [18] show that
space n1+Ω( 1

εt ) is needed for any algorithm with t queries and
ε approximation, for the search version of the problem. This
bound is tight for constant t.

With the exception of [18] all previous bounds were proven
using communication complexity framework [15], and in
particular the richness lemma.

a) Comparison to [18]:: While there is some overlap in
the techniques between this work and [18], the current work
is much more general, and stronger even for the special case
(our lower bound now applies to the decision version of NNS).
We show that expansion may serve as a single explanation
that unifies all previous results, and also gives a simple
recipe to prove lower bounds for other metrics. While [18]
essentially contained a version of the lower bound (3) with
the edge expansion, we are now able to additionally show
(3). Additionally, we can use vertex expansion to show lower



bounds for deterministic data structures. Moreover, we show
that the randomized lower bounds hold under the much weaker
notion of robust expansion. As we discuss in Section I-E, this
strengthening is provably needed for deriving the right lower
bound for the (1 + ε)-approximation range for the Hypercube.
We remark that both (2) and (4) hold for communication
protocol. While we do not know if (1) and (3) hold for
communication protocols, our proofs do shed some light on
how the two approaches differ, and make clearer how the data
structure is used in proving our lower bound.

b) Restricted Models:: Higher lower bounds may be
achieved when considering models which are more restricted
than the cell probe model. Beame and Vee [5] investigate
branching programs. Krauthgamer and Lee [12] show tight
upper and lower bounds for the ’black box model’ where the
algorithm is only allowed to query distances between points
of the data set. They show that in this case the complexity
of NNS is determined by the intrinsic doubling dimension of
the data-set. Motwani, Naor and Panigrahy [16] prove an LSH
lower bound for `1, which has recently been strengthened to
the tight bound by O’Donnell, Wu and Zhou [17].

D. Notation and Preliminaries

A data structure for Graph neighbor search is defined as
follows. Given a database of n points x1, . . . , xn ∈ U , and
b1, . . . , bn ∈ {0, 1} the preprocessing algorithm computes a
set of t tables T1, . . . , Tt, where each table stores m words
of w bits each. We often call each such word a cell of the
table. In practice there is only one table, but for notational
convenience and with out loss of generality we let the data
structure construct a different table for each query.

The query algorithm is specified by t lookup functions
F1, . . . , Ft, where Fi takes in the query point y and (i − 1)
words of w bits each, and outputs an integer in [m], and
function F∗ : V ×(2w)t → {0, 1}. On a query y, the data struc-
ture looks up c1 = T1[F1(y)], c2 = T2[F2(y, c1)], . . . , ct =
Tt[Ft(y, c1, . . . , ct−1)]. Finally it computes F∗(y, c1, . . . , ct).
Note that the lookup functions, Fi’s and F∗ are fixed indepen-
dent of the database, only the tables T1, . . . , Tt can depend on
x1, . . . , xt, b1, . . . , bt. We say the algorithm is non adaptive
if the lookup functions are independent of the content of the
tables, i.e. of the c values.

E. Overview of Techniques

The core idea behind our approach is quite simple. We
demonstrate it by showing a simple argument that the vertex
expansion of G provides a lower bound on the space of
1-probe data structures for deterministic algorithms. By the
definition of vertex expansion, every set of |V |/Φv nodes is
incident to at least half of the nodes of G. Let L be a uniformly
random sample of a 1/Φv fraction of the cells of the table T ,
and let Q be the set of nodes in V for which the algorithm
probes a cell in L. Clearly Q is expected to contain a 1/Φv
fraction of the nodes in G. Now consider a sample data set
(x1, b1), . . . , (xn, bn) where x1, . . . , xn are randomly sampled
nodes in the graph and b1, . . . , bn are random bits. With

overwhelming probability at least a quarter of the xi’s have
a neighbor in the set Q, and thus the random bits associated
with these points should be retrievable from the contents of
L alone. We conclude that the total number of bits in L is at
least n/4 and thus the space of the data structure is at least
nΦv/4 bits.

This basic sampling approach for 1-probe data structures
can be extended to t-probe data structures in two different
ways.

Cell Sampling: Here we sample a Φ
− 1
t

v fraction of the cells in
each table. Thus a 1/Φv fraction of V is expected to access
only the sampled cells. This immediately gives bound (1) for
non-adaptive algorithms.

Path Sampling: Here we sample a path as follows: we pick a
cell randomly from the first table so that a 1

m fraction of the
vertices Q1 lookup this cell. Then we sample a cell from the
second table in such a way that a 1

m fraction of Q1 looks up
this cell in the second read, and so on. This immediately leads
to the lower bound in (2) for non-adaptive algorithms.

We remark that the path sampling approach actually leads
to communication complexity lower bounds for the 2-player
version of the problem where Alice has the query point and
Bob has the database. Any t-probe data structure with m
cells of w words each implies the existence of a t-round
communication protocol where Alice sends logm bits, and
Bob sends w bits, in each round. A communication protocol
has more freedom however; unlike in a data structure, where
the same table T2 is used to answer any second query, in
a communication protocol, the message Bob sends in the
second round may depend not just on the second message
from Alice, but also on the first. Path sampling can be
immediately translated to a “transcript sampling” technique
and thus gives lower bounds for communication protocols.
There is no similarly obvious translation for cell sampling.

We can extend these ideas and provide lower bounds for
adaptive algorithms by observing the following two facts.
Firstly, for a fixed data structure, the probability over a random
data set that the data structure succeeds is exponentially
small in n. On the other hand, the number of bits read by
the sampling procedures above is sublinear, thus the number
of all possible non-adaptive algorithms is sub exponential.
Informally, this allows us to do a union bound over all possible
values of the bits read.

In randomized algorithms not all points in N(x) are good
query points for x. In particular, the specific query point
that queries the cells that are sampled may be a point on
which the algorithm errs. The notion of shattering plays a
major role in extending the bound for this case: Given any
fixed partitioning A1, . . . , Am of V such that each set is of
cardinality O(|V |/m), a randomly chosen x has (with high
probability) the property that maxi |N(x) ∩ Ai| is at most
|N(x)|/K, for a K that depends on the edge expansion. In
other words, N(x) is shattered by the partitioning. Given that
the lookup algorithm is correct for a large fraction of N(x),



shattering suffices to show that the algorithm still gives the
right answer for a majority of the points in N(x) which can
be looked up from the cell sample (or the path sample).

In order to prove lower bounds for randomized adaptive
algorithms we need to combine the ideas outlined in the two
previous paragraphs, which requires more work. Intuitively,
for every x such the N(x) is shattered, and for any fixed
subset N ′(x) on which the algorithm succeeds, the sampling is
very likely to recover the correct answer. Moreover, for every
collection of bits read, almost all points shatter. While it would
be tempting to use a union bound at this point, that does not
quite work. Informally, there are dependencies everywhere:
the part of N(xi) that the algorithm gets right depends on all
the other xj’s, the bits that are read depend on the sampled
cells, etc. The proof carefully defines a notion of shattering
that depends only on the x’s and not on N ′(x)’s and argues
(over the randomness in picking the xi’s) that most points
get shattered. Separately, we argue that for a point that gets
shattered, and for any fixed N ′(x), the majority answer is
correct with high probability (over the sampling procedure
alone).

The notion of edge expansion does not quite suffice: for
the hypercube when r = (1

2 − ε)d, for fixed partitioning
A1, . . . , Am of V into cells of size |V |/m, the largest
|N(x)∩Ai|/|N(x)| is likely to be quite large (≈ 1

mε ), whereas
we would need it to be 1

mε2
to get the correct bound. The

definition of robust expansion Φr comes to our rescue here.
We can show that while the largest |N(x) ∩ Ai| is usually
large, the large pieces account for a very small fraction of
N(x). In fact, after removing a vanishingly small fraction of
|N(x)|, every other piece is only about 1

mε2
. We show that our

lower bound proofs are robust enough to handle this weaker
notion of shattering.

While our techniques do not improve the dependency on the
query time t, they overcome some of the inherent obstacles
in the richness method, so for instance, strengthening the
isoperimetric bound of `∞ would imply that the bound in [1]
extends to randomized algorithms as well.

II. DETERMINISTIC LOWER BOUNDS

In this section we prove Theorem 4. The analysis of
deterministic algorithms involves node expansion and does not
require shattering. It allows us to demonstrate the techniques
of cell sampling and path sampling in a simple setting.

A. Cell Sampling

The following theorem is a restatement of inequality (1)

Theorem 9. Let µ be such that (G,µ) is a strongly indepen-
dent instance, and Φv be the vertex expansion with respect
to µ, ν. Then any deterministic algorithm solving GNS must
satisfy ( 8mwt

n )t ≥ Φv .

Proof: Recall that Ti represents a table with m cells, from
which the i′th query reads, and Fi : V → Ti denotes the
i’th lookup function. We will state a procedure that obtains
a set of at most tm/Φ1/t

v cells so that at least a 1/Φv

fraction of the query points only access these cells. We call
this procedure cell sampling. Note that here this procedure is
entirely deterministic. A probabilistic variant is used in the
next section.

Cell sampling procedure: The cells are obtained iteratively
in t phases, each phase corresponds to a query of the table. In
each phase at most m/Φ1/t

v cells are chosen. The first lookup
function F1 induces a partition over V . The set L1 is chosen
to be the m/Φ1/t

v cells in T1 that maximize ν(F−1
1 (L1)). In

other words, the first lookup function partitions V according
to its image in T1. We choose L1 to be the cells corresponding
to the m/Φ1/t

v largest partitions, as measured by ν. Set Q1 ⊂
V to be those vertices; i.e. F−1

1 (L1). The selection process
continues iteratively in a similar manner. Let Li denote the
set of cells obtained in the i’th phase and let Qi ⊆ V denote
the set of vertices that (if given as a query) access only cells
in L1, . . . , Li In the (i+1)’th phase we consider Fi+1 and set
Li+1 to be the m/Φ1/t

v cells with highest measure, where we
restrict ν to Qi. In other words, when measuring F−1

i (Li+1)
we assign a measure of 0 for vertices outside Qi. It is easy to
inductively argue that ν(Qi) ≥ Φ

−i/t
v , so that ν(Qt) ≥ 1/Φv

and thus µ(N(Qt)) ≥ 1
2 .

Intuitively, the set of cells in L1, . . . , Lt encode half of the
bi bits and therefore must contain Ω(n) bits, which would
imply the lower bound. Of course, L1, . . . , Lt depends upon
the content of the table which depends upon the points in
the data set. These dependencies can be handled by using a
union bound over all the possible values of L − 1, ..., Lt:
To see this, fix the values written in the cells L1, . . . , Lt
to some string ω and sample the n data set points from U
independently according to µ. Let Aω denote the event that
when the value of the cells L1, . . . , Lt is ω, an algorithm
reading ω succeeds in guessing the bi bits for the data set
points that fall in N(Qt). Note that Qt depends only upon ω
and that since the procedure of obtaining Lt is deterministic,
the locations of the cells obtained also depends only on ω.
Vertex expansion implies that µ(N(Qt)) ≥ 1

2 . Also, since
µ is strongly independent and the algorithm is assumed to be
correct, there is a ω for which it is correct, i.e. Pr[∪ωAω] ≥ 1

2 .
By Chernoff’s bound, the probability that less than n/8 points
fall in N(Qt) is at most 2−n/8. Note that the bi’s are chosen
independently, therefore, for a fixed table, if n/8 points indeed
fall in N(Qt), then the probability that the sampled bi’s
match the output of the algorithms is 2−n/8. We conclude
that Pr[Aω] ≤ 2−n/8 + 2−n/8. Now, let K = 1/Φ

1/t
v .

There are 2Kmtw ways of choosing ω, so we must have
21−n/82Kmtw ≥ 1

2 . We conclude that Kmtw ≥ n/8 which
implies the theorem.

B. Path Sampling

We now prove Inequality (2).

Theorem 10. Let µ be strongly independent, and Φv be the
vertex expansion with respect to µ, ν, then any data structure
with a deterministic querying algorithm must satisfy 9mtwt

n ≥
Φv(1/m

t).



Proof: The proof is similar to that of Theorem 9 with a
different choice of parameters. We present it here separately
because the two approaches diverge in the next section when
we deal with the randomized case. We use the cell sampling
technique to select a set of cells from the tables, only this
time, each phase we select a single cell from the table (as
opposed to selecting mΦ

−1/t
v cells in Theorem 9). We call

the approach of sampling a single cell from each table path
sampling because we sample a single possible “query path”
along the t tables. We also observe that lower bounds based on
this approach imply communication complexity lower bounds.

Now the contents of L1, . . . , Lt are tw bits, and ν(Qt) ≥
m−t so that µ(N(Qt)) ≥ Φv(m

−t)m−t. When fixing the bits
of Lt to be the string ω, the expected number of data set points
that fall in N(Qt) is at least nΦv(m

−t)m−t. Define Aω as
before and recall that we have Pr[∪Aω] ≥ 1

2 . Let Zω be the
number of data set points falling in N(Qt). Chernoff’s bound
implies that Pr[Zω ≤ 1

2nΦv(m
−t)m−t] ≤ 2−Φv(m−t)m−t/8.

Since the string ω now encodes Zω random bits, Pr[Aω] ≤
2−Φv(m−t)m−t/8 + 2−Φv(m−t)m−t/2. There are 2tw ways of
choosing ω, so we have 2tw · 2−Φv(m−t)m−t/8 ≥ 1

2 which
implies the theorem.

III. RANDOMIZED LOWER BOUNDS

A. Preliminaries

To prove lower bounds for randomized data structure, we
will use Yao’s minimax theorem, and instead show a distri-
bution over instances such that for some constant δ > 0,
any deterministic t-probe data structure that succeeds with
probability (1− δ) needs large space.

We consider the following randomized version of the Graph
Neighbor Search (GNS) problem on a bipartite graph G =
(U, V,E). We are given a set of n tuples (x1, b1), . . . , (xn, bn),
where xi ∈ U and bi ∈ {0, 1} to preprocess into a data
structure. Then given a query y ∈ V , the query algorithm
makes t probes into the data structure, and is expected to return
bi if xi is the unique neighbor in G of y in {x1, . . . , xn}. If
there is no unique neighbor, any output is considered valid.

Let e be a probability distribution over E. Let µ(u) =
e(u, V ) =

∑
v∈V e(u, v) be the induced distribution on U ,

and let ν(v) = e(U, v) be the induced distribution on V .
For x ∈ U , we denote by νx the conditional distribution
of the endpoints in V of edges incident on u, i.e. νx(y) =
e(x, y)/e(x, V ). We observe that (G, e) define a distribu-
tion over instances of GNS as follows. We select n points
x1, . . . , xn independently from the distribution µ uniformly at
random and pick b1, . . . , bn independently and uniformly from
{0, 1}. This defines the database distribution. To generate the
query, we pick an i ∈ [n] uniformly at random, and sample y
independently from νxi .

Definition 11. We say the tuple (G, e) satisfies γ-weak inde-
pendence (WI) if Prx,z∼µ,y∼νx [(y, z) ∈ E] ≤ γ

n .

In other words, WI ensures that with probability (1 − γ),
for the instance generated as above, x is indeed the unique
neighbor in G of y in {x1, . . . , xn}.

We next define the notion of expansion that we use. Recall
that the vertex expansion of a set A ⊆ V in an unweighted
graph G is the ratio |B||A| , where B = N(A) is the smallest
set such that all edges incident on A are captured by B,
i.e. |E(B,A)| = |E(U,A)|. A relaxation of this definition,
which we call γ-robust expansion, is the ratio |B|

|A| where
B is now the smallest set that captures a γ fraction of the
edges incident on A, i.e. e(B,A) ≥ γe(U,A). The following
definition generalizes this notion to weighted bipartite graphs.

Definition 12. [Robust Expansion] The γ-robust expan-
sion of a set A ⊆ V is defined as φr(A, γ)

def
=

minB⊆U :e(B,A)≥γe(U,A) µ(B)/ν(A).
Let w be an auxiliary weight function on U with∑
u∈U w(u) = 1. The γ-robust expansion with respect to w is

defined as φwr (A, γ)
def
= minB⊆U :e(B,A)≥γe(U,A) w(B)/ν(A).

We say that (G, e) has (β, γ)-robust expansion φwr =
φwr (β, γ) at least K if for every subset A ⊆ V such that
ν(A) ≤ β, we have φwr (A, γ) ≥ K.

For intuition, consider the setting where G = (U, V,E) is
derived naturally from an undirected graph H = (VH , EH)
by making two copies of VH and for each edge (u, v) ∈ EH ,
placing the edges (u1, v2) and (v1, u2). Formally, UG = VH×
{1}, VG = VH×{2}, and EH = {((u, 1), (v, 2)) ∈ UG×VG :
(u, v) ∈ EH}. Then for any set A ⊆ V , we have φwr (A, 1) =
w(N(A))/ν(A), which is the vertex expansion of A in H
under ν, for w = ν. Similarly, if a set A has conductance
e(A,Ac)/e(A, VH) at most 1 − γ, then e(A,A) ≥ γe(A, V )
so that φwr (A, γ) ≤ w(A)/ν(A). A similar correspondence
holds for directed graphs.

B. Main Result

The main result of this section is the following.

Theorem 13. There exists an absolute constant γ such that the
following holds. Let (G, e) satisfy γ-weak independence (WI).
Then, any deterministic t-probe data structure for the distribu-
tion over GNS instances defined by (G, e) that succeeds with
probability (1− γ) must satisfy

(
mwt4

n
)2t ≥ Φwr (

1

m
,
γ

t
) (5)

mtw

n
≥ Φwr (

1

mt
,
γ

t
) (6)

where w is an arbitrary auxiliary weight function, and t is
o(n

1
4 ).

The theorem’s proof can be found in the full version of the
paper [19].

IV. APPLICATIONS

We show how lower bounds on GNS imply lower bounds
for ANNS. We stress that these bounds hold for the average
case where the n data-set points are sampled randomly from
a distribution over |V |. Thus, if with high probability the
distance between all pairs of points in the data set is at least cr,
then the bounds above hold also for the approximate nearest



neighbor within factor c. We remark that while bounds for
`2 are implied by the bounds for `1, our method allows us to
compute those bounds directly and thus obtain an lower bound
on a natural average case.

A. GNS to ANNS

In the decisional version of the (c, r)-ANNS problem we
have a metric spaceM and parameters c and r. We preprocess
n points x1, ..., xn into a data structure. When given a query
point y the goal is to distinguish between the case where
d(xi, y) ≤ r for some i ∈ [n], and the case where for all
i d(xi, y) ≥ cr. The query algorithm is required to output 1
in the former case, 0 in the latter case, and may report anything
if neither of the two cases hold.

We show that if we have appropriate distributions over
M, we can derive lower bounds for (c, r)-ANNS by simply
computing the relevant expansion parameter.

Theorem 14 (GNS to ANNS Deterministic). Let c ≥ 1 and
let µ be a distribution over a metric M = (V, d) satisfying:

(c-Strong Independence) Pr
x,z∼µ

[d(x, z) ≤ (c+ 1)r] ≤ 1

100n2
.

Let Gr = (V, {(u, v) : d(u, v) ≤ r}). Then GNS on (Gr, µ)
reduces to (c, r)-approximate GNS on M.

Proof: Given a GNS instance (x1, b1), . . . , (xn, bn), we
consider the dataset D1 = {xi : bi = 1} as our input for the
(c, r)-ANNS problem. It is easy to see that when xi ∼ µ and
bi ∼ {0, 1}, this set D1 is a uniformly random dataset from
µ. The c-Strong independence implies strong independence
for the GNS instance. Whenever d(xi, xj) > (c + 1)r, and
d(xi, y) ≤ r, we have d(xj , y) > cr so that for the c-
approximate NNS instance, the answer is 1 if and only xi
is in D1, i.e. if and only if bi = 1. The claim follows.

Thus to prove deterministic data structure lower bounds for
c-approximate NNS, it suffices to exhibit r and a distribution µ
which satisfies c-strong independence and has large expansion.

Similarly

Theorem 15 (GNS to ANNS Randomized). Let c ≥ 1 and let
e be a distribution over pairs of points in a metricM = (V, d).
Let µ(x) = e(x, V ) and ν(y) = e(V, y). Suppose that for
small enough γ

(c-Weak Independence) Pr
y∼ν,z∼µ

[d(y, z) ≤ cr] ≤ γ

n
,

and
Pr

(x,y)∼e
[d(x, y) ≤ r] ≥ 1− γ.

Then GNS on (G, e) reduces to (c, r)-approximate GNS on
M.

Proof: As before, given a GNS instance
(x1, b1), . . . , (xn, bn), we consider the dataset
D1 = {xi : bi = 1} as our input for the (c, r)-ANNS
problem. It is easy to see that when xi ∼ µ and bi ∼ {0, 1},
this set D1 is a uniformly random dataset from µ. The
properties above imply weak independence for the GNS

instance. Finally, except with small probability, we have
d(xj , y) > cr for all j 6= i, so that for the c-approximate
NNS instance, the answer is 1 if and only xi is in D1, i.e. if
and only if bi = 1. The claim follows.

Thus to prove randomized data structure lower bounds for
c-approximate NNS, it suffices to exhibit r and a distribution
e which satisfies the above properties and has large expansion.

B. Computing Expansion

Next we bound the expansion of the hypercube for appropri-
ate distributions, which would imply the claimed lower bounds
for the Hypercube. The vertex expansion result for `∞ in [1]
will lead to the cell probe lower bounds for `∞ proved in their
work.

We will set µ to be the uniform distribution over the
hypercube. For a set A ⊆ H , we let a = µ(A). Observe that
if we take n uniformly random points from a d dimensional
hypercube then with high probability all pairs of points are at
least d/2−O(

√
d log n) apart. Using bounds for the expansion

for the (Gr corresponding to the) d-dimensional hypercube, we
will derive lower bounds for the near neighbor problem on the
hypercube.

The following lemma is proved in [6]

Lemma 16 (Vertex Expansion of Hypercube). Let H =
{0, 1}d be the boolean hypercube, and let Gr be the graph
with the edge set Er = {(u, v) : |u − v|1 ≤ r}. Let
hi = 1

2d

∑i
j=0

(
d
j

)
. Then the vertex expansion Φv(hi) ≥ hi+r

Setting r = d/3 we see that the node expansion Φv ≥
hd/2/hd/2−d/3 = 2Ω(d). From theorem 4 we get (mwt/n)2 ≥
2Ω(d) or t ≥ d/log(mwd/n). This gives us the deterministic
lower bound for 2−approximation in `1 norm. Setting r =
εd/2 gives us an a lower bound for O(ε)− approximation.
For this value of r, Φv ≥ hd/2/h(1−ε)d/2 = 2Ω(ε2d). So we
get the bound of t ≥ ε2d/log(mwd/n).

For randomized lower bounds, we will use the distribution
defined by the noise operator Tρ where ρ = (1 − 2r

d ). I.e. to
sample from e, we sample x from the uniform distribution
µ and sample y by flipping each bit of x independently
with probability (1−ρ)

2 = r
d . It is easy to check that for

any r ≤ ( 1
2 − ε)d and d being Ω(log n/ε2), we indeed

have Pr(x,y)∼e[d(x, y) ≤ (1 + ε
10 )r] ≥ 1 − γ

n . Moreover,
since µ = ν, by the discussion above, Pry∈ν,z∈µ[d(y, z) ≤
d
2 − O(

√
d log n)] ≤ γ

n2 . Thus it remains to compute the
expansion for appropriate r.

It will be convenient to work with the edge expansion.

Definition 17. We define the edge expansion Φe(δ) for a
(G, e) as Φe(δ) = minµ(A)≤δ

e(A,V )
e(A,A) . Thus for any set of size

measure δ, at most 1
Φe(δ)

mass of edges incident on A stay
within A.

Observation 18. For any (G, e), if µ is uniform, then
Φr(δ, γ) = Ω(γΦe(2δ))

Proof: First we will argue that for any sets A and B where
µ(A) = µ(B) ≤ δ, e(A,B) ≤ 2e(A, V )/Φe(2δ). To see this



note that e(A,B) ≤ e(A ∪ B,A ∪ B) ≤ 1
Φe(µ(A∪B))e(A ∪

B, V ) = 1
Φe(2δ)

2e(A, V )
Now consider any set A of measure at most δ, and let B

by any other set of measure δγΦe(2δ)/2. We wish to argue
that e(A,B) ≤ γe(A, V ) which would imply the claim.

Let B1, . . . , Bk be a partition of B into k = d δγΦe(2δ)
2δ e

pieces of measure δ each. e(A,B) ≤
∑
i e(A,Bi) ≤

k
1

Φe(µ(A∪B))

≤ γ. The claim follows.

Lemma 19 (Edge expansion of Hypercube). Let H = {0, 1}d
be the boolean hypercube, and (G, e) be as above for r < d

4 .
Then the edge expansion Φe(a) ≥ a−Ω(r/d).

Proof: For sets A,B, it is easy to see that e(A,B) =
〈Tρ1A,1B〉. But by the Hypercontractive inequality,

〈Tρ1A,1A〉 = 〈T√ρ1A, T√ρ1A〉 = ‖T√ρ1A‖22
≤ |1A|21+ρ = a

2
1+ρ .

Also e(A, V ) = a. The claim follows by substituting the value
of ρ.

Setting r = εd/2, we get that for constant γ, Φr(a, γ) ≥
a−Ω(ε). From theorem 5 (first inequality) it follows that
(mw/n)t ≥ m−Ω(ε) implying m ≥ (n/w)1+Ω(ε/t).

Lemma 20 (Robust expansion of Hypercube). Let H =
{0, 1}d be the boolean hypercube, and let (G, e) be as above
for r = ( 1

2 − ε)d Then for any sets A and B such that
µ(B) ≤ µ(A)4(1− 2r

d )2

, e(A,B) ≤ µ(A)(1− 2r
d )2

de(A, V ).

Proof: As in the proof of lemma 19, we use the hyper-
contractive inequality.

e(A,B) = 〈Tρ1A,1B〉
≤ ‖Tρ1A‖2‖1B‖2
≤ ‖1A‖1+ρ2‖1B‖2
= a

1
1+ρ2 b

1
2

≤ a1−ρ2

a2ρ2

= aρ
2

e(A, V ).

The claim follows.

Corollary 21. For any β ≥ 0, and r ≤ d
2 , setting ρ = 1− 2r

d ,
Φav(β, β

ρ2

) ≥ β1−4ρ2

for Gr as above.

Setting r = (1 − ε)d/2, we see that from theorem 5 that
any randomized algorithm must use space m ≥ ( n

wt5 )
4
tε2 .

The vertex expansion result for `∞ has already been com-
puted in the work by [1] for proving cell probe lower bounds
for `∞. They consider the d-dimensional grid {0, 1, . . . ,m}d
with a non uniform measure defined as follows. The measure
π over {0, 1, . . . ,m} is defined by π(i) = 2−(2ρ)i for
all i > 0 and π(0) = 1 −

∑
i>0 π(i). One then defines

µd(x1, x2, . . . , xd) = π(x1)·π(x2) . . . π(xd). For this measure
µd the following expansion theorem was shown in [1].

Lemma 22. [1] µd(N(A)) ≥ µd(A)1/ρ

Now it is easy to show that if n random points are
chosen from the measure µd then every point is at least
g = log2ρ(

ε
4 log d) away from the origin under the `∞ norm.

This is because the probability that a certain coordinate of a
point is at least Ω(g) is at least 1/dε. So probability that no
coordinate is more than g is at most (1−1/dε/4)d ≤ e−d1−ε/4

.
For d = Ω(log1+ε n) this is at most 1/nΩ(1). So all points will
be at least distance g from the origin. In fact this argument
also easily shows that they are in g distance from each other.
So setting r = 1 gives us a lower bound for (g−1, r)−ANNS
for `∞. From Theorem 4 it follows that to get a O(logρ log d)
approximation for NNS on `∞ the amount of space required
is at least m ≥ ( nwt )

ρ/t.

C. Lower bounds for ANNS in <d

We next show that this approach leads to non-trivial lower
bounds for 2-approximate NNS in `d2 when d = Ω( logn

log logn ).
Let µ be the measure on <d defined by drawing each co-
ordinate independently from the standard normal distribution
N(0, 1). To generate y given x, we will use Gaussian noise; i.e.
for each coordinate i, we set yi = ρxi +

√
1− ρ2N(0, 1) for

an appropriate parameter ρ. The Ornstein-Uhlenbeck operator
Uρ is defined as (Uρf)(x) = Ez∈µ[f(ρx +

√
1− ρ2z]. It is

known to be hypercontractive, i.e. for any f : L2(µ)→ L2(µ),
we have ‖Uρf‖2 ≤ ‖f‖1+ρ2 .

With some foresight we set ρ =
√

1− d

Cn
2
d

. Clearly when

y is derived by applying noise to x (i.e. y = ρx+
√

1− ρ2Z
for an independent sample Z from µ), then ‖x − y‖2 ≤
2
√

1− ρ2 ≤
√
d

2cn
1
d

with probability (1−γ), for a suitably large
constant C. Moreover, when x′ is drawn independently from
µ, 1√

2
(x′−y) is easily seen to be distributed identically to µ so

that its `2 norm has the χ2 distribution. A simple computation
shows that ‖x′− y‖2 is at least

√
d

cn
1
d

with probability (1− γ
n ).

Thus we have weak independence.
Finally, the expansion computation is similar to Lemma 19:

e(A,A) = 〈Uρ1A,1A〉 = 〈U√ρ1A, U√ρ1A〉 = ‖U√ρ1A‖22
≤ |1A|21+ρ = a

2
1+ρ .

Thus µ(A)/e(A,A) ≥ a−
1−ρ
1+ρ = a

− 1−ρ2

(1+ρ)2 . Substituting the
value of ρ, we conclude that for large enough constant K,
when K logn

log logn ≤ d ≤ log n, φe( 1
n ) ≥ 2Ω(

√
d). Thus any t-

probe data structure needs space at least n2Ω(
√
d/t).

We make two remarks. Firstly, doing the natural rounding
of the real numbers involved implies similar lower bounds for
Zd. Secondly, we observe that choosing a measure different
than Gaussian may potentially allow us to prove stronger
lower bounds, in particular for dimensions smaller than
log n/ log log n.

V. A MATCHING UPPER BOUND

We already know that the lower bound is tight in many
specific cases. Here we show that the tightness holds more



generally, for highly symmetric graphs. For such graphs, we
show that the notion of robust expansion correctly captures
the complexity of GNS for the regime with a constant number
of queries.

Let G be an undirected Cayley graph1, and assume that it
has the weak independence property for the uniform distribu-
tion. Let m be such that m = nΦr(

1
m , γ) (denoted by Φ for

brevity) where γ ≥ 3
4 . Below we describe a data structure with

m cells and word size O(log n) which can solve GNS in a
single query with constant probability for the hard distribution
of inputs. This matches the lower bound of Theorem 5 for the
case t = 1.

Theorem 23. Let G be an undirected Cayley graph that has
the weak independence property for the uniform distribution.
Let m be such that m = nΦr(

1
m , γ) (denoted by Φ for brevity)

where γ ≥ 3
4 . Then there is a 1-probe data structure that

uses m words of w = log |G| bits each that succeeds with
constant probability when the data-set points x1, . . . , xn are
drawn randomly and independently, and the query point is a
random neighbor of a random xi.

We observe that this is the distribution for which we show
the lower bound.

Proof: The main idea is to use the low expanding sets
in order to construct something similar to a Locality Sensitive
Hashing solution. We stress that the upper bound is in the cell
probe model, which allows us to ignore the (practically very
important) issue of actually computing the LSH efficiently.

Let A ⊂ V be a set of measure 1/m for which the robust
expansion is Φ and m = nΦ. By the definition of robust expan-
sion, we know that there is a set B of measure Φ/m such that
|E(A,B)| ≥ γ|E(A, V )|. We take m random translations of A
and B, denoted by A1, . . . , Am and B1, . . . , Bm, formally, we
sample uniformly m elements a1, ..., am from the group under-
lying the Cayley graph, and set Ai = {u : u = ai + v, v ∈ A}
and similarly Bi = {u : u = ai + v, v ∈ B}. The translation
by ai is an automorphism that maps A to Ai and B to Bi so
for each i |E(Ai, Bi)| ≥ γ|E(Ai, V )|.

We construct a table T with m cells as follows: Given a
data set point x, we check for each i ≤ m whether x ∈ Bi,
and if so we place x in Ti. Note that the measure of each Bi
is Φ/m so that the expected number of data set points xj that
fall in Bi is nΦ/m which is 1. For random data sets, most
Bi’s will contain at most (say) 10 data-set points. In order to
keep the word size small we store at most 10 data set points
in each table cell Ti, and assuming that O(log n) bits suffice
to represent a data-set point, we have w = O(log n).

Now, given a query point y we find an i for which y ∈ Ai
and output the data-set point in T [i] which is closest to y. Note
that with constant probability, such an i exists and is unique.

Recall that the data set x1, . . . , xn is obtained by sampling
n points uniformly and independently from V . Further, we
assume that this distribution is weakly independent; i.e. if x

1We need the graph to be highly symmetric and the symmetries of Cayley
graphs are convenient for the claims we need.

and y are random nodes and z is a random neighbor of x, then
Pr[z ∈ N(y)] ≤ 1/100n. Further, the query point is obtained
by sampling a random neighbor of a random data set point.
Assume that the correct answer is x. Now if y ∈ Ai (which
happens with a constant probability), then the lookup succeeds
if x ∈ Bi and there were less than 10 data set points in Bi.
The first event occurs with probability γ ≥ 3

4 and the second
event occurs independently with probability at least 3

4 as well.
We conclude that the data structure succeeds with constant
probability.

VI. LOW CONTENTION DYNAMIC DATA STRUCTURES

Let Ql denote the set of queries that read cell T [l] from the
table.

Definition 24. A data structure is said to have contention τ
if ν(Ql) ≤ τ for all l.

Say we insert a new point x. After the insertion there would
be a subset of N ′(x) ⊆ N(x) such that the query algorithm
outputs the correct answer for any y ∈ N ′(x). We say the
insertion x is successful if the measure of this set under νx is
at least 1− γ.

We remark that we look at contention only for the part of
the data structure that depends on the database; accesses to
any randomness are free.

In the full version of the paper[19] we prove Theorem 8,
which states that in such data structures, the update time is at
least Ω(Φr(τ,O( 1

t2 ))/t4).
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