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Abstract—We present a new algorithm for learning a convex
set in n-dimensional space given labeled examples drawn from
any Gaussian distribution. The complexity of the algorithm is
bounded by a fixed polynomial in n times a function of k and
ε where k is the dimension of the normal subspace (the span of
normal vectors to supporting hyperplanes of the convex set) and
the output is a hypothesis that correctly classifies at least 1−ε of
the unknown Gaussian distribution. For the important case when
the convex set is the intersection of k halfspaces, the complexity
is

poly(n, k, 1/ε) + n · min kO(log k/ε4), (k/ε)O(k),

improving substantially on the state of the art [Vem04], [KOS08]
for Gaussian distributions. The key step of the algorithm is a
Singular Value Decomposition after applying a normalization.
The proof is based on a monotonicity property of Gaussian space
under convex restrictions.

Index Terms—High-dimensional learning; convex; PCA; Gaus-
sians; polynomial time;

I. INTRODUCTION

Let a set of points in R
n be drawn from an unknown

distribution with each point labeled positive if it belongs to

an unknown set K and negative otherwise. In this paper, we

are interested in the complexity of learning K, i.e., finding

a hypothesis that correctly labels almost all of the input

distribution, in the case when K is convex and the input

distribution is an unknown Gaussian. Nearly matching upper

and lower bounds of roughly 2Õ(
√

n) were established for

general K in recent work [KOS08] (see also [GR09]). These

lower bounds do not apply to many interesting classes of

convex sets, e.g., intersections of a polynomial number of

halfspaces. It is well-known that a single halfspace can be

PAC-learned in polynomial time, and that an intersection of a

constant number of halfspaces can be learned from restricted

distributions (uniform over a ball, noncencentrated over a

ball, Gaussian and logconcave) in polynomial time [Bau90a],

[Bau90b], [BK93], [Vem97], [Vem04], [KOS08], [KLT09],

[Vem10]. We discuss the history of this problem in detail in

Section II. We note that without any assumptions on the input

distribution, the complexity of learning an intersection of two
halfspaces is a major open question.

Here we consider a general setting that captures the in-

tersection of k < n halfspaces, namely we assume that the

normal vectors to supporting hyperplanes of the unknown

convex set K lie in an (unknown) k-dimensional subspace for

some k < n. One can view this as a convex set in R
k lifted

orthogonally. To check whether a point x lies in K, one only

has check whether the projection of x to the normal subspace

lies in K. More precisely, a convex set K in R
n has a normal

subspace V defined as the span of all normals to supporting

planes of K. It follows that

K = {x ∈ R
n : πV (x) ∈ K ∩ V }

where πV is the projection to V . For example, if K is defined

by an intersection of k halfspaces a1 ·x ≥ b1, . . . , ak ·x ≥ bk,

then V is the span of the normals a1, . . . , ak. If K is a convex

cone, then V is the span of its dual cone. If K is a full-

dimensional convex body, then V = R
n.

Our main contribution in this paper is a simple algorithm

to approximately recover the normal subspace: apply an affine

transformation (that ignores labels), then apply Principal Com-

ponent Analysis (PCA) to the subset of examples labeled

positive and declare the relevant subspace to be the span

of the smallest k principal components. Once the normal

subspace has been identified, we project examples to it and

the complexity of learning the unknown convex set becomes

a function of k and not n.

A. Results

We assume that the distribution on examples, F = (μ, Σ),
is a Gaussian distribution in R

n. Points are labeled according

to a convex set K whose normal subspace has dimension k
with the labeling function � : R

n → {−1, 1} defined as:

�(x) =

{
1 if x ∈ K

−1 if x �∈ K.

In addition to labeled examples from an unknown Gaussian,

the algorithm is given two error parameters ε, δ > 0. The

algorithm is required to succeed with probability at least 1−δ
in finding a hypothesis that correctly classifies at least 1 − ε
of the unknown input distribution. All our complexity bounds

will depend on δ by a factor ln(1/δ), so we do not mention

this term in the theorems that follow.

Theorem 1.1: Suppose points in R
n are drawn from an

unknown Gaussian distribution and labeled according to an

unknown convex set K with a normal subspace of dimension



k. Then, there is an absolute constant C such that for any

ε > 0, this concept can be learned to accuracy 1 − ε using

C

ε6
· n · e2k(k + ln(1/ε)) ln2 n + kÕ(

√
k/ε4)

examples and

C

ε6
· n · e2k(k + ln(1/ε)) ln2 n + nkÕ(

√
k/ε4)

time.

The complexity bounds are considerably smaller when the

unknown hypothesis is an intersection of k halfspaces.

Theorem 1.2: Suppose points in R
n are drawn from an

unknown Gaussian distribution in R
n and labeled according

to an intersection of k halfspaces. Then there is an absolute

constant C such that for any ε > 0, this concept can be learned

to accuracy 1 − ε using

C

ε6
nk6 ln2 n ln(k/ε) + min kO(ln k/ε4),

(
k

ε

)O(k)

examples and

C

ε6
n3k6 ln2 n ln(k/ε) + n · min kO(ln k/ε4),

(
k

ε

)O(k)

time.

The main new theorem underlying both of these is the

following guarantee on identifying the normal subspace.

Theorem 1.3: Given examples in R
n drawn from an un-

known Gaussian and labeled according to a convex set K
whose normal subspace has dimension k, and any ε, δ > 0,

Algorithm Spectral-Subspace (Section III) outputs a subspace

V of dimension at most k such that with probability at least

1 − δ, the hypothesis

�(x) = 1 iff πV (x) ∈ K ∩ V

correctly classifies at least 1 − ε of the distribution F . The

number of labeled examples required is bounded by

S =
C

ε6
· ne2k(k + ln(1/ε)) ln2 n ln(1/δ)

where C is an absolute constant and the time complexity

is O(Sn2). When K is the intersection of k halfspaces, the

sample complexity bound improves to

s = C · k6

ε6
· n ln2 n ln(1/δ) ln(k/ε)

and the time complexity is O(sn2).
Our analysis relies on a monotonicity property of Gaussian

space under convex restrictions (Lemma 4.8): restricting a

Gaussian to any convex set decreases the variance in any

direction along which the convex set imposes a nontrivial

restriction. This property is perhaps a bit surprising since it

does not hold for other logconcave distributions, even the

uniform distribution over a unit ball — restricting a unit ball

in R
n to a narrow one-dimensional cylinder can make the

variance in the direction of the axis of the cylinder increase

from roughly 1/
√

n to 1. This monotonicity lemma settles an

open question posed by O’Donnell [Goy05].

II. RELATED WORK

Learning convex sets is a fundamental topic in algorithms

and has been studied from many angles, including its sam-

ple complexity and computational complexity. The simplest

convex concept, a single halfspace, can be PAC-learned in

polynomial time via efficient linear programming algorithms.

The complexity of the next natural question, PAC-learning

an intersection of two halfspaces is open. Much progress

has been made on learning an intersection of two or more

halfspaces under restricted distributions and on learning using

restricted hypothesis classes, e.g., polynomial threshold func-

tions [She10].

In 1990, Baum [Bau90b] gave an algorithm for learning

an intersection of two homogeneous halfspaces (a halfspace

is homogeneous if the hyperplane defining it passes through

the origin) over any distribution D that is origin-symmetric,

i.e., for any x ∈ Rn, the density/probability at x is the same

as at −x. Baum’s algorithm was recently shown to work for

logconcave distributions [KLT09]. A few years after Baum’s

work, Blum and Kannan [BK93], [BK97] found a polynomial-

time algorithm that works for a constant number of halfspaces

for the uniform distribution on the unit ball. The running time,

the number of examples required and the size of the hypothesis

reported by their algorithm are all doubly exponential in k,

namely n2O(k)
.

In 1997, we presented an algorithm [Vem97], [Vem04]

whose running time and sample complexity were nk(k/ε)O(k),

i.e., singly exponential in k1. The algorithm was shown to

work for near-uniform distributions on the unit ball with

the property that the density does not vary by more than a

polynomial factor. Moreover, it explicitly finds an intersection

of O(k log(1/ε)) halfspaces. Recently, this algorithm and its

analysis were extended to any logconcave distribution in R
n

with the same complexity bounds [Vem10].

Klivans, O’Donnell and Servedio [KOS08] gave an algo-

rithm based on approximating an intersection of k halfspaces

with a low-degree polynomial threshold function. Their ap-

proach has time and sample complexity nO(log k/ε4), works for

Gaussian input distributions, and outputs a hypothesis that is

a polynomial threshold function of degree O(log k/ε4). They

also showed that for more general convex sets, the complexity

of learning from a Gaussian distribution is 2Õ(
√

n/ε4) and gave

a nearly matching lower bound for the sample complexity

[KOS08]. A similar lower bound was also given in [GR09].

III. ALGORITHM

The number of samples needed by the algorithm below,

m, depends on hypothesis class and is given in the theorems

providing guarantees for the algorithm. Steps 2 and 3 below

are usually referred to together as PCA, i.e., computing the

Singular Value Decomposition (SVD) after shifting the mean

to be the origin.

1The conference version [Vem97] claimed a fixed polynomial dependence
on n and this was corrected in [Vem04].



Spectral-Subspace

Input: A matrix A whose m rows are points in R
n,

their labels, and an integer k.

Output: A subspace V of dimension k.

1) (Make isotropic) Apply an affine transformation

T so that the resulting set of points B = AT
is isotropic, i.e., the rows sum to zero and

(1/m)BT B = I .

2) (Center positive examples) Let B+ be the sub-

set of points labeled positive with mean μ+.

Center B+ at the origin to get C:

C = B+ − 1(μ+)T .

3) (Compute SVD) Let v1, . . . , vk, be the smallest

right singular vectors of C. The output subspace

is

V = T span{v1, . . . , vk}.

Once we have an approximation to the relevant subspace,

we project samples to it, then learn the concept in the lower-

dimensional subspace. One simple way to do this is the

following procedure, used as the final step in the algorithm

of [Vem97], [Vem10].

1) Cover the unit sphere in R
k with a set of vectors S such

that every unit vector is within angle ε/4k from some

vector in S.

2) Then greedily choose a subset of vectors that maximize

the number of negatives separated from at least (1−ε/4)
of the positives. The halfspaces corresponding to this

subset should separate all but at most an ε/4 fraction of

the negatives.

In R
k, there is a cover with the above property of size

(k/ε)O(k). The greedy algorithm is analyzed similar to

set cover (see e.g., [Vem10]) and finds a set of at most

O(k log(1/ε)) that correctly classify most of the sample. Thus

the complexity post-projection is (k/ε)O(k) and the number

of samples required is poly(k, 1/ε). We state this guarantee

formally in Section IV-A as Theorem 4.5.

The other alternative is to fit a polynomial threshold function

as in [KOS08]. For an intersection of k halfspaces, the degree

required is O(log k/ε4) and thus the complexity is kO(log k/ε4).

IV. ANALYSIS

We begin with an overview. The main idea of the algorithm

is to identify the normal subspace using PCA. More precisely,

if the full distribution is isotropic (the covariance matrix has all

unit eigenvalues), we will show that the positive distribution

has the same variance as the full distribution along any

direction orthogonal to the normal subspace, but for directions

in the normal subspace, the variance is smaller; thus finding

the smallest k principal components and projecting to their

span reduces the dimensionality of the learning problem from

n to k.

Why does PCA capture the normal subspace as the span of

its smallest principal components? To see this, we first observe

that the distribution is a standard Gaussian after the isotropic

transformation. It follows immediately from the symmetry of

the Gaussian distribution that for directions orthogonal to the

normal subspace N , the variance is the same for the positive

distribution and the full distribution, since the projection to the

normal subspace gives a standard Gaussian. Indeed, it is the

same along every line orthogonal to N . The key observation

driving the algorithm is that the variance along any direction

of a standard Gaussian restricted to a convex body is less than

1, regardless of the shape of the body (Lemma 4.7). Once this

is established, the remaining technical challenge is to quantify

the decrease in variance and bound the number of samples

required to estimate it to sufficient accuracy.

A. Preliminaries

The first lemma below is a well-known fact about Gaussian

concentration.

Lemma 4.1: Let X be drawn from a standard Gaussian in

R
n. Then, for any t > 0,

Pr(|‖X‖2 − n‖ ≥ t
√

n) ≤ 2e−t2/8.

The following bound on the number of samples to estimate

the first and second moments of a logconcave distribution is

based on a lemma from [Rud99], applied in [LV07].

Lemma 4.2: Let X1, . . . , Xm be random samples from an

isotropic logconcave distribution in R
n so that the sample

mean is μ̂ and the sample covariance matrix is Σ̂. For any

1 > γ, δ > 0, if

m > C · 1
γ2

· n log2(n/δ),

then with probability at least 1 − δ, we have ‖μ‖ ≤ γ and

‖Σ − I‖2 ≤ γ.

The following lemma appears to be a folklore fact about

one-dimensional logconcave functions. We only use it for

the special case of a Gaussian density function restricted to

an interval. Here and in the rest of the paper, for a one-

dimensional random variable X with density f , we write

Ef (X) = E(f) and Varf (X) = Var(f).
Lemma 4.3: Let f : R → R+ be a logconcave density

function. For r ∈ R, let fr be density obtained by restricting

the support of f to x ≤ r, i.e.,

fr(x) =

{
f(x)∫ r

−∞ f(x) dx
if x ≤ r

0 otherwise.

Then, Var(fr) ≤ Var(f).
Proof: It suffices to show that

dVar(fr)
dr

= ((r − E(fr))2 − Var(fr))fr ≥ 0.



For r = 0, this says that for a random variable X from a

logconcave density with nonnegative support,

E(X2) ≤ 2E(X)2,

which follows from Lemma 5.3(c) in [LV07]).

We will use the following one-dimensional variant of the lo-

calization lemma of Lovász and Simonovits [LS93], [KLS95].

Lemma 4.4: Let f1, f2, f3, f4 be nonnegative continuous

functions defined on an interval [a, b] and let α, β > 0. Then

the following are equivalent:

1) (a) For every logconcave function F on R,∫ b

a

F (t)f1(t) dt =
∫ b

a

F (t)f2(t) dt

and ∫ b

a

F (t)f3(t) dt ≤
∫ b

a

F (t)f4(t) dt;

2) (b) For every subinterval [a′, b′] ⊆ [a, b] and every real

γ, ∫ b′

a′
eγtf1(t) dt =

∫ b′

a′
eγtf2(t) dt

and ∫ b′

a′
eγtf3(t) dt ≤

∫ b′

a′
eγtf4(t) dt.

We conclude this section with known guarantees learning an

intersection of halfspaces from Gaussians. The first is a simple

greedy algorithm applied to a net of candidate halfspaces

(described briefly in Section III).

Theorem 4.5: [Vem10] An intersection of k halfspaces in

R
k can be PAC-learned in time (k/ε)O(k) using O((k2/ε))

labeled examples from a Gaussian distribution, as a hypothesis

that is an intersection of O(k log(1/ε)) halfspaces. This guar-

antee holds even if an arbitrary ε/2 fraction of the examples

are wrongly labeled.

The second algorithm uses polynomial threshold functions

and has an agnostic learning guarantee, i.e., it finds a hy-

pothesis of classification error at most ε more than the best

possible error using an intersection of k halfspaces. There is

no need to assume a bound on the classification error of the

best intersection of halfspaces.

Theorem 4.6: [KOS08] An intersection of k halfspaces

in R
k can be agnostically learned from a Gaussian input

distribution with time and sample complexity kO(log k/ε4) as

a polynomial threshold function of degree O(log k/ε4). Any

convex set in R
k can be agnostically learned from a Gaussian

input distribution with time and sample complexity kO(
√

k/ε4),

as a polynomial threshold function of degree O(
√

k/ε4).

B. A monotonicity property of Gaussians

The next lemma is a monotonicity property of Gaussians

and plays an important role in the proof.

Lemma 4.7: Let f : R → R+ be a logconcave function

such that ∫
R

xe−(x−μ)2/2f(x) dx = 0.

Then, ∫
R

x2e−(x−μ)2/2f(x) dx∫
R

e−(x−μ)2/2f(x) dx
≤ 1

with equality holding only if f is constant everywhere in R.

Moreover, if the support of f is [a, b] with |a| > b > 0, then

∫ b

a
x2e−(x−μ)2/2f(x) dx∫ b

a
e−(x−μ)2/2f(x) dx

< 1 − 1
2π

e−b2 .

We note that this lemma is closely related to the Brascamp-

Lieb inequality [BL76]. One version of this inequality (see

e.g., [BL00]) says

Varμ(f) ≤
∫

Rn

‖∇f‖2 dμ

where μ is the standard Gaussian distribution in R
n and f :

R
n → R is a smooth function (locally Lipschitz). Here if we

take f to be the inner product with a fixed unit vector u ∈ R
n,

we get the variance along u on the LHS and 1 on the RHS.

However, we are unable to use this inequality directly for two

reasons. First, convex restrictions are not smooth functions,

and second, we need quantitative bounds on how much smaller

the LHS is compared to 1.

Proof: Using Lemma 4.4, it suffices to prove the conclu-

sion for f(x) = ceγx for any γ ∈ R, c > 0. Then the equation

can be rewritten as:∫ b

a

xe−(x−μ)2/2f(x) dx

= c

∫ b

a

xe−
(x−μ)2

2 +γx dx

= ceμγ+γ2/2

∫ b

a

xe−(x−μ−γ)2/2 dx = 0

and the LHS of the inequality is

∫ b

a
x2e−(x−μ−γ)2/2 dx∫ b

a
e−(x−μ−γ)2/2 dx

.

In words, we have a Gaussian density restricted to [a, b] so that

the mean is zero and we wish to bound its second moment,

i.e., we wish to bound its variance. Since |a| ≥ b, it follows

that γ + μ ≥ 0. Define ga,b to be the density proportional to

e−(x−μ−γ)2 restricted to [a, b]. (Recall that the restriction of

a logconcave function to any interval is logconcave). We now

apply Lemma 4.3 twice, first to observe that

Var(ga,b) ≤ Var(g−∞,b)

and then to observe that the variance is a decreasing function

of μ + γ (for μ + γ ≥ 0) since

Var(g−∞,b−ε) ≤ Var(f−∞,b)



for any ε > 0. Thus, it suffices to bound the variance of g−∞,b

when γ + μ = 0, i.e.,

∫ b

−∞ x2e−x2/2 dx∫ b

−∞ e−x2/2 dx
−

(∫ b

−∞ xe−x2/2 dx∫ b

−∞ e−x2/2 dx

)2

≤ 1 −
(∫ −b

−∞ xe−x2/2 dx∫ b

−∞ e−x2/2 dx

)2

≤ 1 −
(∫ −b

−∞ e−x2/2 dx∫ −b

−∞ e−x2/2 dx
· b

)2

≤ 1 − e−b2

2π
.

Here we used a tail bound on the standard Gaussian: the

integral of the standard Gaussian density between b and ∞
is at most e−b2/2/

√
2πb.

Lemma 4.7 readily leads to the following more succinct

statement.

Lemma 4.8: Let g be the standard Gaussian density func-

tion in R
n and f : R

n → R+ be any logconcave function.

Define the function h to be the density proportional to their

product, i.e.,

h(x) =
f(x)g(x)∫

Rn f(x)g(x) dx
.

Then, for any unit vector u ∈ R
n,

Varh(u · x) ≤ 1 − e−b2

2π

where the support of f along u is [a0, a1] and b =
min{|a0|, |a1|}.

C. PCA works

As a warm-up, to convey the main idea, we prove the fol-

lowing theorem which assumes access to the full distribution

(not just a sample).

Theorem 4.9: Let F = (μ, Σ) be a Gaussian distribution in

R
n and F+ be the restriction of F to a convex set K with

normal subspace N of dimension k. Suppose the smallest k
principal components of F+ are v1, . . . , vk. Then,

N = span{v1, . . . , vk}.

Proof: The first step of our algorithm effectively makes

the input distribution a standard Gaussian. To simplify no-

tation, we assume this is the original distribution. By the

symmetry of the Gaussian density along directions orthogonal

to N , the variances of F and F+ are equal along any direction

orthogonal to N . So we project both distributions to N , to get

Fk and F+
k . It is clear that F+

k is the restriction of Fk to K.

Moreover, the mean μ+ of F+ lies in N . Let P = K ∩ N
denote the positive region projected to N . We will now bound

the variance of the Gaussian restricted to P along any direction

in N . Let v be such a direction. Project the distribution to v.

For convenience, we can assume that v = e1. Define the

function f : R → R+ as:

f(z) =
∫

x∈Rk:x1=z

h((x2, . . . , xk))χP (x) dx

where χP is the indicator function of P and h is the density

of a (k − 1)-dimensional Gaussian. The integrand above is a

product of logconcave functions and hence also logconcave;

the function f is logconcave since it is a projection of a

logconcave function. The integral of the density over the cross-

section of P orthogonal to v at z is proportional to e−z2/2f(z).
Then, since the mean of the projected distribution is μv =

μ+ · v, we have∫ b

a

ze−(z−μv)2/2f(z − μv) dz = 0

where [a, b] is the support of P along v after shifting by μv .

Then, ∫ b

a
z2e−(z−μv)2/2f(z − μv) dz∫ b

a
e−(z−μv)2/2f(z − μv) dz

< 1

using Lemma 4.7. Thus, the variance along a vector v is less

than 1 if it lies in N and equal to 1 if it is orthogonal to N .

The main remaining difficulty is to handle the error

introduced by sampling. To do this, we derive bounds on the

singular value gap and on the error in estimating singular

values introduced by sampling to conclude that the subspace

identified must indeed be close to the normal subspace N .

Proof: (of Theorem 1.3. ) We assume w.l.o.g. that the

full distribution is isotropic. Let N be the normal subspace of

the convex set K used to label examples. Let the projection

of the Gaussian restricted to K to the subspace N induce the

density fN . The projection of the full distribution F to N is a

standard Gaussian. The support of fN is a convex set K ∩N
and its mean is μ+ (which lies in N ). For convenience in the

rest of this proof, we translate μ+ to be origin. Define M(u)
be the second moment (equal to the variance since we shifted

the mean to the origin) along a unit vector u according to the

density fK . Consider any direction u ∈ N along which there

is a tangent plane to K at distance at most r from the origin.

Then, by Lemma 4.7,

M(u) = EfN
((u · x)2) < 1 − 1

8
e−r2

.

Given this bound, the rest of the proof is conceptually straight-

forward. The vectors found by PCA are the k orthogonal

vectors with smallest second moments. So, we aim to show

that sampling preserves the gap between moments of vectors

in the relevant subspace and those orthogonal to it. One

complication is that although the relevant subspace has dimen-

sion k, it could effectively be lower-dimensional due to mild

restrictions (boundary far from the origin) in some directions.

The variance in such directions could be indistinguishably

close to 1. To overcome this, we note that all that matters



is that we recover the subspace in which the moments are

distinctly smaller than 1. This is because the concept is

preserved (i.e., correctly classifies the input distribution) even

upon projection to this possibly smaller subspace. We now

make this argument formal.
Let a(r) = (1/8)e−r2

. Let N1 be the subspace of N in

which for every u ∈ N1, M(u) ≤ 1 − a(r)/2. We will now

choose our sample size so that the smallest k singular vectors

span a subspace close to N1. We first argue that any subspace

close to N1 (for a suitable choice of r) will be a good subspace,

i.e., will preserve most of the concept upon projection.
Consider a ball in N of radius r =

√
k + 2

√
log(1/ε)

centered at the origin. By the concentration of a Gaussian

(Lemma 4.1), the total measure of the projection of F outside

this ball is at most ε2. Let N1 be spanned by orthogonal

vector v1, . . . , vl such that each of their variances is less than

1 − 1
16e−r2

, and the variance of any vector orthogonal to N1

is higher than this. Then in the subspace orthogonal to their

span, we can assume that the support of f contains the ball

of radius r, and so this orthogonal subspace can be ignored.

Therefore, the intersection of K with the subspace V spanned

by v1, . . . , vl correctly classifies at least 1− ε2 of F projected

to V .
When K is an intersection of k halfspaces, it suffices to set

r = 2
√

log(k/ε). A tangent plane at greater distance than r
cuts off at most ε2/k of the underlying Gaussian and therefore

an intersection of k halfspaces, each at this distance from the

origin, retains at least 1 − ε2 measure.
Finally, we show that the subspace found by the algorithm

contains a subspace close to N . The algorithm uses an i.i.d.

sample of vectors x1, . . . , xm from the positive distribution.

The estimate of the variance in any direction u is

M̃(u) = uT

(
1
m

m∑
i=1

xix
T
i

)
u.

We choose m large enough to guarantee that for every direc-

tion u ∈ R
n,

(1 − γ)M(u) ≤ M̃(u) ≤ (1 + γ)M(u)

with probability at least 1−δ/4. Using Lemma 4.2, the number

of samples to estimate the variance to within relative error γ
in every direction is O(n log2 n log(1/δ)/γ2). We will choose

γ at the end.
Thus, for unit vectors u orthogonal to N , the estimated

moment is M̃(u) ≥ 1 − γ, while for u ∈ N1,

M̃(u) ≤ (1 + γ)(1 − a(r)
2

).

For general u, we write u =
√

αu1 +
√

(1 − α)u2 where

u1 ∈ N1, u2 ∈ N ∩ N⊥
1 and α ∈ [0, 1]. Then,

M̃(u) ≥ (1 − γ) (αM(u1) + (1 − α)M(u2)) .

If u is chosen as a small singular vector, then it must have

second moment smaller than the second moment along u1 as

estimated by sampling, i.e.,

((1 − γ) (αM(u1) + (1 − α)) ≤ (1 + γ)M(u1)

which implies that

α ≥ 1 − 2γ

(1 − γ)
M(u1)

(1 − M(u1))

We now use the fact that M(u1) ≤ 1 − (a(r)/2) and set

γ = εa(r)/36k, to get α > 1 − (ε/16k), i.e., the vector u is

very close to N1; its projection to N1 has squared length at

least 1− (ε/16k). Substituting this value of γ above gives the

complexity bound.

Let V be the subspace found by the algorithm and V1 be the

subspace within it closest to N1 of dimension l. First, by the

definition of N1, by projecting K to N1, we have a hypothesis

that correctly classifies 1 − ε2 of the input distribution. Next

noting that V1 is close to N1 in that every vector in V1 has a

large projection to N1, we conclude that the projection of K
to V1 correctly labels at least 1− ε of the distribution. This is

because the induced cylinders differ only near their boundary

or far from the origin and the measure of their symmetric

difference is at most ε/2.

D. Proof of Theorems 1.1 and 1.2

Theorem 1.3 tells us that the algorithm identifies a subspace

that preserves the unknown hypothesis approximately under

projection to the subspace, i.e., we can assume that in the

subspace V identified by the algorithm, there exists a concept

from the same concept class that has error at most ε/2 on the

projected distribution. Applying Theorems 4.5 and 4.6 then

give us the guarantees.

V. DISCUSSION

Learning low-dimensional concepts is a natural and funda-

mental framework in learning theory (e.g., learning from rele-

vant variables or learning juntas [Lit87], [Blu94], [MOS03]).

Among the most attractive instantiations is the open problem

of PAC-learning an intersection of two halfspaces from an

arbitrary distribution.

Here we made progress on learning under Gaussian distri-

butions. We can learn arbitrary convex k-dimensional concepts

with complexity growing only as a function of k and a fixed

polynomial in n. For intersections of halfspaces, for any fixed

error bound ε > 0, the complexity is poly(n)kO(log k) and so

one can learn an intersection of up to 2O(
√

log n) halfspaces

in polynomial time. Previously it was known how to learn

an intersection of a constant number of halfspaces from a

Gaussian distribution in polynomial time.

The main ingredient of our algorithm, PCA, is fast, highly

developed numerically, and widely used in practice, but has

very few general guarantees. This might not be surprising

given its simplicity and generality; however, it turns out to

be provably effective for this problem.

We note that our algorithm does not apply to learning

from other simple distributions, e.g., uniform in a ball. As

remarked earlier, the variance can go up or down in a particular

direction when a ball is restricted to a convex subset and so



the directions identified by PCA could lie far from the normal

subspace.

Perhaps the two most directly related open problems are

(a) to find a fully polynomial algorithm for learning an

intersection of halfspaces from Gaussian input distributions

(i.e., polynomial in k as well) and (b) to extend to other

distributions, e.g., is there a polynomial-time algorithm to

learn a polytope given uniform random points from it?
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