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Abstract—Bodlaender’s Theorem states that for every k there
is a linear-time algorithm that decides whether an input graph
has tree width k and, if so, computes a width-k tree composition.
Courcelle’s Theorem builds on Bodlaender’s Theorem and
states that for every monadic second-order formula φ and
for every k there is a linear-time algorithm that decides
whether a given logical structure A of tree width at most k
satisfies φ . We prove that both theorems still hold when “linear
time” is replaced by “logarithmic space.” The transfer of the
powerful theoretical framework of monadic second-order logic
and bounded tree width to logarithmic space allows us to settle
a number of both old and recent open problems in the logspace
world.

Keywords-deterministic logarithmic space, tree width, partial
k-trees, monadic second-order logic.

I. INTRODUCTION

For graphs of bounded tree width, a concept introduced by
Robertson and Seymour [38] and known under several dif-
ferent names such as partial k-trees, the computational com-
plexity of many difficult problems drops significantly com-
pared to the same problem for general graphs. For instance,
for every k the NP-complete problem HAMILTONICITY can
be solved in linear sequential and in logarithmic parallel
time when restricted to graphs of tree width at most k. The
same is true for many other NP-complete problems, see [10]
for an overview. To achieve these time bounds, algorithms
for problems on graphs of bounded tree width need access
to a tree decomposition of the input graph. Bodlaender’s
Theorem [8] states that for every fixed k, on input of a graph
G of tree width at most k such a tree decomposition can be
computed in linear time. Note that k must, indeed, be a fixed
constant since it is NP-complete [2] to decide on input (G,k)
whether G has tree width at most k.

These results have inspired researchers to investigate
whether graphs of bounded tree width might also be helpful
in the study of logarithmic space. Here, “difficult” problems
include normally easy ones like reachability or matching.
The hope is that these problems might be decidable by
deterministic logspace Turing machines (logspace DTMs)
for graphs of bounded tree width. Only partial results were
obtained, for instance for graphs of tree width 2 or for k-
trees, and two 2010 papers [19], [20] identify an analogue of
Bodlaender’s Theorem for logarithmic space as the central

piece missing in recent advances in the study of logarithmic
space. Our first main result is such an analogue:

Theorem I.1. For every k≥ 1, there is a logspace DTM that
on input of any graph G of tree width at most k outputs a
width-k tree decomposition of G.

The design of early efficient algorithms for problems on
graphs of bounded tree width was a laborious process involv-
ing complex, problem-dependent arguments. A breakthrough
came with Courcelle’s Theorem [18], which in conjunction
with Bodlaender’s Theorem yields that all graph properties
expressible in monadic second-order logic (MSO-logic) can
be solved in linear time on graphs of bounded tree width.
Since many graph properties are easily expressible in this
logic, we get a simple, unified framework for showing that
all of these problems are efficiently solvable.

In the logspace world, the situation resembles the one
before Courcelle’s work: each paper uses similar, but still
problem-dependent arguments to establish membership in L
or at least in LOGCFL. Our second main result is that Cour-
celle’s Theorem also holds for logarithmic space, enabling
us to apply the same unifying framework as for linear time:

Theorem I.2. For every k ≥ 1 and every MSO-formula φ ,
there is a logspace DTM that on input of any logical
structure A of tree width at most k decides whether A |= φ

holds.

Courcelle’s original theorem has been generalized in
different ways (known as functional, optimization, counting,
and other versions). We also prove such a generalized
version, which we call the cardinality version and which
allows a wider range of applications than Theorem I.2.
For its formulation we introduce the notion of solution
histograms: Let φ(X1, . . . ,Xd) be an MSO-formula whose
free predicate variables are exactly the Xi and let A be
a logical structure with universe A. Then histogram(A,φ)
is the d-dimensional integer array whose entry at the d-
dimensional index (i1, . . . , id) ∈ {0, . . . , |A|}d tells us how
many subsets S1, . . . ,Sd ⊆A exist with |S1|= i1, . . . , |Sd |= id
and A |= φ(S1, . . . ,Sd).

Theorem I.3 (Logspace Cardinality Version of Cour-
celle’s Theorem). For every k ≥ 1 and every MSO-formula



φ(X1, . . . ,Xd), there is a logspace DTM that on input of
any logical structure A of tree width at most k outputs
histogram(A,φ).

Observe that histogram(A,φ) stores a lot of informa-
tion about φ and A, including the number of satisfying
assignments of φ in the form of the sum of all entries.
Theorem I.2 is a special case of Theorem I.3 for d = 0 since
a 0-dimensional histogram is a scalar that is 1 if A |= φ , and
0 otherwise.

The above theorems make no claim concerning the behav-
ior of the machines on inputs that have a tree width larger
than k, but the following lemma shows that this could easily
be remedied:

Lemma I.4. For every k≥ 1 the language TREE-WIDTH-k,
which contains exactly the graphs of tree width at most k,
is L-complete under first-order reductions.

Our main technical contributions are the following: For
the proof of the logspace version of Bodlaender’s Theorem,
the main difficulty lies in coming up with an appropriate
notion of graph separators and in showing how the recursive
decomposition can be done in logarithmic space. We side-
step the recursion by reducing to a special version of the
reachability problem for mangrove graphs, which we show
to lie in L. For the logspace cardinality version of Courcelle’s
Theorem, we show how computing the number of satisfying
assignments relates to tree automata (a standard tool in
proofs of Courcelle’s Theorem) and how it can be reduced
to evaluating an arithmetic tree whose entries are tensors
that are added and convoluted. This problem, in turn, can
be reduced to evaluating a normal arithmetic tree over
addition and multiplication, a problem known to be logspace
solvable. We remark that our techniques are tailored to
make our algorithms use only logarithmic space, at the cost
of increasing their runtime to polynomial time instead of
the linear time bound that lies at the heart of the original
theorem of Bodlaender.

A. Applications

Our results can be applied in a number of areas. Since in
the present paper we focus on proving the main theorems,
we will not explore these applications in more detail. Nev-
ertheless, we below try to sketch their impact on some of
these areas.

First, for many NP-hard problems like 3-COLORABLE or
HAMILTONICITY one can show that they are linear time
solvable on graphs of bounded tree width by expressing the
problems in MSO-logic and applying Courcelle’s Theorem.
By Theorem I.2, all of these results can be transferred to
the logspace setting. Problems like DOMINATING-SET are
also expressible as MSO-formulas, but now φ(X) holds if X
is a dominating set and the question is whether φ can
be satisfied by an X having a certain size. The logspace

cardinality version of Courcelle’s Theorem shows that this
problem can also be decided in logarithmic space. Thus, for
every k the languages {G | tw(G)≤ k and G is 3-colorable}
and {(G,s) | tw(G)≤ k and G has a dominating set of size
at most s} lie in L and this is the case for many other
problems. Even when a problem is not directly expressible
in MSO-logic, it may still be possible to use Courcelle’s
Theorem inside a larger algorithm. A simple example is
computing the chromatic number of tree width bounded
graphs in logarithmic space: no MSO-formula φ(X) is known
that expresses that a graph has chromatic number |X |, but
it is easily seen [22] that graphs of tree width k have
chromatic number at most k+1 and we can successively test
whether a graph is 1-, 2-, . . . , (k+1)-colorable to compute
its chromatic number.

Second, a number of graph properties, such as reachabil-
ity, can be expressed in MSO-logic, but they can already
be checked efficiently on arbitrary graphs and applying
Courcelle’s classical theorem yields no new insights. From
a logspace perspective, the situation is different: Applying
Theorem I.3 to the formula φ(X) expressing that X is a
simple path from s to t shows that the problem {(G,s, t) |
tw(G)≤ k, there is a path from s to t in G} lies in L. Indeed,
on input of (G,s, t,d) we can even compute in logarithmic
space the exact number of simple paths from s to t of
length exactly d. Another example is the matching problem,
where the MSO-characterization allows us to compute the
exact number of perfect matchings of graphs of bounded
tree width in logarithmic space.

Third, the logspace version of Courcelle’s Theorem has
applications in the study of pseudopolynomial NP-complete
problems: The classical NP-complete problem KNAPSACK
is well-known to become tractable when input numbers
are coded in unary: UNARY-KNAPSACK ∈ NL. Inspired by
Cook’s conjecture [16] that “a problem in NL which is
probably not complete is the knapsack problem with unary
weights,” a line of research began to capture its complex-
ity with specialized complexity classes lying between L
and NL [27], [15], [31], see also [34]. Our Theorem I.3
shows that UNARY-SUBSETSUM ∈ L: Given unary-coded
numbers a1, . . . , an and a target sum s, construct the graph
consisting of n stars, where the ith star has ai vertices, and
the formula φ(X) expressing that X must always contain
a star completely or not at all. Then there is a satisfying
assignment of cardinality s if, and only if, there is a subset
I ⊆ {1, . . . ,n} with ∑i∈I ai = s. Similar, but slightly more
complex arguments show that UNARY-KNAPSACK ∈ L and
also that UNARY-k-KNAPSACK ∈ L for every k, where there
are k knapsacks.

B. Related Work

The research on the difficulty of computing width-k tree
decompositions was originally focused on time complexity.
The linear time bound of Bodlaender’s Theorem [8] is the



best possible result on the sequential time complexity and
improves on previous results [2], [36]. Similarly, the parallel
time complexity was reduced in a line of papers [13], [6],
[32], [9] to O(logn). Concerning the space complexity, an
algorithm of Gottlob et al. [23], which extends an algorithm
of Wanke [39], shows that computing width-k tree decom-
positions lies in the class LOGCFL = SAC1 ⊆ AC1. For the
special case of computing width-2 tree decompositions a
logspace algorithm can be deduced from [28], [29], together
with Reingold’s algorithm [37].

Algorithmic variants of Courcelle’s Theorem also solve
MSO-definable counting and optimization problems [3], [11],
[17], similar to the cardinality version studied in the present
paper. A recent survey [10] spans the time complexity of tree
width related problems. The best result concerning the space
complexity of analogues of Courcelle’s Theorems is due
to Wanke [39]. It places MSO-definable decision problems
for graphs of bounded tree width in LOGCFL. Additionally,
MSO-definable optimization problems like VERTEX-COVER
on bounded tree width graphs lie in LOGCFL.

Only few problems were known to lie in L when restricted
to graphs of bounded tree width. In [30] we showed that
the reachability problem, the shortest path, and also the
longest path problems lie in L when restricted to graphs
of tree width 2. Das et al. [19] study k-trees, a special
case of graphs of tree width k, and show that for these
graphs the reachability and the perfect matching problem
and, if the graph is a directed acyclic graph (DAG), also the
shortest and longest path problems lie in L. All of these
results are special cases of the logspace cardinality version
of Courcelle’s Theorem.

Concerning our proof techniques, the idea of using sepa-
rators in the construction of tree decompositions is used in
many other papers [32], [36]. Mangroves are also used in
the study of the isomorphism problem for k-trees [4]. Our
reduction in the logspace cardinality version of Courcelle’s
Theorem is a strong generalization of the reduction to
{max,+}-trees that we first proposed in [30] and was later
also used in [19].

C. Organization of This Paper

In Section III we show that given a graph of tree
width at most k, we can compute a tree decomposition
of width 4k+3, called an approximate tree decomposition,
in logarithmic space. In Section IV we prove the logspace
cardinality version of Courcelle’s Theorem. The algorithms
of this section work on approximate tree decompositions. In
Section V we prove the L-completeness of TREE-WIDTH-k
and the logspace version of Bodlaender’s Theorem by show-
ing that approximate tree decompositions can be turned into
optimal ones in logarithmic space. Due to lack of space,
proofs are omitted or sketched; detailed proofs can be found
in the ECCC technical report version of this paper [21].

II. PRELIMINARIES

In the following we shortly describe notations and con-
cepts that are used in the present paper. For a detailed
discussion, we refer to the textbook of Flum and Grohe [22].

A. Graphs and Trees

We consider undirected graphs as special cases of di-
rected graphs, namely as directed graphs G = (V,E) where
E ⊆V ×V is symmetric. We write V (G) for G’s vertex set
and E(G) for the edge set. A subgraph of a graph G is
a graph G′ with V (G′) ⊆ V (G) and E(G′) ⊆ E(G). The
subgraph of G induced on a set U ⊆ V (G) is the graph
G[U ] with V (G[U ]) = U and E(G[U ]) = E(G)∩ (U ×U).
The children of a vertex v in a directed graph G are all
vertices u with (v,u) ∈ E(G).

We consider trees as special directed graphs, but call their
vertices nodes. In a binary tree, every node has zero or two
children. In a balanced tree, all paths from the root to leafs
have the same length. Note that balanced binary trees have
logarithmic depth. A labeled tree is a tree T together with
a mapping l : V (T )→ Σ, where Σ is the labeling alphabet.

B. Monadic Second-Order Logic

Monadic second-order logic (MSO-logic) is the fragment
of second-order logic where all variables are either first-
order variables x1, x2, . . . (also called element variables)
or unary second-order variables X1, X2, . . . (also called
set variables). The MSO-formulas over a vocabulary τ are
inductively defined as follows: The atomic formulas are of
the forms x = y, X(z), R(x1, . . . ,xr), where x,y,z,x1, . . . ,xr
are element variables, X is a set variable, and Rr ∈ τ .
Formulas are build from atomic formulas by connectives (¬,
∧, ∨,→,↔), element quantifiers (∃x, ∀x), and set quantifiers
(∃X ,∀X). Bound and free variables are defined as usual.
We write φ(X1, . . . ,Xd) for a formula φ with free variables
X1, . . . ,Xd . The model relation A |= φ(S1, . . . ,Sd) for a τ-
structure A with universe A, a τ-formula φ(X1, . . . ,Xd), and
assignments of subsets S1, . . . ,Sd ⊆ A to the free variables
X1, . . . , Xd is defined as usual [22]. Since we study structures
over arbitrary vocabularies τ , there is no need to distinguish
between MSO1- and MSO2-logic [26].

C. Tree Decompositions

The concept of tree decompositions of graphs was intro-
duced by Robertson and Seymour [38]; we use a generalized
definition for logical structures [22]:

Definition II.1 (Tree Decomposition). A tree decomposition
of a τ-structure A is a labeled tree T whose labeling function
B : V (T )→{X | X ⊆ A} has the following properties:

1) For all a ∈ A, the induced subgraph T
[
{n ∈ V (T ) |

a ∈ B(n)}
]

is nonempty and connected.
2) For every Rr ∈ τ and every tuple (a1, . . . ,ar) ∈ RA,

there is an n ∈V (T ) with {a1, . . . ,ar} ⊆ B(n).



The sets B(n) are called bags. The width of a tree de-
composition T is maxn∈V (T ) |B(n)| − 1. The tree width of
a structure A, denoted by tw(A), is the minimum width
over all its tree decompositions. A class of τ-structures has
bounded tree width if the tree width of all its elements is
bounded by a constant.

We make no special assumptions concerning bags of
adjacent nodes, like their symmetric difference containing
exactly one vertex.

The Gaifman graph of a structure A is an undirected
graph that describes how the elements of A are connected
by relations: Its vertex set is A and there is an edge
(a,a′) ∈ A× A if, and only if, one of the relations RA

contains a tuple (a1, . . . ,ar) ∈ RA with a,a′ ∈ {a1, . . . ,ar}.
Since a tuple of r elements from the structure gives rise to
a clique of size r in the Gaifman graph and since in a tree
decomposition every clique is completely contained in some
bag, every tree decomposition of a structure A is also a tree
decomposition of its Gaifman graph and vice versa.

D. Tree Automata

A (binary, bottom-up) tree automaton is a tuple M =
(Q,Qa,q0,Σ,δ ), where Q is the set of states, Qa ⊆ Q is
the set of accepting states, q0 is the initial state, Σ is the
alphabet, and δ : Q×Q× Σ → Q is the state transition
function. A tree automaton inductively assigns a state to
a labeled binary tree T with distinguished left and right
children as follows: The empty tree has state q0. The state of
a nonempty tree with root r and root label l(r), left subtree
state qleft, and right subtree state qright is δ (qleft,qright, l(r)).
The tree automaton accepts all trees to which it assigns a
state from Qa. We only consider deterministic tree automata
M = (Q,Qa,q0,Σ,δ ) with alphabets Σ = {0,1}m.

III. COMPUTING APPROXIMATE TREE DECOMPOSITIONS
IN LOGARITHMIC SPACE

Bodlaender’s Theorem is typically proved in two steps:
First, a linear-time algorithm is presented that on input of a
graph of tree width at most k computes a tree decomposition
of width at most O(k), called an approximate tree decompo-
sition. Second, another linear-time algorithm is used to turn
the approximate tree decomposition into an optimal one. We
proceed similarly: The present section is devoted to a proof
of Lemma III.1 below, which states that approximate tree
decompositions can be computed in logarithmic space. In
Section V we will show how optimal tree decompositions
can be computed.

Lemma III.1. For every k ≥ 1, there is a logspace DTM
that on input of any structure A with tw(A) ≤ k outputs a
tree decomposition for A

1) whose width is at most 4k+3 and
2) whose decomposition tree is binary and balanced.

For many applications, it suffices to have access to tree
decompositions satisfying part 1 of the lemma. However, for
the proof of the logspace cardinality version of Courcelle’s
Theorem in Section IV we need access to tree decomposi-
tions of constant degree and logarithmic depth. Part 2 shows
that such tree decompositions can be obtained in logarithmic
space.

In the following, for the proof of Lemma III.1 we only
consider undirected, connected graphs instead of arbitrary
logical structures, because a structure and its Gaifman graph
have the same tree decompositions [22] and because differ-
ent components of a graph can be decomposed indepen-
dently.

Algorithms for constructing tree decompositions often
employ a specific notion of separators, which are used to
split a graph into smaller subgraphs for which tree decom-
positions can be computed recursively. When one wants to
transfer this idea to logarithmic space, one faces the problem
that both the recursion stack and the intermediate subgraphs
are too large to store. We overcome these problems in
two ways: First, instead of avoiding deep recursions, we
show how a special version of the reachability problem in
mangrove graphs can be used to identify the desired tree
decomposition. Second, we pick a notion of separators that
allows us to represent subgraphs by descriptors that can be
stored in logarithmic space.

A. Transitive Closures of Mangroves

In our tree decomposition algorithm the decomposition
tree will be an induced subgraph of a larger graph in
which it is “hidden.” In order to recover the tree, we
need to compute the set of vertices reachable from a given
vertex. For the mangrove graphs that arise in our proofs
the best upper space bound on the reachability problem is
O(log2 n/ log logn), see [1], which is far from logarithmic.
So, our algorithms will need access to some kind of addi-
tional information. This information will be in the form of
what we call transitive closures of related vertices.

Mangrove M

Template for graphs R

A mangrove [1] is a DAG
in which there is at most one
path between any two vertices.
In a mangrove, the subgraph Tr
induced on all vertices reach-
able from a given vertex r is
a tree rooted at r. Let us say
that two vertices a and b of
a mangrove are related if they
are both present in some Tr,
that is, they are both reachable
from some vertex r. We say
that a graph R is a transitive closure of the related vertices
of M if the following holds: Whenever a and b are related
in M, then there is an edge from a to b in R if, and
only if, there is a non-empty path from a to b in M.



The example above shows a mangrove M at the top. All
transitive closures R of M’s related vertices can be obtained
by arbitrarily adding edges in the lower “template” graph
along the dotted lines, which connect exactly the unrelated
vertices of M.

Lemma III.2. There is a logspace DTM that on input of any
pair (M,R) consisting of a mangrove M and a transitive
closure R of M’s related vertices outputs the transitive
closure of M.

Sketch of proof: To test whether b is reachable from
a in M, set current to a and then repeatedly update current
to the unique vertex v that is a child of current in M and
for which there is an edge from v to b in R. If there is
no unique such vertex, reject. When b becomes a child of
current, accept.

B. Descriptors and Descriptor Decompositions

Let G = (V,E) be a connected undirected graph. A de-
scriptor D in G is either (a) just a bag B⊆V and called sim-
ple or (b) a pair (B,v) consisting of a bag B⊆V and a com-
ponent selector v ∈V −B. We write B(D) for the bag of D.
We say that D describes the following graph G(D): If D
is simple, G(D) = G[B]. Otherwise let G(D) = G

[
V (C)∪B

]

V (D)

I(D)
b1

b3 v

b2

where C is the component of
G[V − B] that contains v. We
write V (D) for the vertex set
of the graph G(D). The interior
I(D) of G(D) is V (D)−B(D).
Let DG denote the descriptor
(∅,v0) where v0 is a fixed vertex of G. Note that G(DG) = G
since we assumed G to be connected. An example of a
graph G, a descriptor D= ({b1,b2,b3},v), and the sets V (D)
and I(D) is shown above. The graph G(D) is the induced
subgraph G[V (D)].

Definition III.3 (Descriptor Decomposition). Let G be a
connected undirected graph. A descriptor decomposition
of G is a directed graph M whose vertices are descriptors
in G, one of them is DG, and where for every node D of M
with children D1, . . . , Dm the following holds:

1) For each child Di, we have V (Di)⊆V (D) and I(Di)⊆
I(D) and at least one inclusion is proper.

2) For each child Di, the set V (Di) contains at least one
vertex from I(D).

3) For each child Di, the set I(Di) is disjoint from all
V (D j) for j 6= i.

4) Each edge in G(D) that is not between two vertices
in B(D) must be present in some G(Di).

Observe that property 1 implies that all descriptor decom-
positions are DAGs.

We next prove that given a descriptor decomposition M of
a graph G, the graph M[W ] where W is the set of all vertices
reachable from DG in M “nearly forms a tree decomposition

of G”: We only need to add an internal vertex between each
node and its children whose bag contains all “interactions”
between the children of the node. Formally, we define a
graph T (M) as follows: For each descriptor D reachable
from DG in M, it contains two vertices Dnormal and Dinteract. If
D1, . . . , Dm are the children of D in M, then there are edges
from Dnormal to Dinteract and from Dinteract to each Dnormal

i .
Label Dnormal with the bag B(D). Label Dinteract with the bag
that contains all vertices present in at least two of the sets in
{B(D),B(D1), . . . ,B(Dm)}. Below, we show an example of
a descriptor D, its children D1, D2, and D3 in M, and their
bags; as well as the resulting nodes and bags in T (M).

{a,b}

{a,c} {a,d} {c,d}

D

D1 D2 D3

Descriptors in M
and their bags

{a,b}

{a,c,d}

{a,c} {a,d} {c,d}

Dnormal

Dinteract

Dnormal
1 Dnormal

2 Dnormal
3

Nodes in T (M)
and their bags

Lemma III.4. If M is a descriptor decomposition of G, then
T (M) is a tree decomposition of G.

Lemma III.5. There is a logspace DTM that on input of any
graph G together with a descriptor decomposition M of G
outputs T (M).

Sketch of proofs: To show that T (M) is a tree, one
shows that M is a mangrove. Property 4 of descriptor
compositions ensures that the bags of T (M) cover all edges
of G. Properties 1 and 3 ensure that each vertex v of G
enters the set of bags of T (M) containing v at a unique
node. One then shows that the graph R, whose vertex set is
V (M) and where there is an edge from D to D′ if, and only
if, property 1 applies to them, is a transitive closure of M’s
related vertices. Then Lemma III.2 allows us to recover the
tree T (M) in logarithmic space.

By Lemmas III.4 and III.5, in order to compute a tree
decomposition of a graph, it suffices to compute a descriptor
decomposition. We next show that such a descriptor decom-
position can be obtained in logarithmic space by defining
appropriate descriptors and their child descriptors.

As remarked earlier, algorithms for computing tree de-
compositions internally use different kinds of separators.
The ones we use are also known as balanced separators.

Definition III.6. Let G be an undirected graph and let
U ⊆V (G). A separator S⊆V (G) separates U in G if each
component of G[V (G)−S] contains at most |U |/2 vertices
of U . An s-separator is a separator of size at most s.

It is a folklore fact that for all G with tw(G) ≤ k every
U ⊆V (G) has a (k+1)-separator S in G.

Whenever we write that a DTM should “choose” some
vertex or set, we mean that a deterministic choice is made.



For instance, we can always choose the lexicographically
first vertex or set.

Definition III.7 (Child descriptors). Let G be a connected
undirected graph with tw(G) ≤ k. We define the child
descriptors of a descriptor D in G as follows: If D is simple,
it has no child descriptors. Otherwise we call D small if
|B(D)| ≤ 2k+2 and choose a (k+1)-separator S of V (D) in
the graph G(D); and we call D large if |B(D)|> 2k+2 and
choose a (k+1)-separator S of B(D) in G(D). Let C1 to Cm
be the components of G[I(D)−S] = G

[
V (D)− (S∪B(D))

]
.

For each i ∈ {1, . . . ,m} choose a vertex vi ∈ Ci and let Bi
be the set of all vertices in B(D)∪ S that are adjacent in
G(D) to a vertex from Ci. Then the descriptors (Bi,vi) are
the child descriptors of D and, unless S⊆ B(D), additionally
the simple descriptor D0 = B(D)∪S.

B1C1 B2 C2

b1

b2

v s1

=s2

. . .. . .

v1 b1 v2

b2

v s1

=s2

. . .. . .

To the right, we show how child
descriptors are constructed. The first
graph is G(D) for the small descriptor
D = ({b1,b2},v). The set S = {s1,s2}
is a separator of V (D) in G(D). Re-
moving the highlighted set B(D)∪ S
yields the two components C1 and C2.
The sets B1 and B2 contain the ver-
tices from B(D)∪S adjacent to C1 and
C2, respectively. The child descriptors
of D are D1 = ({b1,b2,s1},v1), D2 =
({b2,s1},v2), and D0 = {b1,b2,s1}.

Lemma III.8 (Size Lemma). Let D be a non-simple de-
scriptor and let D′ be a child descriptor of D.

1) If D′ is simple, then |B(D′)| ≤ |B(D)|+ k+1.
2) If D is small, then |V (D′)| ≤ |V (D)|/2+ 3k+ 3 and
|B(D′)| ≤ 3k+3.

3) If D is large, then |B(D′)|< |B(D)|.

Sketch of proof: If D is small, then S separates V (D).
Thus, each component Ci can contain at most |V (D)|/2
vertices and B(D)∪S can contain at most (2k+2)+(k+1)
vertices. If D is large, then S separates B(D). Then each Bi
can contain at most |B(D)|/2 of the vertices in B(D). Since
|S| ≤ k+1 and |B(D)|> 2k+2, we get |S|< |B(D)|/2 and,
thus, |Bi|< |B(D)|/2+ |B(D)|/2 = |B(D)|.

We are now ready to define the desired descriptor decom-
position and to show that it is, indeed, a descriptor decom-
position, has logarithmic depth, and is logspace-computable.

Definition III.9. Let G be an undirected, connected graph
with tw(G) ≤ k. Let M(G) be the graph whose vertex set
contains all descriptors D in G with |B(D)| ≤ 3k + 3 for
non-simple D and |B(D)| ≤ 4k+4 for simple D and where
there are edges from each descriptor exactly to its child
descriptors.

Lemma III.10. The graph M(G) is a descriptor decompo-
sition of G.

Lemma III.11. The tree decomposition T (M(G)) has width
at most 4k + 3 and depth at most c log2 n, where c is a
constant depending only on k and n is the number of vertices
of G.

Lemma III.12. For every k ≥ 1, there is a logspace DTM
that on input of any graph G with tw(G)≤ k outputs M(G).

Sketch of proofs: It is straightforward to show that
M(G) satisfies the four properties of a descriptor decompo-
sition. To see that the tree decomposition T (M(G)) has depth
O(logn), observe that by the size lemma on any path from
the root to a leaf either the bag size decreases or the size
of the described graph halves. The graph M(G) is logspace-
computable from G because the separators S can be found
by brute force.

C. Computing Balanced Binary Tree Decompositions

In order to finish the proof of Lemma III.1, it remains
to turn high-degree tree decompositions T (M(G)) into bal-
anced binary tree decompositions.

Lemma III.13. There is a logspace DTM that on input
of any logarithmic depth tree decomposition of a graph G
outputs a balanced binary tree decomposition of G of the
same width.

Sketch of proof: Replace every node of degree more
than 2 by a binary tree and then fill up the tree so that it
becomes balanced. However, if each node of high degree is
naı̈vely replaced by a near-balanced binary tree, the height
of the resulting tree will be O(log 2n). The trick is to apply
a more careful balancing operation where nodes with many
children are placed higher in the tree.

IV. LOGSPACE CARDINALITY VERSION OF
COURCELLE’S THEOREM

In this section we prove Theorem I.3, the logspace cardi-
nality version of Courcelle’s Theorem. We follow a classical
method of proving Courcelle’s Theorem: Starting with a
tree decomposition of a structure A and a formula φ , we
construct a labeled tree T and a formula ψ such that A |= φ

if, and only if, T |= ψ . Using standard arguments, one can
then construct a tree automaton M that decides whether
T |=ψ holds. The main new problem is showing how runs of
the automaton can be used to determine the desired solution
histograms. This is done by constructing special arithmetic
trees that we call convolution trees and by showing that they
can be evaluated in logarithmic space.

An s-tree structure is a τs-tree-structure T = (V,ET ,
PT1 , . . . ,PTs ) over the vocabulary τs-tree = {E2,P1

1 , . . . ,P
1
s }

where (V,ET ) is a tree. An s-tree structure is binary or
balanced, if (V,ET ) is binary or balanced, respectively.

Lemma IV.1. Let k ≥ 1 and let φ(X1, . . . ,Xd) be an MSO-
τ-formula. Then there are a number s ≥ 1, an MSO-τs-tree-
formula ψ(X1, . . . ,Xd), and a logspace DTM that on input



of any τ-structure A with universe A and tw(A) ≤ k
outputs a balanced binary s-tree structure T such that for
all indices i ∈ {0, . . . , |A|}d we have histogram(A,φ)[i] =
histogram(T ,ψ)[i].

Sketch of proof: The proof is a variation of the one by
Arnborg et al. [3]. We first construct a tree decomposition
of width k′ = 4k+3 using Lemma III.1 and turn it into an
s-tree structure T as follows: We attach element nodes to
each node of the tree decomposition, one for each element
of the node’s bag. Then we color the element nodes using
up to 2k′ + 2 colors so that if two elements a and b in
A’s universe are present in two adjacent bags, then the
corresponding element nodes get the same color if, and only
if, a = b. An example of this transformation for the tree
decomposition {b,c}{a,b} {c,d} is shown below right.

a c d

b

Unary predicates on the element
nodes are used to locally encode
the relations of A at the bags.
Another unary predicate singles
out a set of representative element
nodes that are in one-to-one cor-
respondence to elements of A’s
universe. In the right example, representatives element nodes
for a, b, c, and d are indicated. By allowing only these nodes
to be used for the assignments to free and bound variables,
we obtain a histogram-preserving reduction.

The next step is to establish a relationship between s-
tree structures and tree automata. For this, given a binary s-
tree structure T =(V,ET ,PT1 , . . . ,PTs ) and sets S1, . . . ,Sd ⊆V
let us write T (T ,S1, . . . ,Sd) for the tree (V,ET ) where we
label each node v ∈ V with the bitstring l1 . . . lsx1 . . .xd ∈
{0,1}s+d with li = 1 ⇐⇒ v ∈ PTi and xi = 1 ⇐⇒ v ∈ Si.
An example is shown right for the 1-tree structure T

1

2

4 5

3

T (T ,∅,{1,4})

101

000 100

001 100

with V = {1,2,3,4,5}, ET = {(1,2),
(1,3),(2,4),(2,5)}, PT1 = {1,3,5},
S1 = ∅, and S2 = {1,4}. We write
T (T ) in case d = 0. A tree automa-
ton can work on T (T ,S1, . . . ,Sd) if
we choose a distinguished left child
for each inner node. Different ver-
sions of the following fact are used in many versions of
Courcelle’s Theorem, the below formulation is implicitly
shown in [3]. To prove it, one inductively constructs tree
automata for subformulas and combines them to automata
for composed formulas.

Fact IV.2. For every s ≥ 0 and every MSO-τs-tree-formula
φ(X1, . . . ,Xd), there is a tree automaton M with alphabet
Σ = {0,1}s+d such that for all binary s-tree structures T
and all subsets S1, . . . ,Sd ⊆V we have T |= φ(S1, . . . ,Sd) if,
and only if, M accepts T (T ,S1, . . . ,Sd).

In view of Fact IV.2 and Lemma IV.1, we need to deter-
mine how many sets S1, . . . ,Sd ⊆V of certain sizes make M

accept T (T ,S1, . . . ,Sd). If the formula φ has no free predi-
cate variables and, hence, there are no sets Si to choose, this
problem can be solved by a simulation of the automaton M
that traverses the tree T (T ) in a depth first recursion. Since
T (T ) is balanced, binary, and for every node on the stack we
only use a constant amount of bits that depends on M, this
gives a logspace procedure. If φ has free predicate variables,
we reduce the problem to evaluating convolution trees.

∗(
2 3
1 1

)
+(

1 0
0 1

) (
2 0
1 0

)

(
6 9 0
5 8 3
1 2 1

)
(

3 0
1 1

)
In the following, an [r]d-array is a d-
dimensional array of non-negative in-
tegers where all indices i = (i1, . . . , id)
are elements of the index set [r]d =
{0, . . . ,r− 1}d . We call r the range.
The addition of two arrays is defined
component-wise in the obvious way.
The convolution of an [r]d-array A and
an [s]d-array B is the [r+ s−1]d-array
C = A ∗B defined by C[i] = ∑ j∈[r]d ,k∈[s]d , j+k=i A[ j] ·B[k]. A
convolution tree T is a tree whose leafs are labeled by arrays
of appropriate sizes and whose inner nodes are labeled by +
or ∗. Its value val(T ) is the array resulting from recursively
applying the operation in each node to the values of the child
trees. In the example above the (2×2)-matrices at the leafs
are [2]2-arrays; position (0,0) lies at the upper left corner.

Lemma IV.3. Let M be a tree automaton with alphabet
{0,1}s+d . Then there exists a logspace DTM that maps
every binary balanced s-tree structure T to a convolution
tree T where val(T )[i1, . . . , id ] is exactly the number of
sets S1, . . . ,Sd ⊆ V with |S j| = i j for which M accepts
T (T ,S1, . . . ,Sd).

Sketch of proof: Let T be a binary balanced s-tree
structure with node set V . To simplify the induction later on,
we also allow the “empty” s-tree structure T with V = ∅.
The first observation is that in order to count how many
sets Si of certain sizes make M accept T (T ,S1, . . . ,Sd),
we can add the number of sets of these sizes that make
M reach its different accepting states. Thus, we focus on
computing how many sets Si make M reach a particular
state q. For this, we construct convolution trees C(T ,q)
such that val

(
C(T ,q)

)
[i1, . . . , id ] is exactly the number of

sets S1, . . . ,Sd ⊆V with |S j|= i j for which M reaches q on
input T (T ,S1, . . . ,Sd).

The trees C(T ,q) are constructed inductively: If T is
empty, then C(T ,q) is a single leaf whose attached array is a
single entry, which we set to 1 for q= q0 and to 0 otherwise.
For T with a root r and left and right child trees Tleft and
Tright, let Vleft and Vright be their node sets, respectively, and
let l be the label of r in T (T ). Then the root of the tree
C(T ,q) is a +-node that has one child node for each triple
(qleft,qright,x) ∈ Q×Q×{0,1}d with δ (qleft,qright, lx) = q.
Each child node is a ∗-node (a convolution node) that
has three children: One child is C(Tleft,qleft), one child is
C(Tright,qright), and one child is a leaf to which we attach



the [2]d-array with binary entries that has a 1-entry exactly
at index (x1, . . . ,xd). For example, for a tree T with subtrees
Tleft and Tright, the convolution tree looks like this:

+

∗

C(Tleft,q2) C(Tright,q1)
(

0 0
0 1

)
. . . . . . . . .

∗(
0 0
1 0

)
C(Tleft,q5) C(Tright,q7)

present if
δ
(
q5,q7, l10

)
= q

present if
δ
(
q2,q1, l11

)
= q

One then shows that the construction is correct: The
sets Si that make M reach state q on input T can be
partitioned according to the different triples (qleft,qright,x)
with δ (qleft,qright, lx)= q. Thus, it is correct to add the values
for the different triples that lead to q. Next, the number
of sets Si that make M reach state q via fixed qleft, qright
and x with, say, |S1| = 15 can be calculated as follows:
If |S1 ∩ {r}| = 0, it equals the number of ways we can
reach qleft on the left subtree with |S1∩Vleft| = 0 times the
number of ways we can reach qright on the right subtree with
|S1∩Vright|= 15, plus the number of ways with |S1∩Vleft|= 1
times the number of ways with |S1∩Vright|= 14, and so on.
If |S1∩{r}|= 1, the sum of products is taken for the child
sets whose sizes add up to 14 instead of 15. In both cases,
the sum of products is exactly the convolution of the child
values.

The tree T can be computed recursively starting from
the root of a given binary balanced s-tree structure. For
every node we only have to store a constant number of
bits that depend on the transition function of M. Together
with the fact that the input tree has logarithmic depth, the
overall stack space is bounded by a function of M times the
logarithm of the input size.

All that remains to be done is to evaluate convolution
trees in logarithmic space. For this we introduce a bit of
terminology. Let N and R be two fixed bases, both to be
chosen later. Given an [r]d-array A, let

num(A) = ∑
i∈[r]d

A[i]Ni1+i2R+···+idRd−1
.

Trivially, num(A+B) = num(A)+num(B). For an [r]d-array
A and an [s]d-array B we have num(A ∗ B) = num(A) ·
num(B), because equation (1) holds.

Lemma IV.4. There exists a logspace DTM that on input of
any convolution tree outputs its value.

Sketch of proof: The machine first determines two
numbers N and R as follows: N is chosen to be 2p where p
is upper-bounded by a polynomial in the length of the input
and R is the sum of all ranges of all leaf arrays. Using
structural induction, one then shows that these numbers
are large enough such that for all i ∈ [r]d the integer
val(T )[i1, . . . , id ] can be found at the p bits prior to position
i1 + i2R+ · · ·+ idRd−1 from the right (least-significant) end
of the binary representation of num(val(T )). As an example,
for N = 24 and R = 3, the entry 3 at index (0,1) of the [2]2-
array A =

(
1 3
2 4

)
can be found at the underlined bits of

num(A) = 1N0·R0+0·R1
+2N1·R0+0·R1

+

3N0·R0+1·R1
+4N1·R0+1·R1

= 274465 = 010000110000001000012.

The machine maps the convolution tree T to an arithmetic
tree T ′ whose leafs are labeled with ordinary integers by re-
placing every leaf array A by num(A) and every convolution
node by a multiplication node. Then, since num(A+B) =
num(A)+ num(B) and num(A ∗B) = num(A) · num(B), we
immediately get that the value of the resulting ordinary
arithmetic {+,×}-tree is num(val(T )). Since evaluating
{+,×}-trees can be done in logarithmic space [5], [12], [14],
[25], we get the claim.

V. LOGSPACE VERSION OF BODLAENDER’S THEOREM

In this last section we prove Theorem I.1, the logspace
version of Bodlaender’s Theorem. For the proof, we first
need to show that TREE-WIDTH-k ∈ L holds for all k.
Then, we reapply the ideas from Section III, only we make
sure that in the constructed descriptor decomposition M the
implicit tree decomposition T (M) has width k. The first step
toward proving Theorem I.1 is thus proving Lemma I.4.

Sketch of proof of Lemma I.4: To show that TREE-
WIDTH-k ∈ L holds, on input G we first apply Lemma III.1
and test whether the result is a tree decomposition of width
4k+ 3. If not, we reject. Otherwise, observe that for every
k the graph property “the graph has tree width k” can be
characterized constructively by a finite set of forbidden mi-
nors [33] and that the question of whether a graph contains

num(A) ·num(B) =
(

∑
j∈[r]d

A[ j]N j1+ j2R+···+ jdRd−1
)(

∑
k∈[s]d

B[k]Nk1+k2R+···+kdRd−1
)

= ∑
j∈[r]d ,k∈[s]d

A[ j]B[k]N( j1+k1)+( j2+k2)R+···+( jd+kd)R
d−1

= ∑
i∈[r+s−1]d

(
∑

j∈[r]d ,k∈[s]d , j+k=i

A[ j]B[k]
)

Ni1+i2R+···+idRd−1
= num(A∗B) (1)



a given minor is expressible using an MSO-formula φ [3].
Use Theorem I.2 to test whether G |= φ . Since the algorithm
of Theorem I.2 internally accesses the tree decomposition
produced by Lemma III.1, the result will be correct. For
hardness, reduce ACYCLICITY to TREE-WIDTH-k by replac-
ing each vertex with a size-k clique and each edge by a set
of edges that mimic the construction of a k-path between
the “incident cliques”.

Sketch of proof of Theorem I.1: We reuse the machinery
developed in Section III for the construction of approximate
tree decompositions. By Lemma III.5 it suffices to construct
a descriptor decomposition M of the input graph G in
logarithmic space. The idea is that for a given descriptor D
we can use Lemma I.4 to tell us which child descriptors
should be picked in order to allow tree decompositions of
width k for the smaller child graphs and, consequently, a
tree decomposition of width k for G(D). In detail, given
a descriptor D we search for a bag B′ ⊆ V (D) with the
following properties:

1) |B′|= k+1 and B′∩ I(D) 6= ∅.
2) There is no edge between a vertex in B(D)−B′ and

a vertex in I(D).
3) Let C1, . . . , Cm be the components of the graph

G[I(D)−B′]. Then for each i ∈ {1, . . . ,m} the graph
G[V (Ci)∪B′]∪KB′ must have tree width at most k.
Here, KB′ is the clique on B′.

One now shows that such a B′ always exists. To find it in
logarithmic space, a machine can iterate over all possible
B′ and each time invoke Lemma I.4 on G[V (Ci)∪B′]∪KB′ .
Once B′ is found, for each i∈ {1, . . . ,m} choose vi in Ci and
let B′ and all (B′,vi) be the child descriptors of D.

VI. CONCLUSION

Like the classical theorems of Bodlaender and of Cour-
celle, their logspace versions are useful tools in classifying
the complexity of problems on graphs of bounded tree width.
We have sketched a number of applications; indeed our
own proof of the logspace version of Bodlaender’s Theorem
makes heavy use of the logspace version of Courcelle’s
Theorem. We are confident that applications beyond the ones
indicated will be found.

There are three intriguing open problems that we would
like to point out:

First, can we generalize the logspace algorithms for
UNARY-SUBSETSUM and UNARY-KNAPSACK to solve unary
variants of other, more general, pseudopolynomial prob-
lems?

Second, what is the complexity of the graph isomorphism
problem on graphs of bounded tree width? Researches
have steadily lowered the complexity bound from P [7]
to TC1 [24] and to LOGCFL [20]. While one bottleneck
in the latest paper [20], namely the construction of tree
decompositions in logarithmic space, is removed by the
present paper, it is still unclear whether the complexity can

be lowered to L. One promising approach may be to first
study the graph automorphism problem.

Third, can one devise logspace algorithms for more gen-
eral width parameters [26]? One example is clique width,
whose defining decompositions, the k-expressions, can be
approximated in polynomial time [35].
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