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Abstract—We study the design of truthful mechanisms for set
systems, i.e., scenarios where a customer needs to hire a team of
agents to perform a complex task. In this setting, frugality [2]
provides a measure to evaluate the “cost of truthfulness”, that
is, the overpayment of a truthful mechanism relative to the
“fair” payment.

We propose a uniform scheme for designing frugal truthful
mechanisms for general set systems. Our scheme is based on
scaling the agents’ bids using the eigenvector of a matrix
that encodes the interdependencies between the agents. We
demonstrate that the r-out-of-k-system mechanism and the

√
-

mechanism for buying a path in a graph [18] can be viewed
as instantiations of our scheme. We then apply our scheme to
two other classes of set systems, namely, vertex cover systems
and k-path systems, in which a customer needs to purchase k
edge-disjoint source-sink paths. For both settings, we bound the
frugality of our mechanism in terms of the largest eigenvalue
of the respective interdependency matrix.

We show that our mechanism is optimal for a large subclass
of vertex cover systems satisfying a simple local sparsity
condition. For k-path systems, our mechanism is within a
factor of k + 1 from optimal; moreover, we show that it is, in
fact, optimal, when one uses a modified definition of frugality
proposed in [10]. Our lower bound argument combines spectral
techniques and Young’s inequality, and is applicable to all set
systems. As both r-out-of-k systems and single path systems
can be viewed as special cases of k-path systems, our result
improves the lower bounds of [18] and answers several open
questions proposed in [18].

1. INTRODUCTION

Consider a scenario where a customer wishes to purchase
the rights to have data routed on his behalf from a source
s to a destination t in a network where each edge is owned
by a selfishly motivated agent. Each agent incurs a privately
known cost if the data is routed through his edge, and wants
to be compensated for this cost, and, if possible, make a
profit. The customer needs to decide which edges to buy,
and wants to minimize his total expense.

This problem is a special case of the hiring-a-team
problem ([23], [18], [17], [6], [10]): Given a set of agents
E , a customer wishes to hire a team of agents capable of
performing a certain complex task on his behalf. A subset
S ⊆ E is said to be feasible if the agents in S can jointly
perform the complex task. This scenario can be described
by a set system (E ,F), where E is the set of agents and

F is the collection of feasible sets. Each agent e ∈ E can
perform a simple task at a privately known cost c(e). In such
environments, a natural way to make the hiring decisions is
by means of mechanisms — Each agent e submits a bid
b(e), i.e., the payment that he wants to receive, and based
on these bids the customer selects a feasible set S ∈ F (the
set of winners), and determines the payment to each winner.

A desirable property of mechanisms is that of truthfulness:
It should be in the best interest of every agent e to bid his
true cost, i.e., to set b(e) = c(e), no matter what bids other
agents submit; that is, truth-telling should be a dominant
strategy for every agent. Truthfulness is a strong and very
appealing concept: it obviates the need for agents to perform
complex strategic computations, even if they do not know
the costs and strategies of others. This property is especially
important in the Internet and electronic commerce settings,
as most protocols are executed instantly.

One of the most celebrated truthful designs is the VCG
mechanism [24], [7], [15], where the feasible set with the
smallest total bid wins, and the payment to each agent e
in the winning set is his threshold bid, i.e., the highest
value that e could have bid to still be part of a winning set.
The VCG mechanism is truthful. However, on the negative
side, it can make the customer pay far more than the true
cost of the winning set, or even the cheapest alternative, as
illustrated by the following example: There are two parallel
paths P1 and P2 from s to t, P1 has one edge with cost 1
and P2 has n edges with cost 0 each. VCG selects P2 as
the winning path and pays 1 to every edge in P2. Hence,
the total payment of VCG is n, the number of edges in P2,
which is far more than the total cost of both P1 and P2.

The VCG overpayment property illustrated above is
clearly undesirable from the customer’s perspective, and
thus motivates the search for truthful mechanisms that are
frugal, i.e., select a feasible set and induce truthful cost
revelation without resulting in high overpayment. However,
formalizing the notion of frugality is a challenging problem,
as it is not immediately clear what the payment of a
mechanism should be compared to. A natural candidate for
this benchmark is the total cost of the closest competitor,
i.e., the cost of the cheapest feasible set among those that
are disjoint from the winning set. This definition coincides



with the second highest bid in single-item auctions and has
been used in, e.g., [1], [2], [23], [11]. However, as observed
by Karlin, Kempe and Tamir [18], such feasible set may
not exist at all, even in monopoly-free set systems (i.e., set
systems where no agent appears in all feasible sets). To deal
with this problem, [18] proposed an alternative benchmark,
which is bounded for any monopoly-free set system and
is closely related to the buyer-optimal Nash equilibrium of
the first-price auction (see Definition 2.2). Nash equilibrium
corresponds to a stable outcome of the bargaining process,
and therefore provides a natural lower bound on the total
payment of any dominant strategy mechanism. Throughout
the paper, we use the benchmark of [18]—as well as its
somewhat more relaxed variant suggested in [10]—to study
frugality of truthful mechanisms.

A. Our Results

1) Uniform Frugal Truthful Mechanisms: We propose a
uniform scheme, which we call PRUNING-LIFTING MECH-
ANISM, for designing frugal truthful mechanisms for set
systems. At a high-level view, this mechanism consists of
two key steps: pruning and lifting.
• Pruning. In a general set system, the relationships

among the agents can be arbitrarily complicated. Thus,
in the pruning step, we remove agents from the sys-
tem so as to expose the structure of the competition.
Intuitively, the goal is to keep only the agents who are
going to play a role in determining the bids in Nash
equilibrium; this enables us to compare the payoffs of
our mechanism to the total equilibrium payment. Since
we decide which agents to prune based on their bids,
we have to make our choices carefully so as to preserve
truthfulness.

• Lifting. The goal of the lifting process is to “lift” the
bid of each remaining agent so as to take into account
the size of each feasible set. For this purpose, we use a
graph-theoretic approach inspired by the ideas in [18].
Namely, we construct a graph H whose vertices are
agents, and there is an edge between two agents e and
e′ if removing both e and e′ results in a system with
no feasible solution. We call H the dependency graph
of the pruned system. We then compute the largest
eigenvalue of H (or, more precisely, the maximum of
the largest eigenvalues of its connected components),
which we denote by αH, and scale the bid of each
agent by the respective coordinate of the eigenvector
that corresponds to αH.

A given set system may be pruned in different ways, thus
leading to different values of αH. We will refer to the largest
of them, i.e., α = supH αH, as the eigenvalue of our set
system. It turns out that this quantity plays an important
role in our analysis.

We show that the r-out-of-k-system mechanism and
the

√
-mechanism for the single path problem that were

presented in [18] can be viewed as instantiations of
our PRUNING-LIFTING MECHANISM. We then apply our
scheme to two other classes of set systems: vertex cover
systems, where the goal is to buy a vertex cover in a given
graph, and k-path systems, where the goal is to buy k edge-
disjoint paths between two vertices of a given graph.

The k-path problem generalizes both the r-out-of-k prob-
lem and the single path problem, and captures many other
natural scenarios. However, this problem received limited
attention from the algorithmic mechanism design community
so far (see, however, [16]), perhaps due to its inherent
difficulty: the interactions among the agents can be quite
complex, and, till recently, it was not known how to char-
acterize Nash equilibria of the first-price auctions for this
setting in terms of the network structure. In this paper, we
obtain a strong lower bound on the total payments in Nash
equilibria. We then use this bound to show that a natural
variant of the PRUNING-LIFTING MECHANISM that prunes
all edges except those in the cheapest flow of size k+ 1 has
frugality ratio αk+1

k . Moreover, we show that this bound can
be improved by a factor of k + 1 if we consider a weaker
payment bound suggested in [10], which corresponds to a
buyer-pessimal rather than buyer-optimal Nash equilibrium
(i.e., the difference between two frugality bounds is akin to
that between the price of anarchy and the price of stability).

For the vertex cover problem, an earlier paper [10] de-
scribed a mechanism with frugality ratio 2∆, where ∆ is the
maximum degree of the input graph. Our approach results
in a mechanism whose frugality ratio equals to the largest
eigenvalue α of the adjacency matrix of the input graph.
As α ≤ ∆ for any graph G, this means that we improve
the result of [10] by at least a factor of 2 for all graphs.
Surprisingly, this stronger bound can be obtained by a simple
modification of the analysis in [10].

2) Lower Bounds: We complement the bounds on the
frugality of the PRUNING-LIFTING MECHANISM by proving
strong lower bounds on the frugality of (almost) any truthful
mechanism. In more detail, we exhibit a family of cost
vectors on which the payment of any measurable truthful
mechanism can be lower-bounded in terms of α, where
we call a mechanism measurable if the payment to any
agent—as a function of other agents’ bids—is a Lebesgue
measurable function. Lebesgue measurability is a much
weaker condition than continuity or monotonicity; indeed,
a mechanism that does not satisfy this condition is unlikely
to be practically implementable! Our argument relies on
Young’s inequality and applies to any set system.

To turn this lower bound on payments into a lower
bound on frugality, we need to understand the structure
of Nash equilibria for the bid vectors employed in our
proof. For k-path systems, we can achieve this by using
the characterization of Nash equilibria in such systems
given in [14]. As a result, we obtain a lower bound on
frugality of any measurable truthful mechanism that shows



that our mechanism is within a factor of (k + 1) from
optimal. Moreover, it is, in fact, optimal, with respect to
the weaker payment bound of [10]. For r-out-of-k systems
and single path systems, our bound improves the lower
bounds on frugality given in [18] by a factor of 2 and

√
2,

respectively. Our results give strong evidence that simply
choosing the cheapest (k + 1)-flow at the pruning stage of
our scheme (which can be seen as a generalization of the√

-mechanism [18] for k = 1) is indeed an optimal frugal
mechanism for paths systems.

For the vertex cover problem, characterizing the Nash
equilibria turns out to be a more difficult task: in this case,
the graph H is equal to the input graph, and therefore is not
guaranteed to have any regularity properties. However, we
can still obtain non-trivial upper bounds on the payments in
Nash equilibria. These bounds enable us to show that our
mechanism for vertex cover is optimal for all triangle-free
graphs, and, more generally, for all graphs that satisfy a
simple local sparsity condition.

B. Related Work

There is a substantial literature on designing mechanisms
with small payment for shortest path systems [2], [11], [12],
[8], [9], [16], [25] as well as for other set systems [23], [5],
[4], [18], [10], starting with the seminal work of Nisan and
Ronen [22]. Our work is most closely related to [18], [10]
and [25]: we employ the frugality benchmark defined in [18],
improve the bounds of [18] and [10], and generalize the
result of [25].

Simultaneously and independently, the idea of bounding
frugality ratios of set system auctions in terms of eigenval-
ues of certain matrices was considered by Kempe, Salek
and Moore [20]. In contrast with our work, in [20] the
authors only study the frugality ratio of their mechanisms
with respect to the relaxed payment bound of [10] (see
Section 5). They give a 2-competitive mechanism for vertex
cover systems, 2(k + 1)-competitive mechanism for k-path
systems, and a 4-competitive mechanism for cut systems.

2. PRELIMINARIES

A set system (E ,F) is given by a set E of agents and a
collection F ⊆ 2E of feasible sets. We restrict our attention
to monopoly-free set systems, i.e., we require

⋂
S∈F S =

∅. Each agent e ∈ E has a privately known cost c(e) that
represents the expenses that agent e incurs if he is involved
in performing the task.

A mechanism for a set system (E ,F) takes a bid vector
b = (b(e))e∈E as input, where b(e) ≥ c(e) for any e ∈ E ,
and outputs a set of winners S ∈ F and a payment p(e)
for each e ∈ E . We require mechanisms to satisfy voluntary
participation, i.e., p(e) ≥ b(e) for each e ∈ S and p(e) = 0
for each e /∈ S. Given the output of a mechanism, the utility
of an agent e is p(e)−c(e) if e is a winner and 0 otherwise.
We assume that agents are rational, i.e., aim to maximize

their own utility. Thus, they may lie about their true costs,
i.e., bid b(e) 6= c(e) if they can profit by doing so. We
say that a mechanism is truthful if every agent maximizes
his utility by bidding his true cost, no matter what bids
other agents submit. A weaker solution concept is that of
Nash equilibrium: a bid vector constitutes a (pure) Nash
equilibrium if no agent can increase his utility by unilaterally
changing his bid. Nash equilibria describe stable states of the
market and can be seen as natural outcomes of a bargaining
process.

There is a well-known characterization of winner selection
rules that yield truthful mechanisms.

Theorem 2.1 ([21], [2]). A mechanism is truthful if and
only if its winner selection rule is monotone, i.e., no losing
agent can become a winner by increasing his bid, given the
fixed bids of all other agents. Further, for a given monotone
selection rule, there is a unique truthful mechanism with this
selection rule: the payment to each winner is his threshold
bid, i.e., the highest value he could bid and still win.

An example of a truthful set system mechanism is given
by the VCG mechanism [24], [7], [15]. However, as dis-
cussed in Section 1, VCG often results in a large overpay-
ment to winners. Another natural mechanism for buying a
set is the first-price auction: given the bid vector b, pick a
subset S ∈ F minimizing b(S), and pay each winner e ∈ S
his bid b(e). While the first-price auction is not truthful,
and more generally, does not possess dominant strategies, it
essentially admits a Nash equilibrium with a relatively small
total payment. (More accurately, as observed by [16], a first-
price auction may not have a pure strategy Nash equilibrium.
However, this non-existence result can be circumvented
in several ways, e.g., by considering instead an ε-Nash
equilibrium for arbitrarily small ε > 0 or using oracle access
to the true costs of agents to break ties.) The payment in a
buyer-optimal Nash equilibrium would constitute a natural
benchmark for truthful mechanisms. However, due to the
difficulties described above, we use instead the following
benchmark proposed by Karlin et al. [18], which captures
the main properties of a Nash equilibrium.

Definition 2.2 (Benchmark ν(c) [18]). Given a set system
(E ,F), and a feasible set S ∈ F of minimum total cost
w.r.t. c, let ν(c) be the value of an optimal solution to the
following optimization problem:

min
∑
e∈S

b(e)

s.t. (1) b(e) ≥ c(e) for all e ∈ E
(2)

∑
e∈S\T

b(e) ≤
∑
e∈T\S

c(e) for all T ∈ F

(3) For every e ∈ S, there is a T ∈ F s.t. e /∈ T
and

∑
e′∈S\T

b(e′) =
∑

e′∈T\S

c(e′)



Intuitively, in the optimal solution of the above system, S
is the set of winners in the first-price auction. By condition
(3), no winner e ∈ S can improve his utility by increasing his
bid b(e), as he would not be a winner anymore. In addition,
by conditions (1) and (2), no agent e ∈ E \ S can obtain
a positive utility by decreasing his bid. Hence, ν(c) gives
the value of the cheapest Nash equilibrium of the first-price
auction assuming that the most “efficient” feasible set S
wins.

Definition 2.3 (Frugality Ratio). Let M be a truthful
mechanism for the set system (E ,F) and let pM(c) denote
the total payment of M when the true costs are given by a
vector c. Then the frugality ratio of M on c is defined as
φM(c) = pM (c)

ν(c) . Further, the frugality ratio ofM is defined
as φM = supc φM(c).

3. PRUNING-LIFTING MECHANISM

In this section, we describe a general scheme for de-
signing truthful mechanisms for set systems, which we call
PRUNING-LIFTING MECHANISM. For a given set system
(E ,F), the mechanism is composed of the following steps:
• Pruning. The goal of the pruning process is to drop

some elements of E to expose the structure of the
competition between the agents; we denote the set
of surviving agents by E∗. We require the process to
satisfy the following properties:

– Monotonicity: for any given vector of other agents’
bids, if an agent e is dropped when he bids b, he is
also dropped if he bids any b′ > b. We set t1(e) =
inf{b′ | e is dropped when bidding b′}.

– Bid-independence: for any given vector of other
agents’ bids, let b and b′ be two bids of agent e
such that e is not dropped when he submits either
of them. Then for both of these bids, the set E∗
of remaining agents is the same. That is, e cannot
control the outcome of the pruning process as long
as he survives. Monotonicity and bid-independence
conditions are important to ensure the truthfulness
of the mechanism.

– Monopoly-freeness: the remaining set system must
remain monopoly-free, i.e.,

⋂
S∈F∗ S = ∅, where

F∗ = {S′ ∈ F | S′ ⊆ E∗}. This condition is
necessary because in the winner selection stage
we will choose a winning feasible set from F∗.
Therefore, we have to make sure that no winning
agent can charge an arbitrarily high price due to
lack of competition.

• Lifting. The goal of the lifting process is to assign a
weight to each agent in E∗ so as to take into account
the size of each feasible set. To this end, we construct
an undirected graph H by (a) introducing a node ve
for each e ∈ E∗, and (b) connecting ve and ve′ if
and only if any feasible set in F∗ contains e or e′ (or

both of them). We will refer to H as the dependency
graph of E∗. For each connected component Hj of
H, compute the largest eigenvalue αj of its adjacency
matrix Aj , and let (w(ve))ve∈Hj

be the eigenvector of
Aj associated with αj . That is, Ajwj = αjwj , where
wj =

(
(w(ve))ve∈Hj

)T
. Set α = maxαj .

• Winner selection. Define b′(e) = b(e)
w(ve) for each e ∈ E∗,

and select a feasible set S ∈ F∗ with the smallest total
bids w.r.t. b′. Let t2(e) be the threshold bid for e ∈ E∗
to be selected at this stage.

• Payment. The payment to each winner e ∈ S is p(e) =
min{t1(e), t2(e)}, where t1(e) and t2(e) are the two
thresholds defined above.

Recall that the largest eigenvalue of the adjacency ma-
trix of a connected graph is positive and its associated
eigenvector has strictly positive coordinates [13]. Therefore,
w(ve) > 0 for all e ∈ E∗.

We will now define a quantity α(E,F) that will be in-
strumental in characterizing the frugality ratio of truthful
mechanisms on (E ,F). Let S(E ,F) be the collection of
all monopoly-free subsets of E , i.e., S(E ,F) = {S ⊆
E |

⋂
T∈F,T⊆S T = ∅}. The elements of S(E ,F) are

the possible outcomes of the pruning stage. For any subset
S ∈ S(E ,F), let HS be its dependency graph and let AS be
the adjacency matrix ofHS . Let α

S
be the largest eigenvalue

of AS (or the maximum of the largest eigenvalues of the
adjacency matrices of the connected components of HS ,
if HS is not connected). Set α(E,F) = maxS∈S(E,F) αS

;
we will refer to α(E,F) as the eigenvalue of the set system
(E ,F).

Note that once E∗ ∈ S(E ,F) is selected in the prun-
ing step, the computation of α and the weight vector
(w(ve))e∈E∗ does not depend on the bid vector. This prop-
erty is crucial for showing that our mechanism is truthful.

Theorem 3.1. PRUNING-LIFTING MECHANISM is truthful
for any set system (E ,F).

Proof: For any agent e ∈ E and given bids of other
agents, we will analyze the utility of e in terms of his bid.
We consider the following two cases.

Case 1: Agent e is not dropped during the pruning
process when bidding b(e) = c(e), i.e., e ∈ E∗. By the
definition of t1(e), we know that t1(e) ≥ c(e). Consider
the situation where e bids another value b′(e) 6= b(e). If
b′(e) > t1(e), then e /∈ E∗ and his utility is 0. If b′(e) ≤
t1(e), by the bid-independence property, we know that the
subset E∗ remains the same. Given this fact, the structure
of the graph H does not change, which implies that the
eigenvectors and eigenvalues of its adjacency matrix do not
change either. Hence, the threshold value t2(e) remains the
same, which implies that the payment to agent e, p(e) =
min{t1(e), t2(e)}, will not change.



Case 2: Agent e is dropped during the pruning process
when bidding b(e) = c(e), i.e., e /∈ E∗. Consider the
situation where e bids another value b′(e) 6= b(e) and is
not dropped out. By monotonicity and bid-independence, we
know that b′(e) ≤ t1(e) ≤ b(e) = c(e). Hence, even though
e could be a winner by bidding b′(e), his payment is at most
t1(e) ≤ c(e), which implies that he cannot obtain a positive
utility.

The case analysis above shows that the utility of each
agent is maximized by bidding his true cost, and hence the
mechanism is truthful.

In the rest of this section, we will show that the
mechanisms for r-out-of-k systems and single path sys-
tems proposed in [18] can be viewed as instantiations of
our PRUNING-LIFTING MECHANISM. By Theorems 2.1
and 3.1, we can ignore the payment rule in the following
discussions.

A. r-out-of-k Systems Revisited

In an r-out-of-k system, the set of agents E is a union
of k disjoint subsets S1, . . . , Sk and the feasible sets are
unions of exactly r of those subsets. Given a bid vector b,
renumber the subsets S1, . . . , Sk in order of non-decreasing
bids, i.e., b(S1) ≤ b(S2) ≤ · · · ≤ b(Sk).

The mechanism proposed in [18] deletes all but the first
r + 1 subsets, and then solves a system of equations given
by

β =
1
rxi
·
∑
j 6=i

xj · |Sj | for i = 1, . . . , r + 1. (♦)

It then scales the bid of each set Si by setting b′(Si) = b(Si)
xi

,
discards the set with the highest scaled bid w.r.t. b′, and
outputs the remaining sets.

Now, clearly, the first step of this mechanism can be inter-
preted as a pruning stage. Further, for r-out-of-k systems the
graph H constructed in the lifting stage of our mechanism is
a complete (r+ 1)-partite graph. It is not hard to verify that
for any positive solution (x1, . . . , xr+1, β) of the equation
system (♦), β ·r gives the largest eigenvalue of the adjacency
matrix of H and (x1, . . . , x1, . . . , xr+1, . . . , xr+1) is the
corresponding eigenvector. Thus, the mechanism of [18]
implements PRUNING-LIFTING MECHANISM for r-out-of-k
systems.

In [18] it is shown that the frugality ratio of this mecha-
nism is β, and the frugality ratio of any truthful mechanism
for r-out-of-k systems is at least β

2 . As r-out-of-k systems
can be viewed as a special case of r-path systems, Theo-
rem 6.5 allows us to improve this lower bound to βr

r = β.

B. Single Path Mechanisms Revisited

In a single path system, agents are edges of a given
directed graph G = (V,E) with two specified vertices s
and t, i.e., E = E and F consists of all sets of edges that
contain a path from s to t.

Given a bid vector b, the
√

-mechanism [18] first se-
lects two edge-disjoint s-t paths P and P ′ that minimize
b(P ) + b(P ′). Assume that P and P ′ intersect at s =
v1, v2, . . . , v`+1 = t, where the vertices are listed in the
order in which they appear in P and P ′. Let Pi and P ′i be
the subpaths of P and P ′ from vi to vi+1, respectively.
The

√
-mechanism sets b′(e) = b(e)

√
|Pi| for e ∈ Pi,

b′(e) = b(e)
√
|P ′i | for e ∈ P ′i , and chooses a cheapest path

in P ∪ P ′ w.r.t. b′.
As in the previous case, the selection of P and P ′

can be viewed as the pruning process. The corresponding
graph H consists of ` connected components, where the i-
th component Hi is a complete bipartite graph with parts
of size |Pi| and |P ′i |. Its largest eigenvalue is given by
αi =

√
|Pi||P ′i |, and the coordinates of the corresponding

eigenvector are given by w(ve) = 1/
√
|Pi| for e ∈ Pi and

w(ve) = 1/
√
|P ′i | for e ∈ P ′i . Thus, the

√
-mechanism

can be viewed as a special case of the PRUNING-LIFTING
MECHANISM. It is shown that the frugality ratio of the√

-mechanism is within a factor of 2
√

2 from optimal;
Theorem 6.5 below shows that this bound can be improved
by a factor of

√
2 (this has also been shown by Yan [25] via

a proof that is considerably more complicated than ours).

4. VERTEX COVER SYSTEMS

In the vertex cover problem, we are given a connected
graph G = (V,E) whose vertices are owned by selfish
agents. Our goal is to purchase a vertex cover of G. That is,
we have E = V , and F is the collection of all vertex covers
of G. Let A denote the adjacency matrix of G, and let ∆,
α = α(E,F) and w = (w(v))v∈V denote, respectively, the
maximum degree of G, the largest eigenvalue of A and the
corresponding eigenvector.

We will use the pruning-lifting scheme to construct a
mechanism whose frugality ratio is α; this improves the
bound of 2∆ given in [10] by at least a factor of 2 for
all graphs, and by as much as a factor of Θ(

√
n) for some

graphs (e.g., the star).
Observe first that the vertex cover system plays a special

role in the analysis of the performance of the pruning-lifting
scheme. Indeed, on the one hand, it is straightforward to
apply the PRUNING-LIFTING MECHANISM to this system:
since removing any agent will make each of its neighbors a
monopolist, the pruning stage of our scheme is redundant,
i.e., H = G. That is, there is a unique implementation
of PRUNING-LIFTING MECHANISM for vertex cover sys-
tems: we set b′(v) = b(v)

w(v) for all v ∈ V , pick any
S ∈ arg min{b′(T ) | T is a vertex cover for G} to be the
winning set, and pay each agent v ∈ S his threshold bid.
On the other hand, for general set systems, any feasible set
in the pruned system corresponds to a vertex cover of H:
indeed, by construction of the graph H, any feasible set
must contain at least one endpoint of any edge of H. (In
general, the converse is not true: a vertex cover of H is not



necessarily a feasible set. However, for k-path systems it can
be shown that any cover of H corresponds to a k-flow.)

We will now bound the frugality of PRUNING-LIFTING
MECHANISM for vertex cover systems.

Theorem 4.1. The frugality ratio of PRUNING-LIFTING
MECHANISM for vertex cover systems on a graph G is at
most α = α(E,F).

Proof: By Theorem 3.1 our mechanism is truthful, i.e.,
we have b(v) = c(v) for all v ∈ V . By optimality of S we
have b′(v) ≤

∑
uv∈E,u6∈S b

′(u), and therefore v’s payment
satisfies p(v) ≤ w(v)

∑
uv∈E,u 6∈S

c(u)
w(u) . Thus, we can bound

the total payment of our mechanism as∑
v∈S

p(v) ≤
∑
v∈S

w(v)
∑

uv∈E,u6∈S

c(u)
w(u)

=
∑
u/∈S

c(u)
w(u)

∑
uv∈E

w(v)

=
∑
u/∈S

c(u)
w(u)

αw(u)

= α
∑
u/∈S

c(u).

Lemma 8 in [10] shows that for any cost vector c, we
have ν(c) ≥

∑
u/∈S c(u). Therefore, the frugality ratio of

PRUNING-LIFTING MECHANISM for vertex cover on G is
at most α.

In Section 6-A we show that our mechanism is optimal
for a large class of graphs.

A. Computational Issues

To implement PRUNING-LIFTING MECHANISM for ver-
tex cover, we need to select the vertex cover that minimizes
the scaled costs given by (b′(v))v∈V , i.e., to solve an
NP-hard problem. However, the argument in Theorem 4.1
applies to any truthful mechanism that selects a locally
optimal solution, i.e., a vertex cover S that satisfies b′(v) ≤∑
uv∈E,u6∈S b

′(u) for all v ∈ S. Paper [10] argues that
any monotone winner selection algorithm for vertex cover
can be transformed into a locally optimal one, and shows
that a variant of the classic 2-approximation algorithm for
this problem [3] is monotone. This leads to the following
corollary.

Corollary 4.2. There exists a truthful polynomial-time ver-
tex cover mechanism that given a graph G outputs a solution
whose cost is within a factor of 2 from optimal and whose
frugality ratio is at most α.

5. MULTIPLE PATHS SYSTEMS

In this section, we study in detail k-path systems for a
given integer k ≥ 1. In these systems, the set of agents E
is the set of edges of a directed graph G = (V,E) with
two specified vertices s, t ∈ V . The feasible sets are sets of

edges that contain k edge-disjoint s-t paths. Clearly, these
set systems generalize both r-out-of-k systems and single
path systems.

Our mechanism for k-path systems for a given di-
rected graph G, which we call PRUNING-LIFTING k-
PATHS MECHANISM, is a natural generalization of the

√
-

mechanism [18]: In the pruning stage of our mechanism,
given a bid vector b, we pick k + 1 edge-disjoint s-t paths
P1, . . . , Pk+1 so as to minimize their total bid w.r.t. the
bid vector b. Clearly, this procedure is monotone and bid-
independent. Let G∗(b) denote the subgraph composed of
these k + 1 paths. The remaining steps of the mechanism
(lifting, winner selection, payment determination) are the
same as in the general case (Section 3). Since the PRUNING-
LIFTING k-PATHS MECHANISM is an implementation of the
PRUNING-LIFTING MECHANISM, Theorem 3.1 implies that
it is truthful.

Let Gk+1 denote the set of all subgraphs of G that can
be represented as a union of k + 1 edge-disjoint s-t paths
in G. For any G′ ∈ Gk+1, let H(G′) denote the dependency
graph of G′, and let α(G′) denote the maximum of the
largest eigenvalues of the connected components of H(G′).
Set αk+1 = max{α(G′) | G′ ∈ Gk+1}. We can bound the
frugality ratio of our mechanism as follows.

Theorem 5.1. The frugality ratio of PRUNING-LIFTING k-
PATHS MECHANISM is at most αk+1

k+1
k .

A. Proof of Theorem 5.1

In this subsection, we will prove Theorem 5.1. We first
need the following definition.

Definition 5.2 (Minimum Longest Path δk+1(G, c)). For
any k+1 edge-disjoint s-t paths P1, . . . , Pk+1 in a directed
graph G, let δk+1(P1, . . . , Pk+1, c) denote the length of the
longest s-t path w.r.t. cost vector c in the subgraph G′

composed of P1, . . . , Pk+1 (if G′ contains a positive length
cycle, set δk+1(P1, . . . , Pk+1, c) = +∞). Define

δk+1(G, c) = min
{
δk+1(P1, . . . , Pk+1, c) | P1, . . . , Pk+1

are k + 1 edge-disjoint s-t paths
}
.

Our analysis crucially relies on the following characteri-
zation of Nash equilibria presented in [14], which gives us
a lower bound on ν(c) in terms of δk+1(G, c).

Theorem 5.3 ([14]). Let G = (V,E) be a directed graph
with weight w(e) on each edge e ∈ E. Given two specific
vertices s, t ∈ V , assume that there are k edge-disjoint paths
from s to t. Let P1, P2, · · · , Pk be such k edge-disjoint s-t
paths so that its total weight L ,

∑k
i=1 w(Pi) is minimized,

where w(Pi) =
∑
e∈Pi

w(e). Further, it is known that for
every edge e ∈ E, the graph G\{e} has k edge-disjoint s-t
paths with the same total weight L. Then there exist k + 1
edge-disjoint s-t paths in G such that each of them is a
shortest path from s to t.



Lemma 5.4. For any k-path system on a given graph G
with costs c, we have ν(c) ≥ k · δk+1(G, c).

Proof: Fix a cost vector c. Let E′ be the winning set
with respect to c, and consider a bid vector b that satisfies
conditions (1)–(3) in the definition of ν(c). Let p(b) denote
the total payment under b. The set E′ contains k edge-
disjoint s-t paths. By condition (2), no agent in E′ can obtain
more revenue by increasing his bid. That is, for any e ∈ E′,
there are k edge-disjoint s-t paths in G \ {e} with the same
total bid as E′. Applying Theorem 5.3 with w(e) = b(e), we
obtain that there are k + 1 edge-disjoint shortest s-t paths
with length p(b)

k each w.r.t b. Consider the subgraph G′

composed by these k+ 1 edge-disjoint paths. We know that
δk+1(G′, c) ≤ p(b)

k as b(e) ≥ c(e) for any edge e, i.e., the
length of the longest s-t path in G′ w.r.t to c is at most p(b)

k .
Hence,

p(b) ≥ k · δk+1(G′, c) ≥ k · δk+1(G, c).

As this holds for any vector b that satisfies conditions (1)–
(3), it follows that ν(c) ≥ δk+1(G, c).

Let L(G, c) be the length of the longest path in G∗(c),
where G∗(c) is the output of our pruning process on the bid
vector c. Our second lemma gives an upper bound on the
payment of our mechanism in terms of L(G, c)

Lemma 5.5. For any k-path system on a given graph G with
costs c, the total payment of PRUNING-LIFTING k-PATHS
MECHANISM is at most α(G∗(c))L(G, c).

Proof: Fix a cost vector c and set G∗ = G∗(c),
H = H(G∗(c)), α = α(G∗(c)). Observe that since G∗

is the cheapest collection of k edge-disjoint paths in G, it
is necessarily cycle-free. For each vertex v ∈ V (H), let ev
be the corresponding edge in G∗.

We claim that there is a natural one-to-one correspondence
between minimal vertex covers in H (i.e., vertex cover such
that removing any node results in an uncovered edge) and
k-flows in G∗. To show this, we need the following claim.

Claim 5.6. Let u and v be two vertices of H. Then uv /∈
E(H) if and only if there is an s–t path in G∗ going through
both eu and ev .

Proof of Claim 5.6: If there is a path P ⊆ G∗ such
that eu, ev ∈ P , then in G∗ \ {eu, ev} there are k edge-
disjoint s–t paths. Hence there is no edge between u and v.
Conversely, if uv /∈ E(H), then G∗ \ {eu, ev} has k edge-
disjoint s–t paths. Removing these k paths from G∗ leads
to an s–t path going through eu and ev .

For any k-flow in G∗, the remaining agents form an s–
t path and hence (by Claim 5.6) an independent set in H.
On the other hand, since in G∗ there are no cycles, for any
independent set in H one can find a complete order ≺ of
agents in H such that u ≺ v whenever eu precedes ev in
an s–t path in G∗. Moreover, we can find a single s–t path

of G∗ containing all edges corresponding to agents in H.
These two observations conclude the proof of one-to-one
correspondence.

Recall that in the proof of Theorem 4.1, we upper-
bounded the total payment to the winning set S in a vertex
cover set system as

∑
v∈S p(v) ≤ α

∑
u/∈S c(u). The same

upper bound applies here as well, since we have a bijection
between vertex covers and k-flows. Moreover, we have
α
∑
u/∈S c(u) ≤ α(G∗(c))L(G, c), since L(G, c) is the

length of the longest path in G∗. This concludes the proof
of the lemma.

We will now show how Lemmas 5.4 and 5.5 imply
Theorem 5.1.

Proof of Theorem 5.1: Fix an arbitrary cost vector c.
Suppose that in the pruning stage we pick a graph G∗. By
Lemma 5.5, the total payment of our mechanism is at most
α(G∗)L(G, c). Since G∗ ∈ Gk+1, we have α(G∗) ≤ αk+1.
Consider a collection P1, . . . , Pk+1 of k + 1 edge-disjoint
paths in G such that δk+1(P1, . . . , Pk+1, c) = δk+1(G, c).
Since G∗ is the cheapest collection of k + 1 edge-disjoint
paths in G, we have

∑
e∈G∗ c(e) ≤

∑k+1
i=1

∑
e∈Pi

c(e). We
obtain

L(G, c) ≤
∑
e∈G∗

c(e)

≤
k+1∑
i=1

∑
e∈Pi

c(e)

≤ (k + 1)δk+1(P1, . . . , Pk+1)
= (k + 1)δk+1(G, c).

Thus, the frugality ratio of PRUNING-LIFTING k-PATHS
MECHANISM on c is at most

α(G∗)L(G, c)
kδk+1(G, c)

≤ αk+1(k + 1)δk+1(G, c)
kδk+1(G, c)

=
αk+1(k + 1)

k
,

which completes the proof of Theorem 5.1.

B. µ-Frugality Analysis

In what follows (see Section 6-B), we show a lower bound
of αk+1

k on the frugality ratio of essentially any truthful k-
path mechanism; thus the frugality ratio of our mechanism
is within a factor of k + 1 from optimal. This gap leaves
the question of whether there is a better truthful mechanism
for k-path systems. One might hope that a different pruning
approach could lead to a smaller frugality ratio. In particular,
the proof of Theorem 5.1 suggests that we could get a
stronger result by pruning the graph so as to minimize the
length of the longest path δk+1(G∗, c) in the surviving graph
G∗. While the argument above shows that—under truthful
bidding—such mechanism would have an optimal frugality
ratio, unfortunately, it turns out that this pruning process is
not monotone [19].



We can, however, show that our mechanism is optimal
with respect to a weaker benchmark, namely, one that
corresponds to a buyer-pessimal rather than buyer-optimal
Nash equilibrium. This benchmark was introduced in [10],
and has been recently used by Kempe et al. [20]. As argued
in [10] and [20], unlike ν, this benchmark enjoys natural
monotonicity properties and is easier to work with.

Definition 5.7 (Benchmark µ(c) [10]). Given a set system
(E ,F), and a feasible set S ∈ F of minimum total cost
w.r.t. c, let µ(c) be the value of an optimal solution to the
following optimization problem:

max
∑
e∈S

b(e)

s.t. (1) b(e) ≥ c(e) for all e ∈ E
(2)

∑
e∈S\T

b(e) ≤
∑
e∈T\S

c(e) for all T ∈ F

(3) For every e ∈ S there is a T ∈ F s.t. e /∈ T
and

∑
e′∈S\T

b(e′) =
∑

e′∈T\S

c(e′)

We will refer to the quantity supc
pM (c)

µ(c) as the µ-frugality
ratio of a truthful mechanism M, where pM(c) is the total
payment of mechanism M on a bid vector c.

The programs for ν(c) and µ(c) differ in their objective
function only: while ν(c) minimizes the total payment, µ(c)
maximizes it. In particular, this means that in the program for
µ(c) we can omit constraint (3), i.e., µ(c) can be obtained
as a solution to a linear program. Kempe et al. [20] show
that the µ-frugality ratio of PRUNING-LIFTING k-PATHS
MECHANISM is within a factor of 2(k+1) from optimal. Our
next result, combined with the observation that our lower
bound on the performance of “all” truthful mechanisms
also holds for the µ-frugality ratio, shows that PRUNING-
LIFTING k-PATHS MECHANISM is, in fact, optimal with
respect to µ. The proof proceeds by constructing a bid vector
that satisfies constraints (1) and (2) in the definition of µ(c)
and pays at least kL(G, c), and uses the observation that for
any fixed network the cost of a flow of size x is a convex
piecewise-linear function of x.

Theorem 5.8. The µ-frugality ratio of PRUNING-LIFTING
k-PATHS MECHANISM is at most αk+1

k .

6. LOWER BOUNDS

We say that a mechanism M for a set system (E ,F)
is measurable if the payment p(e) of any agent e ∈ E
is a Lebesque measurable function of all agents’ bids. We
will now use Young’s inequality to give a lower bound on
total payments of any measurable truthful mechanism with
bounded frugality ratio.

Theorem 6.1 (Young’s inequality). Let f1 : [0, a] → R+ ∪
{0} and f2 : [0, b]→ R+∪{0} be two Lebesgue measurable

functions that are bounded on their domain. Assume that
whenever y > f1(x) for some 0 < x ≤ a, 0 < y ≤ b, we
have x ≤ f2(y). Then∫ a

0

f1(x)dx+
∫ b

0

f2(y)dy ≥ ab.

This inequality follows from the observation that∫ a
0
f1(x)dx equals to the measure of points {(x, y) | 0 <

x ≤ a, 0 < y ≤ f1(x)}, whereas
∫ b
0
f2(y)dy equals to the

measure of points {(x, y) | 0 < y ≤ b, 0 < x ≤ f2(y)}.
These two sets cover {(x, y) | 0 < x ≤ a, 0 < y ≤ b}, so
the sum of their measures is at least ab.

Fix a set system (E ,F) with |E| = n and let S(E,F) ∈
S(E ,F) be a subset with α

S
= α(E,F) (recall that S(E ,F)

is the collection of all monopoly-free subsets and α(E,F) is
the eigenvalue of the system). For any e ∈ S(E,F), let ce,x
denote a bid vector where e bids x, all agents in S(E,F)\{e}
bid 0, and all agents in E \ S(E,F) bid n+ 1.

Lemma 6.2. For any set system (E ,F) and any measurable
truthful mechanism M with bounded frugality ratio, there
exists an agent e ∈ S(E,F) and a real value 0 < x ≤ 1 such
that the total payment of M on the bid vector ce,x is at
least α(E,F)x.

Proof: Set S = S(E,F), H = HS , A = AS , α = α
S

=
α(E,F). We will assume from now on that H = (S,E(H))
is connected; if this is not the case, our argument can be
applied without change to the connected component of H
that corresponds to α. Let w = (wv)v∈S be the eigenvector
of A that is associated with α. By normalization, we can
assume that maxv∈S wv = 1.

The proof is by contradiction: assume that there is a
truthful mechanism M that pays less than αx on any bid
vector of the form ce,x for all e ∈ S and all 0 < x ≤ 1.
Recall that for any such bid vector, the cost of each agent
in E \ S is n + 1. Since α ≤ n and x ≤ 1, this implies
that M never picks any agents from E \S on any ce,x, i.e.,
effectively M operates on S. For any edge vu of H and
any x > 0, let puv(x) denote the payment to v on the bid
vector cu,x. Observe that measurability of M implies that
puv(x) is measurable (since it is a restriction of a measurable
function). In this notation, our assumption can be restated
as ∑

uv∈E(H)

puv(x) < αx (*)

for all u ∈ S and any 0 < x ≤ 1.
It is easy to see that given a bid vector cu,z with

0 < z ≤ 1, M never selects u as a winner. Indeed,
suppose that u wins given cu,z . Then by the truthfulness
of M, if we reduce u’s true cost from z to 0, u still wins
and receives a payment of at least z. Since the set system
restricted to S is monopoly-free, the resulting cost vector
c′ satisfies conditions (1)–(3) in the definition of ν, and



hence ν(c′) = 0. Thus the frugality ratio of M is +∞,
a contradiction. By the construction of H, this means that
any v ∈ S with uv ∈ E(H) wins given cu,z .

Now, fix some x, y such that 0 < x, y ≤ 1 and y >
pvu(x), and consider a situation where v bids x, u bids y,
all agents in S \ {u, v} bid 0, and all agents in E \ S bid
n + 1. Clearly, in this situation agent u loses and thus v
wins with a payment of at least x. By the truthfulness of
M, the same holds if v lowers his bid to 0. Thus, for any
0 < x, y ≤ 1, y > pvu(x) implies puv(y) ≥ x.

By our assumption, we have puv(x) ≤ αx, pvu(x) ≤ αx
for x ∈ [0, 1]. Hence, for any uv ∈ E(H) the functions
puv(x) and pvu(x) satisfy all conditions of Young’s inequal-
ity on [0, 1].

Let A = (auv)u,v∈S , and consider the scalar product
〈w, Aw〉 = 〈w, αw〉 = α〈w,w〉. We have 〈w, Aw〉 =∑
uv∈E(H) wuwv . As we normalized w so that wu, wv ≤ 1,

by Young’s inequality, we can bound wuwv by∫ wu

0

puv(x)dx+
∫ wv

0

pvu(x)dx.

Therefore,

α〈w,w〉 =
∑

u,v∈S

auvwuwv

≤
∑

u,v∈S

(∫ wu

0

auvpuv(x)dx+

∫ wv

0

auvpvu(y)dy

)
= 2

∑
u∈S

∫ wu

0

∑
v∈S

auvpuv(x)dx

< 2α
∑
u∈S

∫ wu

0

xdx

= α
∑
u∈S

w2
u = α〈w,w〉,

where the last inequality follows from (*). This is a contra-
diction, so the proof is complete.

A. Vertex Cover Systems

For vertex cover systems, deleting any of the agents would
result in a monopoly. Therefore, Lemma 6.2 simply says
that for any measurable truthful mechanism M on a graph
G = (V,E), there exists a v ∈ V such that the total payment
on bid vector x · cv is at least αx, where α is the largest
eigenvalue of the adjacency matrix of G and cv is the cost
vector given by cv(u) = 1 if u = v, and cv(u) = 0 if
u ∈ V \ {v}.

Given a graph G = (V,E) and a vertex v ∈ V , let CLv
denote the set of all maximal cliques in G that contain v.
Let ρv denote the size of the smallest clique in CLv .

Lemma 6.3. We have ν(x · cv) ≤ x(ρv − 1) for any x > 0.

Proof: Let Cv be some clique of size ρv in CLv , and
consider the bid vector b given by b(u) = x if u ∈ Cv
and b(u) = 0 if u ∈ V \ Cv . Since Cv is a clique, any
vertex cover for G must contain at least ρv − 1 vertices

of Cv . Thus, any cheapest feasible set with respect to the
true costs contains all vertices in Cv \ {v}; let S denote
some such set. Moreover, for any u ∈ Cv \ {v}, any vertex
cover that does not contain u must contain v, so b satisfies
condition (2) with respect to the set S in the definition of
the benchmark ν. To see that is also satisfies condition (3),
note that if any vertex in Cv \ {v} decides to raise its bid,
it can be replaced by its neighbors at cost x. Now, consider
any w ∈ (V \Cv)∩S. The vertex w cannot be adjacent to all
vertices in Cv , since otherwise Cv would not be a maximal
clique. Thus, if w ∈ S, we can obtain a vertex cover of cost
x(ρv − 1) that does not include w by taking all vertices of
cost 0 as well as all vertices in Cv that are adjacent to w.

Combining Lemma 6.3 with Lemma 6.2 yields the fol-
lowing result.

Theorem 6.4. For any graph G, the frugality ratio of any
measurable truthful vertex cover auction on G is at least
α
ρ−1 , where α is the largest eigenvalue of the adjacency
matrix of G, and ρ = maxv∈V ρv .

The bound given in Lemma 6.3 is not necessarily optimal;
we can construct a family of graphs where for some vertex
v the quantity ρv is linear in the size of the graph, while
ν(cv) = O(1). Nevertheless, Theorem 6.4 shows that the
mechanism described in Section 4 has optimal frugality ratio
for, e.g., all triangle-free graphs and, more generally, all
graphs G such that the for each vertex v ∈ G, the induced
subgraph on the neighbors of v contains an isolated vertex.

B. Multiple Path Systems

Let (E ,F) be a k-path system on a graph G = (V,E).
Consider a set S ∈ S(E ,F) with α

S
= α(E,F). It is not hard

to see that S is a union of k + 1 edge-disjoint paths; this
follows, e.g., from the proof of Theorem 5.3 [14]. Hence,
we have α(E,F) = αk+1.

As before, for any e ∈ S, let ce,x denote the cost vector
with ce,x(e) = x, ce,x(u) = 0 for all u ∈ S\{e}, ce,x(w) =
n + 1 for all w ∈ E \ S. It is easy to see that we have
µ(ce,x) = ν(ce,x) = kx for any e ∈ S, x > 0. Combining
this observation with Lemma 6.2, we obtain the following
result.

Theorem 6.5. For any graph G = (V,E), both the frugality
ratio and the µ-frugality ratio of any measurable truthful k-
path mechanism on G are at least αk+1

k .

In Section 5, we show that the frugality ratio and the µ-
frugality ratio of PRUNING-LIFTING k-PATHS MECHANISM
are bounded by, respectively, αk+1

k+1
k and αk+1

k . Together
with Theorem 6.5, this implies that PRUNING-LIFTING k-
PATHS MECHANISM has optimal µ-frugality ratio; this gives
further evidence that PRUNING-LIFTING k-PATHS MECHA-
NISM is indeed the optimal mechanism for k-path systems.



7. CONCLUSIONS AND OPEN PROBLEMS

In this paper, we propose a uniform scheme for designing
frugal truthful mechanisms. We show that several existing
mechanisms can be viewed as instantiations of our scheme,
and describe its applications to k-path systems and vertex
cover systems. We demonstrate that our scheme produces
mechanisms with good frugality ratios for k-path systems
and a large subclass of vertex cover systems; for k-path
systems, we show that our mechanism has the optimal
frugality ratio. Moreover, all mechanisms described in this
paper are polynomial-time computable. We believe that our
scheme can be applied to many other set systems, resulting
in mechanisms with near-optimal frugality ratios.

It would be interesting to understand the limits of applica-
bility of our scheme. Indeed, for some set systems the min-
imal monopoly-free subsystem does not necessarily exhibit
a lot of connections between agents, i.e., the corresponding
dependency graph is rather sparse. It seems that for such
cases our scheme does not produce mechanisms with good
frugality ratio. Formalizing this intuition and developing
alternative approaches for designing frugal mechanisms in
such settings is an interesting research direction.
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[2] A. Archer, É. Tardos, Frugal Path Mechanisms, SODA 2002,
991-999.

[3] R. Bar-Yehuda, S. Even, A Local Ratio Theorem for Approxi-
mating the Weighted Vertex Cover Problem, Annals of Discrete
Mathematics, V.25, 27-46, 1985.

[4] S. Bikhchandani, S. de Vries, J. Schummer, R. Vohra, Linear
Programming and Vickrey Auctions, IMA Volume in Mathe-
matics and its Applications, Mathematics of the Internet: E-
auction and Markets, V.127, 75-116, 2001.

[5] G. Calinescu, Bounding the Payment of Approximate Truthful
Mechanisms. ISAAC 2004, 221-233.

[6] N. Chen, A. R. Karlin, Cheap Labor Can Be Expensive, SODA
2007, 707-715.

[7] E. H. Clarke, Multipart Pricing of Public Goods, Public
Choice, V.11, 17-33, 1971.

[8] A. Czumaj, A. Ronen, On the Expected Payment of Mecha-
nisms for Task Allocation, PODC 2004, 98-106.

[9] E. Elkind, True Costs of Cheap Labor are Hard to Measure:
Edge Deletion and VCG Payments in Graphs, EC 2005, 108-
116.

[10] E. Elkind, L. A. Goldberg, P. W. Goldberg, Frugality Ratios
and Improved Truthful Mechanisms for Vertex Cover, EC 2007,
336-345.

[11] E. Elkind, A. Sahai, K. Steiglitz, Frugality in Path Auctions,
SODA 2004, 701-709.

[12] J. Feigenbaum, C. H. Papadimitriou, R. Sami, S. Shenker, A
BGP-Based Mechanism for Lowest-Cost Routing, PODC 2002,
173-182.

[13] C. Godsil, G. Royle, Algebraic Graph Theory, Graduate Texts
in Mathematics, V.207, Springer, 2001.

[14] N. Gravin, N. Chen, A Note on k-Shortest Paths Problem, to
appear in Journal of Graph Theory.

[15] T. Groves, Incentives in Teams, Econometrica, V.41, 617-631,
1973.

[16] N. Immorlica, D. Karger, E. Nikolova, R. Sami, First-Price
Path Auctions, EC 2005, 203-212.

[17] A. Iwasaki, D. Kempe, Y. Saito, M. Salek, M. Yokoo, False-
Name-Proof Mechanisms for Hiring a Team, WINE 2007, 245-
256.

[18] A. R. Karlin, D. Kempe, T. Tamir, Beyond VCG: Frugality
of Truthful Mechanisms, FOCS 2005, 615-626.

[19] D. Kempe, personal communication.

[20] D. Kempe, M. Salek, C. Moore, Frugal and Truthful Auctions
for Vertex Covers, Flows, and Cuts, FOCS 2010.

[21] V. Krishna, Auction Theory, Academic Press, 2002.

[22] N. Nisan, A. Ronen, Algorithmic Mechanism Design, STOC
1999, 129-140.

[23] K. Talwar, The Price of Truth: Frugality in Truthful Mecha-
nisms, STACS 2003, 608-619.

[24] W. Vickrey, Counterspeculation, Auctions and Competitive
Sealed Tenders, Journal of Finance, V.16, 8-37, 1961.

[25] Q. Yan, On the Price of Truthfulness in Path Auctions, WINE
2007, 584-589.


