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Abstract—The notion of a universally utility-maximizing pri-
vacy mechanism was recently introduced by Ghosh, Roughgar-
den, and Sundararajan [STOC 2009]. These are mechanisms
that guarantee optimal utility to a large class of informa-
tion consumers, simultaneously, while preserving Differential
Privacy [Dwork, McSherry, Nissim, and Smith, TCC 2006].
Ghosh, Roughgarden and Sundararajan have demonstrated,
quite surprisingly, a case where such a universally-optimal
differentially-private mechanisms exists, when the information
consumers are Bayesian. This result was recently extended
by Gupte and Sundararajan [PODS 2010] to risk-averse
consumers.

Both positive results deal with mechanisms (approximately)
computing a single count query (i.e., the number of individuals
satisfying a specific property in a given population), and the
starting point of our work is a trial at extending these results to
similar settings, such as sum queries with non-binary individual
values, histograms, and two (or more) count queries. We show,
however, that universally-optimal mechanisms do not exist for
all these queries, both for Bayesian and risk-averse consumers.

For the Bayesian case, we go further, and give a charac-
terization of those functions that admit universally-optimal
mechanisms, showing that a universally-optimal mechanism
exists, essentially, only for a (single) count query. At the heart
of our proof is a representation of a query function f by its
privacy constraint graph Gf whose edges correspond to values
resulting by applying f to neighboring databases.

Keywords-differential privacy; universally optimal mecha-
nisms; utility; geometric mechanism;

I. INTRODUCTION

Differential Privacy [6] is a rigorous notion of privacy
that allows learning global (‘holistic’) information about a
collection of individuals while preserving each individual’s
information private. The literature of differential privacy is
now rich in techniques for constructing differentially privacy
mechanisms, including some generic techniques such as
the addition of Laplace noise with magnitude calibrated
to global sensitivity [6], addition of instance based noise
calibrated to smooth sensitivity [13], and the exponential
mechanism [12]. These techniques allow performing a wide
scope of analyses in a differentially private manner, includ-
ing conducting surveys over sensitive information, comput-
ing statistics, datamining, and sanitization. The reader is
referred to [3] for a recent survey.

An immediate consequence of differential privacy is that
(unless computing a constant function) a mechanism can-
not compute a deterministic function. In other words, a
differentially private version of an analysis would be a
randomized approximation to the analysis, and furthermore,
it would generally be possible to choose from a host of
implementations for a task (e.g., the three generic construc-
tion techniques mentioned about may result with different
mechanisms). Naturally, the designer of the analysis should
choose one that is useful. Usefulness, however, depends
on how the outcome of the analysis would be used, i.e.,
on the preferences of its consumer, that we henceforth
refer to as information consumer. Such a trade-off between
uncertainty and utility, while taking consumer’s preferences
into account, is the subject of rational-choice theory and
decision theory, as noted in [9], [10].

We discuss the two models of utility which were pre-
viously discussed in [9], [10]. In both, the information
consumer has side information (her own world-view or
previous knowledge), and a loss-function which quantifies
the consumer’s preferences and the quality of the solution for
her problem. Intuitively, it describes how bad is a deviation
from the exact answer for the consumer, a measure of her
intolerance towards the inaccuracy imposed by differentially
private mechanisms. Finally, the models assume that the
consumers are rational - they combine the structure of the
mechanism, their side information and their personal loss-
function (preferences) with the goal of minimizing their
loss, or, equivalently maximizing their utility. The two
models differ in the way side information is formulated and
respectively how utility function is defined.

Information consumers’ accuracy requirements vary: for
some consumers only an exact answer would be of value,
whereas others may aim at minimizing the estimate bias
(`1 error), or its variance (`2 error), and, clearly, many
other criteria exist. It seems that a discussion of the utility
of differentially private mechanisms should take this rich
variety into account. The recent work of Ghosh, Rough-
garden, and Sundararajan [9] has put forward a serious
attempt at doing exactly that with respect to (oblivious)
Bayesian information consumers. In this utility model, the
consumer’s side information is described as an a priori



distribution on the exact result of the analysis. The recent
work of Gupte and Sundararajan [10] considers a related
model where the information consumers are risk-averse.
Here, the information consumer’s knowledge is a set of
possible values the exact analysis can take, and an optimal
mechanism minimizes the consumer’s worst-case expected
loss.

Composition theorems for differential privacy only guar-
antee that the degradation in privacy is not more than ex-
ponential in the number invocations. Hence, while different
consumers may exhibit different optimal mechanisms, a very
important goal is to avoid invoking that multiplicity of mech-
anisms. This degradation is part of the motivation for the
work on sanitization where a family of queries are answered
at once [5], [1], [8], [7], the work on privacy under continual
observation [4], and the construction of the Median Mecha-
nism [14]. A surprising result of Ghosh, Roughdarden, and
Sundararajan [9] is that invoking a multiplicity of optimal
mechanisms may not be necessary. They consider a database
that is a collection of Binary inputs (e.g., pertaining to
having some disease) and Bayesian information consumers
that wish to count the number of one entries in the database
(equivalently, compute the sum of the entries). They show
the existence of a single mechanism that enables optimality
for all Bayesian information consumers (the mechanism
needs to be invoked only once). The mechanism itself is not
optimal for all Bayesian information consumers, however,
each consumer can perform a deterministic remapping on the
outcome of the common mechanism, where the remapping
is chosen according to her notion of utility, and locally
output a result that is effectively according to one of her
optimal mechanism. Such a common mechanism is referred
to as universally optimal. An analogous result for risk-averse
information consumers was shown in [10].

Are these results of [9] and [10] that deal with the
simple case of a single count query “accidental”, or can
they be extended to other queries? to multiple queries?
One would anticipate that universally-optimal mechanisms
should exist (at least) for those queries that are closely
related to counting, such as sum queries where the inputs are
non-binary, histograms, and bundles of two or more count
queries.

A. Our Results and Directions for Future Progress

In contrast with the anticipation expressed in the previous
paragraph, we show that settings in which universally opti-
mal mechanisms exist are extremely rare, and, in particular,
in both the setting of Bayesian and of risk-averse information
consumers, universally optimal mechanisms do not exist
even for sum queries where the inputs are non-binary,
histograms, and bundles of two or more count queries.

Moreover, in the case of Bayesian information consumers,
we give a characterization of those functions of the data that
admit universally optimal mechanisms. The characterization

makes use of a combinatorial structure of the query function
f : Dn → Rf , where D is the domain of the database
records and Rf is the output space of the query function.
We define this combinatorial structure of the query Gf
and call it a privacy constraint graph. The vertices of Gf
correspond to values in Rf , and edges correspond to pairs
of values resulting by applying f to neighboring databases.
(This graph was examined in some proofs in [11] as well).
We show:

Theorem 14 (Informal). If Gf contains a cycle then no
universally optimal mechanism exists for f .

Theorem 15 (Informal). If Gf is a tree that contains a vertex
of degree 3 or more, then no universally optimal mechanism
exists for f for better values of the privacy parameter.

Facing the impossibility of universal optimality, an al-
ternative may be found in an approximate notion, which
enables (approximate) optimality to (approximately) all of
the information consumers. A good notion of approximate
optimality should allow constructing such mechanisms for
sum queries, histograms, and more. Furthermore, it should
allow performing several queries and satisfy a composi-
tion requirement, in a sense that when applying two such
mechanisms to two different queries, the resulting composed
mechanism should be somewhat approximately optimal for
the two queries together.

Finally, we note that, following prior work we focus on
oblivious mechanisms (see Section II-B for the technical
definition). In Section III, we show that for the intuitive
generalizations of count queries, enabling non-oblivious
universal mechanisms from which optimal oblivious mecha-
nisms are derived, still leaves the construction of universally
optimal mechanisms impossible. The question whether non-
oblivious universally-optimal mechanisms exist for some
other natural abstract queries, from which all oblivious
universally-optimal mechanisms may be derived is left open.

B. Related Work

Most relevant to our work are the papers by Ghosh,
Roughgarden, and Sundararajan [9] and by Gupte and
Sundararajan [10]. Ghosh, Roughgarden and Sundararajan
show that the geometric mechanism (a discrete version of
the Laplace mechanism of [6]) yields optimal utility for all
Bayesian information consumers for a count query. Their
proof begins by observing that all differentially private
mechanisms correspond to the feasible region of a Linear
Program (a polytope), and that minimizing disutility can be
expressed as minimizing a linear functional. Hence, every
Bayesian information consumer has an optimal mechanism
corresponding to a vertex of the polytope, which in turn
corresponds to a subset of the constraints of the Linear
Program which are tight (optimal mechanisms, not corre-
sponding to the polytope vertices, may also exist). They
introduce a constraint matrix that uniquely corresponds to a



vertex of the polytope, and indicates which constraints are
tight, and which are slack on that vertex. Those constraint
matrices that correspond to optimal mechanisms, are shown
to have some special structure that allows to derive mech-
anisms with the same signature (and thus equal) from the
geometric mechanism using some deterministic remapping
on its output.

We are also interested in observing the tight constraints in
some mechanisms. We will not need the full description of
the structure of such a constraint matrix. Instead we only
use the observation that tight privacy constraints can be
derived only from mechanisms that also obey similar tight
constraints.

Gupte and Sundararajan show similar results for the risk-
averse utility model, where consumers try to minimizes
their maximal worst-case disutility. They provide a full
characterization of the mechanisms which are derivable (by
random remapping) from the geometric mechanism and
use this characterization to construct a universally-optimal
mechanism for a count query. An interesting feature of the
construction is that it releases noisy answers of the query at
different privacy levels, thus keeping more privacy against
specific consumers, and enabling more utility to others.

Also related to our work is the recent work of Kifer and
Lin [11] that studies privacy and utility, in a very general
setting, from an axiomatic point of view. They introduce a
partial order on mechanism where mechanism Y is at least
as general as mechanism X if X can be derived from Y by
post processing. They also introduce the concept of maximal
generality, which turns to be useful in our proofs.

II. PRELIMINARIES

A. Differential Privacy [6]

Consider databases D1, D2 ∈ Dn which consist of n
records out of some domain D. The Hamming Distance
between D1 and D2 is the number of records on which they
differ. We will call databases at distance one neighboring.

Definition 1 (Differential Privacy [6]). Let M : Dn → R
be a probabilistic mechanism. M preserves α-differential-
privacy for α ∈ (0, 1) if for any two neighboring databases
D1, D2 ∈ Dn and any (measurable) subset of the mecha-
nism’s range S ⊆ R,

Pr [M(D1) ∈ S] ≥ α · Pr [M(D2) ∈ S] . (1)

The probability is taken over the coin tosses of the mecha-
nism M.

Notice that the greater α is the less the mechanism’s
output depends on the exact query result, and so better
privacy is attained.

B. Oblivious Mechanisms

We consider a setting where several information con-
sumers are interested in estimating the value of some query

f(·) applied to a database D ∈ Dn, and answered by a
differentially private mechanism M. Reference [9] shows
that if no restriction is put on the mechanism, then no univer-
sally optimal mechanism exists for count queries (intuitively,
universal optimality, defined below, means that all potential
consumers minimize their loss simultaneously). On the other
hand, universally optimal mechanisms sometimes do exist if
we restrict our mechanisms such that their output distribution
depends only on the the exact query result (a.k.a. oblivious
mechanisms). This is why in [9] (and later in [10]) only
oblivious mechanisms are considered1. We follow suit and
only consider oblivious mechanisms. We show in Subsection
III-B that this restriction does not weaken the basic results
presented in Section III.

Definition 2 (Oblivious Mechanism). Let f : Dn → Rf
be a query. A mechanism M : Dn → R is f -oblivious
(or simply oblivious) if there exists a randomized function
M̃ : Rf → R such that, for all D ∈ Dn, the distributions
induced by M(D) and M̃(f(D)) are identical.

Combining α-differential privacy with obliviousness, we
get that for every i, i′ ∈ Rf which are outputs of neighbor-
ing databases D,D′ (i.e., f(D) = i and f(D′) = i′), then
Pr[M̃(i) ∈ S] ≥ α · Pr[M̃(i′) ∈ S] for all S ⊆ R.

Oblivious Differentially Private Mechanisms for a
Count Query: An oblivious finite-range mechanism M :
Dn → R estimating f : Dn → Rf can be described by
a row-stochastic matrix X = (xi,j) of the underlying ran-
domized mapping M̃, whose rows are indexed by elements
of Rf , and whose columns are indexed by elements of R,
where xi,j equals the probability of outputting j ∈ R when
f(D) = i. Since R is finite, and information consumers
anyway remap the outcome of M, we can assume, wlog,
that R = {0, 1, 2, . . . , |R| − 1}.

We now consider the case where D = {0, 1} and f(D)
counts the number of one entries in D. Hence, Rf =
{0, . . . , n} and the matrix X is of dimensions (n+1)×|R|.
Preserving α-differential privacy poses constraints on the
transition matrix X beyond row-stochasticity. Note that
for the count query, the query results of two neighboring
databases may differ by at most one. Differential privacy
hence imposes the constrains xi,j ≥ α ·xi+1,j and xi+1,j ≥
α · xi,j where i ∈ Rf = {0 . . . n − 1} and j ∈ R.
Adding row-stochasticity and differential privacy, we get that
an oblivious differentially private mechanism for the count
query should satisfy the following linear constraints:

xi,r ≥ αxi+1,r ∀i ∈ {0, . . . , n− 1},∀r ∈ R (2)
αxi,r ≤ xi+1,r ∀i ∈ {0, . . . , n− 1},∀r ∈ R (3)

1Impossibility of universal optimality when the mechanisms are not
restricted to being oblivious is proved in [9] for Bayesian information
consumers. For risk-averse consumers, [10] show that non-oblivious mecha-
nisms may be replaced with oblivious ones without affecting the consumers’
utility for the worse.



∑
r∈R

xi,r = 1 ∀i ∈ {0, . . . , n} (4)

xi,r ≥ 0 ∀i ∈ {0, . . . , n},∀r ∈ R (5)

C. Utility Models

We use the utility models defined in [9] and [10]. In both,
a loss function `(i, r) quantifies an information consumer’s
disutility when she chooses to use answer r while the correct
answer is i. Given a loss function `(·, ·) of an information
consumer, if the exact answer is i then her expected loss is∑
r∈R xi,r ·`(i, r).2 Loss functions vary between consumers,

and the only assumptions made in [9], [10] is that `(i, r)
depends on i and |i−r| and is monotonically non-decreasing
in |i − r| for all i. (This is a reasonable requirement
that turns to be crucial for the existence of a universally
optimal mechanism [9].) Examples of loss functions include
`1(i, r) = |i−r| (consumers who care to minimize expected
mean error); `2(i, r) = (i − r)2 (minimize error variance);
and `bin(i, r) that evaluates to 0 if i = r and to 1 otherwise
(minimize number of errors).

Information consumers differ in their knowledge about the
exact f(D). References [9] and [10] model this knowledge
differently as we now describe.

Bayesian Model [9]: In the Bayesian utility model,
an information consumer’s knowledge is represented by a
vector p̄ where pi is the consumer’s a priori probability that
f(D) = i. Having a vector of prior probabilities p̄ and
loss function `(·, ·), the consumer’s expected loss can be
expressed as

∑
i pi·

∑
r xi,r ·`(i, r). The optimal mechanisms

for this information consumer hence are the solutions of the
linear program in the variables xi,r consisting the constraints
in (2)–(5) and the objective

minimize
∑
i∈Rf

pi ·
∑
r∈R

xi,r · `(i, r). (6)

Risk-Averse Model [10]: In the risk-averse utility
model an information consumer’s knowledge restricts the
possible values for the exact f(D). This is expressed by
a set S ⊆ Rf of the possible values f(D) can take. The
consumer is interested in minimizing her maximal expected
loss conditioned on f(D) ∈ S, i.e., maxi∈S

∑
r xi,r ·`(i, r).

Similarly to the above, the optimal mechanism for an infor-
mation consumer is a solution to a linear program consisting
the constraints in (2)–(5) and the objective

minimize max
i∈S

∑
r∈R

xi,r · `(i, r). (7)

D. Remapping and Generality

An information consumer might have access to a private
mechanism U which is not tailored specifically for her needs

2This is only true if the consumer uses the mechanism X directly, i.e.,
the consumer leaves the mechanism’s output as is, and does not apply a
post-processing step. The ability to apply such a post-processing step on
the mechanism’s output will be discussed in the next sub-section.

(i.e., to her prior knowledge and loss function). Yet, she
may be able to recover a better mechanism for her needs by
means of post-processing, which we will denote remapping.
To intuit remapping, consider a consumer that knows that for
the specific database the count query cannot yield the answer
0. If that consumer receives a 0, it may be beneficial for her
to remap it to 1. (Recall that the loss function is monotone
in |i − r|.) Denoting the given mechanism by U and the
remapping by T (a row-stochastic linear transformation, T
has no access to the information of the database other then
the output of U ), the actual mechanism that is used by the
information consumer is T ◦ U (in matrix form: UT ).

Notice that given a mechanism U with a finite range, an
information consumer can find the optimal remapping T for
her (such that T ◦ U has optimal utility), by constructing a
linear program in which T = (ti,j) are the program variables
[10].

Definition 3 (Derivable Mechanisms, Generality Partial
Order [11]). Let X,Y be private mechanisms. We say that
a mechanism X is derivable from a mechanism Y if there
exists a random remapping T of the results of mechanism
Y , such that X = T ◦ Y . We also say that Y is at least
as general as X , and denote this relation by X �G Y . If
X �G Y and Y �G X we say that X,Y are equivalent.

Definition 4 (Maximal Generality [11]). Let X be an α-
differentially private mechanism. X is maximally general if
for every α-differentially private mechanism Y , if X �G Y
then Y �G X .

After introducing the notion of maximally general mech-
anisms (for any definition of privacy), Kifer and Lin fully
characterize all maximally general private mechanisms with
a finite input space in the differential privacy setting. First
they introduce the concept of column-graphs3 of a private
mechanism, which mark the tight privacy constraints in one
column of the mechanism X .

Definition 5 (Column graph [11]). Let X be an α-
differentially private mechanism with a finite input space.
Let r be some possible output of X , and xr be its cor-
responding column in X . Let I be the input space of X
(corresponding to X’s rows). The graph associated with this
column has I as the set of nodes, and for any i1, i2 ∈ I , there
is a directed edge (i1, i2) if i1 and i2 match neighboring
databases and xi1,r = αxi2,r, and a directed edge (i2, i1)
if xi2,r = αxi1,r. The direction of the edges is only neces-
sary to distinguish between maximally general mechanisms
which have similar undirected column-graphs, but it will not
be essential to the rest of this article.

Kifer and Lin characterize the maximally general differ-

3Kifer and Lin actually define row graphs and not column graphs. We
follow the matrix structure of [9], [10] which is simply the transposed ma-
trix of the one used by Kifer and Lin, hence the difference in terminology.



entially private mechanisms with a finite input space:

Theorem 6 ([11]). Fix a privacy parameter α and a
database query f with a finite range for databases of a
specific size. Let X be an α-differentially private mechanism
with a finite range. Then X is maximally general iff each
column graph of X’s columns (according to the privacy
constraints implied by f ) is connected.

This theorem shows that we wish to maximize the set
of tight privacy constraints in order to make a private
mechanism as general as possible. Notice that having just
one entry of a column in X and the spanning tree of this
column’s graph (we need to know the direction of the edges
as well), determines all the entries of this column.

E. Universal Mechanisms

Consider a collection of Bayesian information consumers,
and suppose we wish to enable each of the information con-
sumers to sample a result from a differentially private mech-
anism optimizing her utility. In [9], Ghosh, Roughgarden and
Sundararajan showed that this does not necessarily require
executing multiple mechanisms: if the query is a count
query, then it is possible to construct one universally op-
timal mechanism U , from which all information consumers
can simultaneously recover an optimal mechanism for their
needs by remapping. I.e., every information consumer has
an optimal private mechanism which is derivable from U .
This result is repeated for risk-averse information consumers
by Gupte and Sundararajan in [10]. More formally:

Theorem 7 (Universal optimality, Bayesian consumers [9]).
Fix a privacy parameter α ∈ (0, 1). There exists an α-
differentially private mechanism U for a single count query,
such that for every prior p̄ and every monotone loss function
`(·, ·) there exists a (deterministic) remapping T such that
T ◦ U implements an optimal oblivious mechanism for
p̄, `(·, ·).

Theorem 8 (Universal optimality, risk-averse
consumers [10]). Fix a privacy parameter α ∈ (0, 1).
There exists an α-differentially private mechanism U for a
single count query, such that for every set S of possible
outcomes and every monotone loss function `(·, ·) there
exists a (probabilistic) remapping T such that T ◦ U
implements an optimal oblivious mechanism for S, `(·, ·).

In both theorems U is realized by the geometric mech-
anism (a variant of adding Laplace noise of [6]). It is
shown that for every information consumer there is at least
one private mechanism that is derivable from the geometric
mechanism and is optimal for her.

III. IMPOSSIBILITY OF UNIVERSALLY OPTIMAL
MECHANISMS FOR GENERALIZATIONS OF COUNT

When the domain of the database records is {0, 1}, a count
query is equivalent to a sum query. Theorems 7 and 8 can

hence be thought of as applying to a sum query over the
integers, where the domain of the database is Binary. It is
natural to ask whether the results of these theorems can be
extended to showing that universally optimal mechanisms
exist for sum queries when the underlying data is taken from
a larger domain such as D = {0, 1, . . . ,m} where m ≥ 2.
We answer this question negatively.

Consider the case m = 2. Recall that an oblivious
differentially private mechanism can be described by a
row-stochastic matrix X = (xi,j), such that xi,j is the
probability of the mechanism to return j when the exact
result is i. A difference of the case m = 2 from count
queries (m = 1) is that applying a sum query to two
neighboring databases may yield results which differ by
0, 1, or 2 (instead of 0 or 1). Therefore, in the linear
program describing mechanism X , (2) and (3) should be
replaced by the following four constraints: xi,r ≥ αxi+1,r,
αxi,r ≤ xi+1,r for all 0 ≤ i ≤ 2n − 1 and r ∈ R; and
xi,r ≥ αxi+2,r, αxi,r ≤ xi+2,r for all 0 ≤ i ≤ 2n − 2 and
r ∈ R. (The range for i in the other equations should be
modified to 0, . . . , 2n.)

Once again, a consumer’s optimal mechanism can be
found by solving a linear program with all the constraints
and the appropriate target function.

A. The Basic Impossibility Result for Sum Queries

We first consider the case where the database contains
n = 1 record, taking values in {0,1,2} (i.e., m = 2). Later,
we generalize to n ≥ 1 and m ≥ 2. Note that in the case
of n = 1, the non-oblivious mechanisms are identical to
oblivious mechanisms. We consider non-oblivious universal
mechanisms as well when generalizing this result lo larger
values of n.

Observation 9. In the Bayesian model there exists an in-
formation consumer whose only optimal mechanism is X =

1
1+2α ·

[
1 α α
α 1 α
α α 1

]
and an information consumer whose optimal

mechanisms are all of the form Y = 1
1+α ·

[
1 α 0
α 1 0
q 1+α−q 0

]
,

where q ∈ [α, 1].

Proof: Consider an information consumer with a prior
p̄ = ( 1

3 ,
1
3 ,

1
3 ) and a loss function `bin (i.e., a penalty of 1

whenever she chooses an answer different from the exact
result, and no penalty otherwise). It is easy to see that no
optimal mechanism for this consumer outputs a value not in
{0, 1, 2}.

The information consumer wishes to minimize

2∑
i=0

pi

2∑
r=0

xi,r · `(i, r) =
1

3

2∑
i=0

∑
r 6=i

xi,r

=
1

3

2∑
i=0

(1− xi,i) = 1− 1

3

2∑
i=0

xi,i.



And so, the consumer’s goal is to maximize
∑2
i=0 xi,i

subject to maintaining α-differential privacy.
For i ∈ {0, 1, 2}, having α-differential privacy implies

αxi,i ≤ xj,i ∀j ∈ {0, 1, 2} \ {i}, (8)

and hence (by summing up (8) for j 6= i), we get

2αxi,i =
2∑
j=0
j 6=i

αxi,i ≤
2∑
j=0
j 6=i

xj,i. (9)

Summing up (9) for i ∈ {0, 1, 2} we get
2∑
i=0

2αxi,i ≤
2∑
i=0

2∑
j=0
j 6=i

xj,i =
2∑
i=0

(1− xi,i) = 3−
2∑
i=0

xi,i,

and we can now conclude that
∑2
i=0 xi,i ≤

3
2α+1 . This

inequality is tight iff (8) is tight (i.e., xj,i = αxi,i) for every
i 6= j. In that case, we get the following system of linear
equations:

x11 + αx22 + αx33 = 1

αx11 + x22 + αx33 = 1

αx11 + αx22 + x33 = 1

Since the three equations are linearly independent, we get a
unique solution: x1,1 = x2,2 = x3,3 = 1

1+2α .
A similar proof shows that mechanisms of the form Y

are the only mechanisms optimal for information consumers
with a prior p0 = p1 = 1

2 , p2 = 0 and loss function `bin.
It may seem like we restrict ourselves only to information

consumers with the `bin loss function. Note that, according
to Theorem 6, there are not so many maximally general
mechanisms whose range is a subset of {0, 1, 2}, and some
of them are not optimal for any consumer. Therefore, the
mechanisms described are also the only optimal mechanisms
for a variety of other information consumers, such as whose
prior is p0 = p1 = 1

2 , p2 = 0 and loss function is `1.
Also, even more such consumers can be found easily in
any sequence of consumers which converge to consumers
with such unique optimal mechanisms (i.e., their priors and
loss functions converge to the prior and loss function of
the consumer we chose). Such information consumers with
close priors and close loss functions to the ones described
above will have the same unique optimal mechanisms.

Observation 10. In the risk-averse model there exists an in-
formation consumer whose only optimal mechanism is X =

1
1+2α ·

[
1 α α
α 1 α
α α 1

]
and an information consumer whose optimal

mechanisms are all of the form Y = 1
1+α ·

[
1 α 0
α 1 0
q 1+α−q 0

]
,

where q ∈ [α, 1].

Proof: Consider an information consumer whose loss
function is `bin who knows the support of the query is S =
{0, 1, 2}. As in the previous observation, the support of any

optimal mechanism for this consumer must be a subset of
{0, 1, 2}. Notice that if the consumer uses the mechanism
described by X then her maximal expected loss is 2α

1+2α .
Assume for a contradiction that the consumer has another

mechanism X ′ with maximal expected loss at most 2α
1+2α .

I.e.,

max{x′0,1+x′0,2, x
′
1,0+x′1,2, x

′
2,0+x′2,1} ≤

2α

(1 + 2α)
. (10)

Since X ′ 6= X , (10) implies that x′i,j <
α

1+2α for some i 6=
j. Taking into account that X ′ is α-differentially private we
get x′j,j ≤ 1

α ·x
′
i,j <

1
1+2α , and hence the maximal expected

loss is at least
∑
i6=j x

′
i,j = 1 − x′j,j > 1 − 1

1+2α = 2α
1+2α ,

in contradiction to the assumption that this mechanism is at
least as good as X for this information consumer.

A similar proof shows that mechanisms of the form Y are
the only mechanisms optimal for an information consumer
with auxiliary knowledge of the support S = {0, 1} and
loss function `bin. As in the previous observation, the
mechanisms described are also the only optimal mechanisms
for a variety of other information consumers.

We will now use these two observations to show that in
both models no universally optimal mechanism U exists.
(This is true even if we allow U to have a non-discrete
range.)

Claim 11. No α-differentially private mechanism can derive
both X and an instance of Y .

Proof: Assume for a contradiction that such a mech-
anism U exists, so X and some instance of Y are both
derivable from U . For simplicity we refer to this instance as
Y . By Theorem 6, X is a maximally general mechanism.
Therefore U �G X , and hence Y �G X , i.e., there exists a
random remapping T such that Y = XT . Denote by xj the
jth column of X , and by yk the kth column of Y . We get
that yk = t0,k ·x0+t1,k ·x1+t2,k ·x2 for k ∈ {0, 1, 2}. Note
that some α-differentially privacy constraints in Y are tight.
Specifically, y1,0 = αy0,0 and y0,1 = αy1,1. As Y ’s columns
are non-negative linear combinations of X’s columns, such
a tight constraint in a column of Y appears only if this
column is a linear combination of columns of X in which
the same privacy constraints are also tight. Note that the
first two entries of every column in Y correspond to a tight
constraint. But since x0,2 = x1,2 > 0, mapping this column
of X by T to any column of Y (even with just a positive
probability), yields a mechanism with a column in which
the first two entries do not correspond to a tight constraint.
Therefore, a contradiction.

B. Generalizing the Basic Result for Other Queries

Next, we generalize the basic impossibility result to the
more general case of sum queries where m ≥ 2 and
n ≥ 1. Another natural generalization of count queries is to
histogram queries which partition the database records into



three categories or more. Finally we consider the general-
ization of single count queries to a bundle of count queries,
where a bundle contains several simple (non-trivial) count
queries that need to be answered simultaneously. Note that
a consumer’s disutility for a bundle query need not be the
sum of the losses for the separate basic queries – it may be a
more involved function of the bundle outputs. Furthermore,
information consumers may have auxiliary knowledge about
the dependency between bundle outputs.

Theorem 12. No universally optimal mechanism exists
for sum queries for databases whose records take values
in the set {0, 1, . . . ,m} where m ≥ 2. No universally
optimal mechanism exists for histogram queries, except for
histograms for one predicate and its complement or trivial
predicates. No universally optimal mechanism exists for
bundles of more than one simultaneous non-trivial count
queries. These results hold both for the Bayesian and the
risk-averse utility models.

All the generalization queries which were mentioned in
the theorem have a common feature which distinguishes
them from count queries. In all the suggested queries there
are 3 (or more) query outputs which are the results of 3
neighboring databases. This fact enables us to reduce this
problem to the basic case of the previous subsection. The
proof is omitted and will appear in the full version of this
article. We note that this statement holds even if we allow
non-oblivious universal mechanisms.

IV. A CHARACTERIZATION OF UNIVERSAL OPTIMALITY
IN THE BAYESIAN SETTING

We now discuss a more general setting, where a query
(not necessarily related to sum or count) is answered by
a differentially private mechanism in the Bayesian utility
model. We follow other works on this subject and only
consider oblivious private mechanisms. Note that although
our results do not exclude the possibility of non-oblivious
differentially private mechanisms, our techniques yield that
no such non-oblivious universally optimal mechanisms exist
for many natural functions. Specifically, enabling universal
non-oblivious mechanisms cannot resolve such impossibil-
ities for a query whenever there are 3 (or more) values
which are the exact query results of 3 different neighboring
databases. This is due to the same argument that was used
in Subsection III-B.

Let the database records be taken from a discrete domain
D and let the query be f : Dn → Rf (wlog, we
will assume that f is a surjective function, in which case
Rf = {f(D) : D ∈ Dn} is also a discrete set). Define the
following graph where edges correspond to answers f may
give on neighboring databases (and hence to restrictions on
output distributions implied by differential privacy):

Definition 13 (Privacy Constraint Graph). Fix a query
f : Dn → Rf . The Privacy Constraint Graph for f is

the undirected graph Gf = (V,E) where V = Rf is the
set of all possible query results and E = {(f(D1), f(D2)) :
D1, D2 ∈ Dn are neighboring}. The degree of the constraint
graph, ∆(Gf ), is the maximum over its vertices’ degrees.
For i2, i2 ∈ Rf , Gf induces a distance metric dGf

(i1, i2)
that equals the length of the shortest path in Gf from i1 to
i2.

Observe that the constraint graph is connected for any
query f : If i1 = f(D1) and i2 = f(D2) then there is
a sequence of neighboring databases starting with D1 and
ending in D2, and hence a path from i1 to i2 in Gf .

Recall that the results of [9], [10] are restricted to loss
functions `(i, r) that are monotonically non-decreasing in
the metric |i − r|. In our more general setting, we avoid
interpreting outcome of f as points of a specific metric
space, and hence we only consider the `bin loss function,
which would remain monotone under any imposed metric.

Outline of this Section.: We are now ready to describe
the results of this section. Let f be a query, and Gf its
constraint graph. We first show that if Gf is a single cycle,
then no universally optimal mechanism exists for f . This
impossibility result is then extended to the case where Gf
contains a cycle.

Theorem 14. Fix a query f : Dn → Rf , and let Gf be its
constraint graph. Consider Bayesian information consumers
with loss function `bin. If Gf contains a cycle then no
universally optimal mechanism exists for these consumers.

Constraint graphs of sum queries (for m ≥ 2), histograms
and bundles of queries all have cycles of length 3, so, in
the Bayesian utility model, Theorem 14 generalizes all our
previous results.

Next, we consider the case where Gf is a tree and show
that if Gf contains a vertex of degree 3 or higher, then no
α-differentially private universally optimal mechanism exists
for f for α > 1/(∆(Gf ) − 1). (Recall that the closer α is
to one, the better privacy we get.)

Theorem 15. Fix a query f : Dn → Rf , and let Gf
be its constraint graph. Consider Bayesian information
consumers with loss function `bin. If the privacy parameter
α > 1/(∆(Gf )−1) then no universally optimal mechanism
exists for these consumers.

We can conclude from theorems 14 and 15 that for
α > 0.5, the only functions f for which universally optimal
mechanisms exist are those where Gf is a simple chain, as
is the case for the count query.

The proof structure is similar to the one presented in the
previous section for sum queries. We begin with the case
where Gf is a simple cycle. We consider two consumers
with different priors and loss function `bin, and show that
the optimal mechanisms for these consumers must have
specific structures (in the sense that some privacy constraints



are satisfied tightly). Once again, we show that for two
mechanisms with such structures, there is no mechanism
which is at least as general as these two (i.e., there is no
single mechanism which derives both of them).

Next, we extend the proof to the case where Gf contains
a cycle. We focus on a cycle in Gf of smallest size m,
and consider two information consumers. The consumers
are similar to those for the case where Gf is a cycle, and so
are the optimal mechanisms for them, except that we need
to prove that these optimal mechanisms can be extended in
a differentially private manner to the entire range of f . For
that we introduce a labeling of Gf in which the labels of
adjacent vertices differ by at most one modulo m.

Last, we discuss the case where Gf is a tree containing
a vertex of degree at least 3. Focusing on that vertex and
three of its adjacent vertices, we present three consumers
with different priors. Again, we focus on the corresponding
entries in the matrices of their optimal mechanisms, and
find which constraints must be tight. Assuming all three
mechanisms are derived from a single mechanism U , we
present three different partitions of U ’s range according to
which constraints are tight for every measurable subset of
U ’s range. Combining the attributes from these partitions,
we get one elaborated partition of U ’s range. We can then
assume U ’s range is finite and reveal the structure of its
matrix columns. Such a structure of U ’s columns (for the
consumers we chose) is feasible iff we compromise for a
privacy parameter α ≤ 0.5. Finally, we generalize this claim
to any degree of one vertex.

A. The Basic Case: Gf is a Cycle

We begin with the simple case where Gf is a single cycle
of m > 2 vertices4.

Claim 16. If the constraint graph Gf of f : Dn → Rf is
a single cycle, then no universally optimal mechanism for
Bayesian information consumers exists for f .

Proof: Assume Gf is the cycle Cm =
(v0, v1, . . . , vm−1, v0). We already proved impossibility
of universal optimality for the case m = 3 in Claim 11.
We now deal with the case m > 3. As in the proof of
Claim 11, we will present two information consumers, and
their corresponding optimal mechanisms, and prove that
these cannot be derived from a single mechanism.

We first consider an information consumer with loss
function `bin and prior pv0 = pv1 = · · · = pvm−1 = 1/m,
and construct the unique optimal mechanism X for this
consumer. (X is represented by an m×m matrix since with
the `bin loss function the support of the optimal mechanism’s
range must match the support of the consumer’s prior.) An

4An example query that yields such a graph is f : {0, 1}n → [m]
defined as f(d1, . . . , dn) =

∑
i=1 di mod m. If n ≥ m > 2 then Gf

is a cycle of size m.

optimal mechanism minimizes∑
vi∈Cm

pvi
∑
r∈Cm

xvi,r · `bin(vi, r) =
∑
vi∈Cm

pvi · (1− xvi,vi)

= 1− 1

m

∑
vi∈Cm

xvi,vi ,

and hence, the consumer’s goal is to maximize∑
vi∈Cm

xvi,vi subject to maintaining α-differential
privacy. Maintaining α-differential privacy implies

αdGf
(vi,vj)xvi,vi ≤ xvj ,vi ∀vi, vj ∈ Cm, (11)

and hence, by summing up the inequalities for all vi, vj , we
get ∑

vi∈Cm

∑
vj∈Cm

vj 6=vi

αdGf
(vi,vj)xvi,vi ≤

∑
vi∈Cm

∑
vj∈Cm

vj 6=vi

xvj ,vi

=
∑
vi∈Cm

1− xvi,vi = m−
∑
vi∈Cm

xvi,vi ,

and we conclude that∑
vi∈Cm

xvi,vi ≤
m

1 +
∑
vj∈Cm

vi 6=vj
αdGf

(vi,vj)
.

This inequality is tight iff (11) is tight (i.e., xvj ,vi =

αdGf
(vi,vj)xvi,vi ) for every vi 6= vj ∈ Cm. In such a case,

we can find the mechanism’s entries by solving a system of
m linear equations (the sum of each row in the mechanism
must be 1), in a similar argument to the one presented in
the proof of Observation 9. Since these are m independent
linear equations in m variables, our optimal solution for
xv1,v1 , . . . , xvm,vm is unique.

Utilizing the symmetry of the equations, we get that every
row of X is a cyclic shift of:

δ · (1, α1, α2, . . . , α(m−1)/2, α(m−1)/2, α(m−1)/2−1, . . . , α2, α1)

if m is odd, (12)

δ · (1, α1, α2, . . . , αm/2−1, αm/2, αm/2−1, . . . , α2, α1)

if m is even.

where δ is chosen such that X is row-stochastic. The
mechanism X satisfies α-differential privacy, it is optimal
for our information consumer, and it is unique.

Our second information consumer uses `bin as her loss
function, and prior pv0 = pv1 = pv2 = 1/3 and pv3 = · · · =
pvm−1 = 0. Note that since m > 3 the vertices v0, v2 are
not adjacent in Gf (so dGf

(v0, v2) = 2). In constructing an
optimal mechanism Y for the information consumer we will
only consider the rows and columns pertaining to vertices
v0, v1, v2, noting that the columns for all other vertices
contain only zeros, and there is some freedom with respect to
the rows for the other vertices. Applying similar arguments
as for mechanism X , we get that the columns of Y are of
the forms (1, α1, α2)T , (α1, 1, α1)T , (α2, α1, 1)T (each of



the columns may be multiplied by a different coefficient).
By forcing row stochasticity, we can solve the following
equations to get the coefficients:[

1 α1 α2

α1 1 α1

α2 α1 1

]
×
(
c1
c2
c3

)
=
(

1
1
1

)
and we get a unique structure on the entries of these rows
and columns of Y . This mechanism is of no surprise, as these
entries are merely the finite-range version of the geometric
mechanism (as shown in [9]).

Summarizing our findings, we get that

X = δ·


1 α α2 ··· α2 α
α 1 α ··· α3 α2

α2 α 1 ··· α4 α3

...
...

. . .
...

α α2 α3 ··· α 1

 ;Y =


c1 c2·α1 c3·α2 0 ··· 0

c1·α1 c2 c3·α1 0 ··· 0
c1·α2 c2·α1 c3 0 ··· 0

...
...

...
...

. . .
...

...
...

... 0 ··· 0


(13)

We now show that instances of such mechanisms X and
Y are not derivable from a single mechanism. Since the
conditions stated for these mechanisms are necessary for
them to be optimal for the two consumers we chose, this
will prove that there is no universally optimal mechanism in
such a scenario.

Suppose, towards a contradiction, that there exists a
mechanism U which derives both X and some instance
of Y . According to the characterization of generally
maximal differentially private mechanisms (Theorem 6), X
is maximally general. Therefore, we get that U is derivable
from X and so Y is derivable from X as well. Therefore,
there exists a remapping matrix T such that Y = XT .
Remember that Y ’s columns are linear combinations of
X’s columns with non-negative coefficients, as described
in the proof of Claim 11. Any tight constraint met in one
of Y ’s columns must match the same tight constraints in
all of X’s columns which appear in the linear combination
of that column. Once again, any specific column of
X must appear in at least one linear combination of
one of Y ’s columns with a positive coefficient (as any
possible output of X must be remapped to the values
{v0, v1, v2} by T ). Notice that one of X’s columns is
δ(α(m−1)/2, α(m−1)/2, α(m−1)/2−1, . . . , 1, . . . , α(m−3)/2)T

if m is odd and otherwise it is
δ(αm/2−1, αm/2, αm/2−1, . . . , 1, . . . , αm/2−2)T . Mapping
this column into any of Y ’s first three columns (with any
positive probability) cannot yield the tight constraints which
appear in the first three entries of the chosen column in Y .
Therefore, no such remapping T is feasible and we get a
contradiction.

B. Impossibility of Universal Optimality When Gf Contains
a Cycle

We now give a proof for Theorem 14 which deals with
the case where Gf contains a cycle.

Proof: Let Cm = (v0, v1, . . . , vm−1, v0) be a cycle
of smallest size in Gf . Based on Cm, we will consider
two consumers whose optimal mechanisms contain as sub-
matrices the matrices X,Y from the proof of Claim 16, and
hence they cannot be derived from a single mechanism.

The First Consumer: uniform prior over Cm: Consider
an information consumer with loss function `bin and prior
pv0 = pv1 = · · · = pvm−1 = 1/m and pu = 0 for every u /∈
Cm. We will construct an optimal mechanism X ′ for this
consumer, and will prove that (in some sense) it is unique.
We begin with a labeling algorithm of the vertices in G:

1) Given Cm = (v0, v1, . . . , vm−1, v0), set l(vi) = i for
i ∈ {0, . . . ,m− 1}.

2) For s from 1 to m− 1:
a) Let Vs be the set of unlabeled vertices that are

adjacent to vertices labeled s− 1.
b) Let l(u) = s for all u ∈ Vs.

3) Let l(u) = m− 1 for all remaining vertices u.

Claim 17. After applying the algorithm, the labels for every
two adjacent vertices differ by at most 1 (modulo m).

Proof: We show that at any stage of the labeling, any
two adjacent vertices satisfy the requirement that their labels
differ by at most 1 (modulo m).

Note first that this holds for all labeled vertices after
Step 1. Consider a vertex u ∈ Vs (i.e., l(u) = s is set
in iteration s), and an adjacent vertex u′ that is labeled
l(u′) = s′ prior to or on iteration s. Clearly, if u′ ∈ Vs∪Vs−1
then s′ ∈ {s − 1, s} and the statement holds for (u, u′).
Otherwise, we consider two sub-cases. In the first, l(u′) =
s′ < s − 1, and we are led to a contradiction since u
remains unlabeled after iteration s′+1 whereas by definition
u ∈ Vs′+1. In the second sub-case l(u′) = s′ > s + 1
(if s′ = s + 1 the claim holds) and hence it must have
been that u′ was labeled in Step 1, i.e., u′ = vs′ for
s′ ∈ {s+ 1, . . . ,m−1}. Following the path of labels which
led to the label of u we can get to the vertex v0 via a
path of length s. Noting that this path is disjoint from the
length m − s′ path vs′  v0 = vs′ , vs′+1, . . . , vm−1, v0,
we get that G contains the cycle vs′  v0  u  u′ that
is of length m − s′ + s + 1 < m, in contradiction to Cm
being the smallest cycle in G. To conclude the proof, note
that every vertex u ∈ G adjacent to some u′ ∈ G such
that l(u′) ∈ {0, 1, . . . ,m− 2} has been labeled in iteration
l(u′) + 1 or earlier. Therefore in Step 3, the vertices which
are not labeled yet are adjacent only to unlabeled vertices
and to vertices with label m − 1. Labeling the remaining
vertices with m− 1 satisfies the requirement.

We now use the graph labels to construct an optimal
mechanism X ′, represented by a matrix of dimensions
|Rf | × |Rf |. The entries of rows u /∈ Cm have no effect on
the expected loss of this consumer, as pu = 0. There are,
however, restrictions on these rows, as the mechanism X ′

must be differentially private. We construct X ′ as follows:



1) For all u /∈ Cm, set column u of X ′ to be a column
of zeros.

2) For all u ∈ Cm, set row u of X ′ as in the optimal
mechanism X described in the proof of Claim 16 (i.e.,
as seen in (13)).

3) For all u /∈ Cm, set row u of X ′ to be identical to the
row corresponding with the vertex identically labeled
in Cm.

Clearly, the resulting mechanism is row-stochastic. The
privacy constraints also hold: suppose u, u′ ∈ Rf are
query results of neighboring databases. Therefore, they are
adjacent in the constraint graph, and their labels differ by
at most 1 (modulo m). And so, their matching rows in
mechanism X ′ are either identical or they are the same as
rows of two adjacent vertices vi, vj ∈ Cm in mechanism
X . Since the construction of rows in X hold to the privacy
constraints, so do the rows of X ′. In other words, we just
showed that mechanism X can be extended to any query
f whose constraint graph Gf contains Cm but no smaller
cycles.

Notice that only rows of Cm affect the expected loss in
X ′, which is hence identical to that of X . Since any mecha-
nism in this scenario has to satisfy all the restrictions for just
the vertices of the cycle Cm, and more, the expected loss
for any optimal mechanism in the current scenario is lower
bounded with that of X . Hence, we can conclude that X ′ is
optimal for the information consumer, and furthermore, X ′

restricted to the rows corresponding to Cm is unique.
The Second Consumer: uniform prior over v0, v1, v2:

Consider an information consumer with loss function `bin
and prior pv0 = pv1 = pv2 = 1/3 and pu = 0 for every
other u ∈ Rf . We argue that every optimal mechanism Y ′

for this consumer has the same structure on rows v0, v1, v2
as mechanism Y in (13). As the impossibility of universal
optimality for the case of m = 3 was already covered, and
we assumed m > 3, v0 and v2 are not adjacent in Gf .
This enables us to label the vertices in such a way: l(v0) =
0, l(v2) = 2 and l(u) = 1 for any other vertex in Gf .
Again, it is clear that every two adjacent vertices have labels
which differ by 1 at most. Similar arguments as the ones
presented for the first consumer, show that the first three
rows of every optimal mechanism for this consumer (i.e. the
rows for v0, v1, v2) have the same structure as the first three
rows of mechanism Y in (13).

Assume towards a contradiction that both X ′ and Y ′ are
derivable from a single mechanism U ′. Therefore there exist
remappings T, S such that X ′ = U ′T and Y ′ = U ′S. Let
U be the mechanism U ′ reduced to only the inputs of the
cycle Cm = {v0, v1, . . . , vm−1}. Reducing U ′ to U , we get
that X = UT and Y = US. According to the previous
subsection these two mechanisms cannot be derived from a
single oblivious mechanism, due to the same arguments in
the proof of Claim 11. Thus, we get a contradiction.

C. Impossibility of Universal Optimality When ∆(Gf ) ≥ 3

Finally we focus on acyclic constraint graphs and consider
Theorem 15 and its conclusion that for α > 0.5 no
universally optimal mechanisms exists unless the constraint
graph is a simple chain. The proof is omitted and will appear
in the full version of this article.
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