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Abstract—We give efficient algorithms for volume sampling,
i.e., for picking k-subsets of the rows of any given matrix
with probabilities proportional to the squared volumes of the
simplices defined by them and the origin (or the squared
volumes of the parallelepipeds defined by these subsets of rows).
This solves an open problem from the monograph on spectral
algorithms by Kannan and Vempala (see Section 7.4 of [15],
also implicit in [1], [5]).

Our first algorithm for volume sampling k-subsets of rows
from an m-by-n matrix runs in O(kmnω logn) arithmetic
operations (where ω is the exponent of matrix multiplication)
and a second variant of it for (1 + ε)-approximate volume
sampling runs in O(mn logm · k2/ε2 +m logω m · k2ω+1/ε2ω ·
log(kε−1 logm)) arithmetic operations, which is almost linear
in the size of the input (i.e., the number of entries) for small
k.

Our efficient volume sampling algorithms imply the follow-
ing results for low-rank matrix approximation:

1) Given A ∈ Rm×n, in O(kmnω logn) arithmetic opera-
tions we can find k of its rows such that projecting onto
their span gives a

√
k + 1-approximation to the matrix

of rank k closest to A under the Frobenius norm. This
improves the O(k

√
log k)-approximation of Boutsidis,

Drineas and Mahoney [1] and matches the lower bound
shown in [5]. The method of conditional expectations
gives a deterministic algorithm with the same complexity.
The running time can be improved to O(mn logm ·
k2/ε2+m logω m·k2ω+1/ε2ω ·log(kε−1 logm)) at the cost
of losing an extra (1 + ε) in the approximation factor.

2) The same rows and projection as in the previous point
give a

√
(k + 1)(n− k)-approximation to the matrix of

rank k closest to A under the spectral norm. In this
paper, we show an almost matching lower bound of

√
n,

even for k = 1.

Keywords-volume sampling, low-rank matrix approximation,
row/column subset selection

I. INTRODUCTION

Volume sampling, i.e., picking k-subsets of the rows
of any given matrix with probabilities proportional to the
squared volumes of the simplices defined by them, was intro-
duced in [5] in the context of low-rank approximation of ma-
trices. It is equivalent to sampling k-subsets of {1, . . . ,m}
with probabilities proportional to the corresponding k by k
principal minors of any given m by m positive semidefinite
matrix.

In the context of low-rank approximation, volume sam-
pling is related to a problem called row/column-subset se-
lection [1]. Most large data sets that arise in search, microar-

ray experiments, computer vision, data mining etc. can be
thought of as matrices where rows and columns are indexed
by objects and features, respectively (or vice versa), and we
need to pick a small subset of features that are dominant.
For example, while studying gene expression data biologists
want a small subset of genes that are responsible for a
particular disease. Usual dimension reduction techniques
such as principal component analysis (PCA) or random
projection fail to do this as they typically output singular
vectors or random vectors which are linear combinations
of a large number of feature vectors. A recent article by
Mahoney and Drineas [18] highlights the limitations of PCA
and gives experimental data on practical applications of low-
rank approximation based on row/column-subset selection.

II. ROW/COLUMN-SUBSET SELECTION AND VOLUME
SAMPLING

While dealing with large matrices in practice, we seek
smaller or low-dimensional representations of them which
are close to them but can be computed and stored efficiently.
A popular notion for low-dimensional representation of
matrices is low-rank matrices, and the most popular metrics
used to measure the closeness of two matrices are the
Frobenius or Hilbert-Schmidt norm (i.e., the square root
of the sum of squares of entries of their difference) and
the spectral norm (i.e., the largest singular value of their
difference). The singular value decomposition (SVD) tells
us that any matrix A ∈ Rm×n can be written as

A =
m∑
i=1

σiuiv
T
i ,

where σ1 ≥ · · · ≥ σm ≥ 0, ui ∈ Rm are orthonormal
and vi ∈ Rn are orthonormal. Moreover, the nearest rank-k
matrix to A, let us call it Ak, under both the Frobenius and
the spectral norm, is given by

Ak =
k∑
i=1

σiuiv
T
i .

In other words, the rows of Ak are projections of the rows
of A onto span (vi : 1 ≤ i ≤ k). Because of this, most
dimension reduction techniques based on the singular value
decomposition, e.g., principal component analysis (PCA),
are interpreted as giving vi’s as the dominant vectors, which



happen to be linear combinations of a large number of the
rows or feature vectors of A.

The row-subset selection problem we consider in this
paper is: Can we pick a k-subset of the rows (or feature
vectors) of A ∈ Rm×n so that projecting onto their span is
almost as good as projecting onto span (vi : 1 ≤ i ≤ k)?
This is the same as the column-subset selection problem
(CSSP) mentioned in [9], [1], if we look at AT instead of
A.

Several row-sampling techniques have been considered
in the past as an approximate but faster alternative to the
singular value decomposition, in the context of streaming
algorithms and large data sets that cannot be stored in ran-
dom access memory [8], [7], [5]. However, they often pick
more than k rows and then produce a rank-k approximation
to the given matrix using their linear combinations. The
first among these sampling schemes is the squared-length
sampling of rows introduced by Frieze, Kannan and Vempala
[8]. Another sampling scheme due to Drineas, Mahoney and
Muthukrishnan [7] uses the singular values and singular vec-
tors to decide the sampling probabilities. Later Deshpande,
Rademacher, Vempala and Wang [5] introduced volume
sampling as a generalization of squared-length sampling.

Definition 1. Given A ∈ Rm×n, volume sampling is defined
as picking a k-subset S of [m] with probability proportional
to

det
(
ASA

T
S

)
= (k! · vol (conv ({0̄} ∪ {ai : i ∈ S})))2 ,

where ai denotes the i-th row of A, AS ∈ Rk×n denotes the
row-submatrix of A given by rows with indices i ∈ S, and
conv (·) denotes the convex hull.

The application of volume sampling to low-rank approx-
imation and, more importantly, to the row-subset selection
problem, is given by the following theorem shown in [5]. It
says that picking a subset of k rows according to volume
sampling and projecting all the rows of A onto their span
gives a (k + 1)-approximation to the nearest rank-k matrix
to A.

Theorem 2. [5] Given any A ∈ Rm×n,

E
[
‖A− πS(A)‖2F

]
≤ (k + 1) ‖A−Ak‖2F ,

when S is picked according to volume sampling, πS(A) ∈
Rm×n denotes the matrix obtained by projecting all the rows
of A onto span (ai : i ∈ S), and Ak is the matrix of rank
k closest to A under the Frobenius norm.

As we will see later, this easily implies

E [‖A− πS(A)‖2] ≤
√

(k + 1)(n− k) ‖A−Ak‖2 .

Theorem 2 gives only an existence result for row-subset
selection and we also know a matching lower bound that
says this is the best we can possibly do.

Theorem 3. [5] For any ε > 0, there exists a matrix A ∈
R(k+1)×k such that picking any k-subset S of its rows gives

‖A− πS(A)‖F ≥ (1− ε)
√
k + 1 ‖A−Ak‖F .

However, no efficient algorithm was known for volume
sampling prior to this work. An algorithm mentioned in
Deshpande and Vempala [6] does k!-approximate volume
sampling in time O(kmn), which means that plugging it
in Theorem 2 can only guarantee (k + 1)!-approximation
instead of (k+1). Finding an efficient algorithm for volume
sampling is mentioned as an open problem in the recent
monograph on spectral algorithms by Kannan and Vempala
(see Section 7.4 of [15]).

Boutsidis, Drineas and Mahoney [1] gave an alternative
approach to row-subset selection (without going through
volume sampling) and here is a re-statement of the main
theorem from their paper which uses columns instead of
rows.

Theorem 4 ([1]). There is a randomized algorithm that,
given any A ∈ Rm×n, outputs a k-subset S of its rows in
time O

(
min{mn2,m2n}

)
with probability at least 0.8 such

that

‖A− πS(A)‖F = O(k
√

log k) ‖A−Ak‖F ,
‖A− πS(A)‖2 =

O(k
√

log k) ‖A−Ak‖2 +O(k3/4 log1/4 k) ‖A−Ak‖F .

Row/column-subset selection problem is related to rank-
revealing decompositions considered in linear algebra [12],
[19], and the previous best algorithmic result for row-subset
selection in the spectral norm case was given by a result of
Gu and Eisenstat [12] on strong rank-revealing QR decom-
positions. The following theorem is a direct consequence of
[12] as pointed out in [1].

Theorem 5. Given A ∈ Rm×n, an integer k ≤ n and f ≥ 1,
there exists a k-subset S of the columns of A such that∥∥AT − πS(AT )

∥∥
2
≤
√

1 + f2k(n− k) ‖A−Ak‖2 .

Moreover, this subset S can be found in time
O
(
(m+ n logf n)n2

)
.

In the context of volume sampling, it is interesting to
note that Pan [19] has used an idea of picking submatrices
of locally maximum volume (or determinants) for rank-
revealing matrix decompositions. We refer the reader to [19]
for details.

The results of Goreinov, Tyrtyshnikov and Zamarashkin
[10], [11] on pseudo-skeleton approximations of matrices
look at submatrices of maximum determinants as good
candidates for row/column-subset selection.

Theorem 6. [10] If A ∈ Rm×n can be written as(
A11 A12

A21 A22

)
,



where A11 ∈ Rk×k is the k by k submatrix of A of maximum
determinant. Then,

max
i,j

∣∣(A22 −A12A
−1
11 A21)ij

∣∣ ≤ (k + 1) ‖A−Ak‖2 .

Because of this relation between row/column-subset se-
lection and the related ideas about picking submatrices of
maximum volume, Çivril and Magdon-Ismail [3], [4] looked
at the problem of picking a k-subset S of rows of a given
matrix A ∈ Rm×n such that det

(
ASA

T
S

)
is maximized.

They show that this problem is NP-hard [3] and moreover,
it is NP-hard to even approximate it within a factor of 2ck,
for some constant c > 0 [4]. This is interesting in the light
of our results because we show that even though finding the
row-submatrix of maximum volume is NP-hard, we can still
sample them with probabilities proportional to their volumes
in polynomial time.

A. Our results

Our main result is a polynomial time algorithm for exact
volume sampling. In Section IV, we give an outline of our
Algorithm 1, followed by two possible subroutines given by
Algorithms 2 and 3 that could be plugged into it.

Theorem 7 (polynomial-time volume sampling). The ran-
domized algorithm given by the combination of the al-
gorithm outlined in Algorithm 1 with Algorithm 2 as its
subroutine, when given a matrix A ∈ Rm×n and an integer
1 ≤ k ≤ rank(A), outputs a random k-subset of the rows
of A according to volume sampling, using O(kmnω log n)
arithmetic operations (where ω is the exponent of matrix
multiplication).

The basic idea of the algorithm is as follows: instead
of picking a k-subset, pick an ordered k-tuple of rows ac-
cording to volume sampling (i.e., volume sampling suitably
extended to all k-tuples such that for any fixed k-subset, all
its k! permutations are all equally likely). We observe that
the marginal distribution of the first coordinate of such a
random tuple can be expressed in terms of coefficients of
the characteristic polynomials of AAT and BiB

T
i , where

Bi ∈ Rm×n is the matrix obtained by projecting each row
of A orthogonal to the i-th row ai. Using this interpretation,
it is easy to sample the first index of the k-tuple with the
right marginal probability. Now we project the rows of A
orthogonal to the chosen row and repeat to pick the next
row, until we have picked k of them.

The algorithm just described informally, if implemented
as stated, would have a polynomial dependence in m, n
and k, for some low-degree polynomial. We can do better
and get a linear dependence in m by working with ATA in
place of AAT and computing the projected matrices using
rank-1 updates (Theorem 7), while still having a polynomial
time guarantee and sampling exactly. It would be even faster
to perform rank-1 updates to the characteristic polynomial
itself, but that requires the computation of the inverse of a

polynomial matrix (Proposition 18), and it is not clear to us
at this time that there is a fast enough exact algorithm that
works for arbitrary matrices. Jeannerod and Villard [14] give
an algorithm to invert a generic n-by-n matrix with entries
of degree d, with n a power of two, in time O(n3d). This
would lead to the computation of all marginal probabilities
for one row in time O(n3 +mn2) (a variation of Algorithm
3 and its analysis).

The output of volume sampling as well as subset selection
is a set of rows (or the corresponding projected matrix)
and, when the input matrix is rational, can be computed
exactly using rational arithmetic. This is indeed achieved
by the algorithm given by Theorem 7, which has precise
theoretical guarantees. On the other hand, if we want to
be more practical, then we can perform rank-1 updates to
the characteristic polynomial by using the singular value
decomposition (SVD). We describe such an algorithm. The
SVD of a rational matrix could be irrational, so it cannot be
computed exactly in general. In [9], an algorithm with cost
O(min{mn2,m2n}) arithmetic operations is given for ap-
proximating SVD. The guarantees there are not particularly
strong and we do not know how its error propagates in our
SVD-based algorithm, which uses many such computations,
so the results we state for the SVD-based algorithm are only
conditional. This is not a serious omission as the algorithm
given by Theorem 7 has precise theoretical guarantees. If
the SVD of an m-by-n matrix can be computed in time
O(Tsvd), this leads to a nearly-exact algorithm for volume
sampling in time O(kTsvd+kmn2). See Proposition 18 for
details.

Volume sampling was originally defined in [5] to prove
Theorem 2, in particular, to show that any matrix A contains
k rows in whose span lie the rows of a rank-k approximation
to A that is no worse than the best in the Frobenius norm.
Efficient volume sampling leads to an efficient selection of
k rows that satisfy this guarantee, in expectation. In Section
V, we use the method of conditional expectations to deran-
domize this selection. This gives an efficient deterministic
algorithm (Algorithm 4) for row-subset selection with the
following guarantee in the Frobenius norm. This guarantee
immediately implies a guarantee in the spectral norm, as
follows:

Theorem 8 (deterministic row subset selection). Determin-
istic Algorithm 4, when given a matrix A ∈ Rm×n and an
integer 1 ≤ k ≤ rank(A), outputs a k-subset S of the rows
of A, using O(kmnω log n) arithmetic operations, such that

‖A− πS(A)‖F ≤
√
k + 1 ‖A−Ak‖F

‖A− πS(A)‖2 ≤
√

(k + 1)(n− k) ‖A−Ak‖2 .

This improves the O(k
√

log k)-approximation of Bout-
sidis, Drineas and Mahoney [1] for the Frobenius norm case
and matches the lower bound shown in Theorem 3 due to
[5].



The superlinear dependence on n might be too slow
for some applications, while it might be acceptable to
perform volume sampling or row/column-subset selection
approximately. Our volume sampling algorithm (Algorithm
1) can be made faster, while losing on the exactness, by
using the idea of random projection that preserves volumes
of subsets. Magen and Zouzias [17] have the following
generalization of the Johnson-Lindenstrauss lemma: for m
points in Rn, a random projection of them into Rd, where
d = O

(
k2 logm/ε2

)
, preserves the volumes of simplices

formed by subsets of k or fewer points within 1± ε with a
constant probability. Therefore, we get a (1±ε)-approximate
volume sampling algorithm that requires O(mnd)-time to do
the random projection (by matrix multiplication) and then
O(mndω log d) time for volume sampling on the new m-
by-d matrix (according to Theorem 7).

Theorem 9 (fast volume sampling). Using random pro-
jection for dimensionality reduction, the polynomial time
algorithm for volume sampling mentioned in Theorem 7
(i.e., Algorithm 1 with Algorithm 2 as its subroutine), gives
(1 + ε)-approximate volume sampling, using

O

(
mn logm · k

2

ε2
+m logωm · k

2ω+1

ε2ω
log(kε−1 logm)

)
.

arithmetic operations.

Finally, we show a lower bound for row/column-subset
selection in the spectral norm that almost matches our upper
bound in terms of the dependence on n.

Theorem 10 (lower bound). There exists a matrix A ∈
Rn×(n+1) such that∥∥A− π{i}(A)

∥∥
2

= Ω(
√
n) ‖A−A1‖2 , for all 1 ≤ i ≤ n,

where π{i}(A) ∈ Rn×(n+1) is the matrix obtained by
projecting each row of A onto the span of its i-th row ai.

III. PRELIMINARIES AND NOTATION

For m ∈ N, let [m] denote the set {1, . . . ,m}. For any
matrix A ∈ Rm×n, we denote its rows by a1, a2, . . . , am ∈
Rn. For S ⊆ [m], let AS be the row-submatrix of A given by
the rows with indices in S. By span (S) we denote the linear
span of {ai : i ∈ S} and let πS(A) ∈ Rm×n be the matrix
obtained by projecting each row of A onto span (S). Hence,
A − πS(A) ∈ Rm×n is the matrix obtained by projecting
each row of A orthogonal to span (S).

Throughout the paper we assume m ≥ n. This assumption
is not needed most of the time, but justifies sometimes
working with ATA instead of AAT and, more generally,
some choices in the design of our algorithms. It is also
partially justified by our use of a random projection as a
preprocessing step that makes n small.

The singular values of A ∈ Rm×n are defined as the
positive square-roots of the eigenvalues of AAT ∈ Rm×m

(or ATA ∈ Rn×n, up to some extra singular values equal
to zero), and we denote them by σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0.
Well-known identities of the singular values like

trace
(
AAT

)
=

m∑
i=1

σ2
i and det

(
AAT

)
=

m∏
i=1

σ2
i

can be generalized into the following lemma.

Lemma 11. (Proposition 3.2 in [5]) For any A ∈ Rm×n,∑
S⊆[m] : |S|=k

det
(
ASA

T
S

)
=

∑
i1<···<ik

σ2
i1 · · ·σ

2
ik

=
∣∣cm−k(AAT )

∣∣ ,
where σ1, . . . , σm are the singular values of A, i.e., eigen-
values of AAT , and

xm + cm−1(AAT )xm−1 + . . .+ c0(AAT )

= det
(
xI −AAT

)
=

m∏
i=1

(x− σ2
i ),

is the characteristic polynomial of AAT . Using
det
(
xI −AAT

)
= xm−n det

(
xI −ATA

)
, we can

alternatively use cm−k(AAT ) = cn−k(ATA) in the above
formula, for k ≤ n.

Let ω be the exponent of the arithmetic complexity of
matrix multiplication. We use that there is an algorithm for
computing the characteristic polynomial of an n-by-n matrix
using O(nω log n) arithmetic operations [2, Section 16.6].

Here is another lemma that we will need about dividing
determinants into products of two determinants.

Lemma 12. Let A ∈ Rm×n, S, T ⊆ [m], S ∩ T = ∅ and
B = A− πS(A). Then

det
(
AS∪TA

T
S∪T

)
= det

(
ASA

T
S

)
det
(
BTB

T
T

)
.

Proof: Without loss of generality, we can reduce our-
selves to the case where S ∪ T is all rows of the given
matrix: Let C = AS∪T ∈ R|S∪T |×n, D = C − πS(C).
We have D = BS∪T . Then what we want to prove can be
rewritten as:

det(CCT ) = det(CSCTS ) det(DTD
T
T ).

To show this, we consider two cases. If CSCTS is singular,
then both sides of the equality are zero. If CSC

T
S is

invertible, then we can perform block Gaussian elimination
and write(

E F
G H

)(
I −E−1F
0 I

)
=
(
E 0
G D −GE−1F

)
,

applied to
(
E F
G H

)
= C. Writing the determinants of the

block-triangular matrices, det
(
CCT

)
equals

det(CSCTS ) det(CTCTT − CTCTS (CSCTS )−1CSC
T
T ).



Now, the projection of the rows of a matrix K onto the
row-space of a matrix L can be written as

πL(K) = KLT (LLT )−1L,

so that DT = CT − CTCTS (CSCTS )−1CS , and

DTD
T
T = CTC

T
T − CTCTS (CSCTS )−1CSC

T
T .

This completes the proof.
Finally, a well-known lemma about how the determinant

of a matrix changes under a rank-1 update.

Lemma 13 (matrix determinant lemma). For any invertible
M ∈ Rm×m and u, v ∈ Rm,

det
(
M + uvT

)
= (1 + vTM−1u) det (M) .

IV. EFFICIENT VOLUME SAMPLING ALGORITHMS

We first outline our volume sampling algorithm to con-
vince the reader that volume sampling can be done in
polynomial time. In the subsequent subsections, we give
improved subroutines to get faster implementations of the
same idea.

The main idea behind our algorithm is based on Lemma
14 about the marginal probabilities encountered in volume
sampling. To explain this, it is more convenient to look
at volume sampling defined as a distribution on k-tuples
(X1, X2, . . . , Xk) instead of k-subsets, where each of the
k! permutations of a k-subset is equally likely, i.e., for any
(i1, i2, . . . , ik) ∈ [m]k,

Pr (X1 = i1, . . . , Xk = ik)

=


det
(
A{i1,...,ik}A

T
{i1,...,ik}

)
k!

∑
S⊆[m] : |S|=k

det
(
ASATS

) if i1, . . . , ik
are distinct

0 otherwise

Then the marginal probabilities
Pr
(
Xt = i

∣∣ X1 = i1, . . . , Xt−1 = it−1

)
have the following

interpretation in terms of the coefficients of certain
characteristic polynomials.

Lemma 14. Let (i1, . . . , it−1) ∈ [m]t−1 such that
Pr (X1 = i1, . . . , Xt−1 = it−1) > 0, for a random k-tuple
(X1, X2, . . . , Xk) from the extended volume sampling over
k-tuples. Let S = {i1, . . . , it−1}, B = A − πS(A)
and Ci = B − π{i}(B) = A − πS∪{i}(A). Then,
Pr
(
Xt = i

∣∣ X1 = i1, . . . , Xt−1 = it−1

)
equals

‖bi‖2
∣∣cm−k+t(CiCTi )

∣∣
(k − t+ 1) |cm−k+t−1(BBT )|

.

Proof:

Pr
(
Xt = i

∣∣ X1 = i1, . . . , Xt−1 = it−1

)
=

∑
(it+1,...,ik)∈[m]k−t Pr

(
X1=i1,...,Xt−1=it−1,

Xt=i,Xt+1=it+1,...,Xk=ik

)
∑

(it,...,ik)∈[m]k−t+1 Pr
(

X1=i1,...,Xt−1=it−1,
Xt=it,Xt+1=it+1,...,Xk=ik

)

=

(k − t)!
∑

T⊆[m] : |S∪{i}∪T |=k
|T |=k−t

det
(
AS∪{i}∪TA

T
S∪{i}∪T

)
(k − t+ 1)!

∑
T⊆[m] : |S∪T |=k
|T |=k−t+1

det
(
AS∪TATS∪T

)

=

∑
T⊆[m] : |S∪{i}∪T |=k

|T |=k−t

det
(
ASA

T
S

)
det
(
B{i}∪TB

T
{i}∪T

)
(k − t+ 1)

∑
T⊆[m] : |S∪T |=k
|T |=k−t+1

det
(
ASATS

)
det
(
BTBTT

)
by Lemma 12

=

∑
T⊆[m] : |S∪{i}∪T |=k

|T |=k−t

‖bi‖2 det
(
CTC

T
T

)
(k − t+ 1)

∑
T⊆[m] : |S∪T |=k
|T |=k−t+1

det
(
BTBTT

) ,
where the last equality uses Lemma 12 applied to B,

=
‖bi‖2

∑
T⊆[m] : |T |=k−t det

(
CTC

T
T

)
(k − t+ 1)

∑
T⊆[m] : |T |=k−t+1 det

(
BTBTT

)
since the extra terms in the sum are all zero

=
‖bi‖2

∣∣cm−k+t(CiCTi )
∣∣

(k − t+ 1) |cm−k+t−1(BBT )|
by Lemma 11.

With this lemma in hand, let us consider the following
outline of our algorithm. We will later give two more
efficient implementations of this outline, depending on how
the pi’s are computed.

Algorithm 1. Outline of our volume sampling algo-
rithm

Input: a matrix A ∈ Rm×n and 1 ≤ k ≤ rank(A).
Output: a subset S of k rows of A picked with proba-
bility proportional to det

(
ASA

T
S

)
.

1) Initialize S ← ∅ and B ← A. For t = 1 to k do:
a) For i = 1 to m compute:

pi = ‖bi‖2 ·
∣∣cm−k+t(CiCTi )

∣∣ ,
where Ci = B − π{i}(B) is a matrix
obtained by projecting each row of B or-
thogonal to bi.



b) Pick i with probability proportional to pi.
Let S ← S ∪ {i} and B ← Ci.

2) Output S.

Now we show the correctness of the algorithm:

Proposition 15. The probability that our volume sampling
algorithm outlined above picks a k-subset S is proportional
to det

(
ASA

T
S

)
. This algorithm can be implemented with a

cost of O(km3n+ kmω+1 logm) arithmetic operations.

Proof: By Lemma 14, for any i1, i2, . . . , ik such that
Pr (X1 = i1, . . . , Xk = ik), the probability that our algo-
rithm picks a sequence of rows indexed i1, i2, . . . , ik in that
order is equal to

k∏
t=1

Pr
(
Xt = it

∣∣ X1 = i1, . . . , Xt−1 = it−1

)
= Pr (X1 = i1, . . . , Xk = ik)

=
det
(
A{i1,...,ik}A

T
{i1,...,ik}

)
k!
∑
S⊆[m] : |S|=k det

(
ASATS

) .
Otherwise, the probability is zero because in the execution
of the algorithm, ‖bi‖ = 0 for some step t. This proves the
correctness of our algorithm.

Given that one can compute the characteristic polynomial
of an m-by-m matrix in O(mω logm) (see Section III),
our outline can be implemented with the following count of
arithmetic operations: for every t and i, O(m2n) to compute
CiC

T
i , O(m2n + mω logm) in total for pi. Thus, volume

sampling in O(km3n+ kmω+1 logm).

A. Efficient volume sampling without SVD

Here we present the first (faster) subroutine for computing
the marginal probabilities pi’s within the volume sampling
algorithm outlined in Section IV. The two main ideas behind
this subroutine are: (1) We can work with BTB,CTi Ci ∈
Rn×n instead of BBT , CiCTi ∈ Rm×m. Assuming m ≥ n,
this saves on running time. (2) Each Ci is a rank-1 update
of B and therefore, once we have BTB, it can be used to
compute all CTi Ci efficiently.

Algorithm 2. First subroutine for marginal proba-
bilities

Input: B ∈ Rm×n.
Output: p1, p2, . . . , pm.

For i = 1 to m do:

1) Compute the matrix CTi Ci ∈ Rn×n by the
following formula: CTi Ci equals

BTB−B
TBbib

T
i

‖bi‖2
− bib

T
i B

TB

‖bi‖2
+
bib

T
i B

TBbib
T
i

‖bi‖4
.

2) Compute the characteristic polynomial of CTi Ci
and output

pi = ‖bi‖2 ·
∣∣cn−k+t(CTi Ci)∣∣ .

Proposition 16. For any given B ∈ Rm×n, the Algorithm
2 above computes p1, . . . , pm in O(mnω log n) arithmetic
operations.

Proof: BTB can be computed in time O(mn2). Ob-
serve that since Ci is obtained by projecting each row of B
orthogonal to bi, we have Ci = B−

(
1/ ‖bi‖2

)
Bbib

T
i , and

therefore, CTi Ci equals

BTB − BTBbib
T
i

‖bi‖2
− bib

T
i B

TB

‖bi‖2
+
bib

T
i B

TBbib
T
i

‖bi‖4
.

So once we have BTB, for each i, CTi Ci can be computed
in time O(n2) and the characteristic polynomial of CTi Ci
can be computed in time O(nω log n) [2, Section 16.6]. By
Lemma 11, cm−k+t(CiCTi ) = cn−k+t(CTi Ci) and hence,
the above subroutine results into an O(kmnω log n) time
algorithm for volume sampling.

Theorem 17 (same as Theorem 7). The randomized algo-
rithm given by the combination of the algorithm outlined in
Algorithm 1 with Algorithm 2 as its subroutine, when given a
matrix A ∈ Rm×n and an integer 1 ≤ k ≤ rank(A), outputs
a random k-subset of the rows of A according to volume
sampling, using O(kmnω log n) arithmetic operations.

Proof: The proof follows by combining Proposition
15 and Proposition 16, and since we compute all the pi’s
simultaneously in each round in O(mnω log n) arithmetic
operations, the total number of arithmetic operations is
O(kmnω log n).

B. Efficient volume sampling using SVD

Taking further the idea that each Ci is a rank-1 update of
B, we can give a faster algorithm based on the singular value
decomposition of B. Given the singular value decomposition
of a matrix and using the matrix determinant lemma (Lemma
13), one can give a precise formula for how the characteristic
polynomial changes under a rank-1 update. Using this sub-
routine in the volume sampling algorithm outlined in Section
IV we get an algorithm for nearly-exact volume sampling
(depending on the precision of the computed SVD) in time
O(kTsvd + kmn2), where Tsvd is the running time of SVD
on an m-by-n matrix.



Algorithm 3. Second subroutine for marginal prob-
abilities.

Input: B ∈ Rm×n.
Output: p1, p2, . . . , pm.

1) Compute the (thin) singular value decomposition
B = UΣV T , say U ∈ Rm×n and Σ, V ∈ Rn×m,
and keep the singular values σ1, σ2, . . . , σn and
define σn+1 = . . . = σm = 0. Also keep
the columns of U , i.e., the left singular vectors
u1, u2, . . . , un ∈ Rm.

2) Compute the polynomial products

f(x) =
m∏
l=1

(x− σ2
l ), and

gj(x) =
∏
l 6=j

(x− σ2
l ), for all 1 ≤ j ≤ m.

3) For i = 1 to m output:

pi = ‖bi‖2 ·

∣∣∣∣∣∣∣
coefficient of xm−k+t in

f(x)+
∑n
j=1 σ

2
j (uj)

2
i gj(x)

‖bi‖2

∣∣∣∣∣∣∣ .

Proposition 18. In the real arithmetic model and given
exact U and Σ, using the Algorithm 3 as a subroutine
inside Algorithm 1 outlined for volume sampling, we get an
algorithm for volume sampling. If Tsvd is the running time
for computing the singular value decomposition of m-by-n
matrices, the algorithm runs in time O(kTsvd + kmn2).

Proof: Using the matrix determinant lemma (Lemma
13), the characteristic polynomial of CiCTi can be written
as

det
(
xI − CiCTi

)
= det

(
xI −BBT +

1
‖bi‖2

(Bbi)(Bbi)T
)

=

(
1 +

1
‖bi‖2

bTi B
T (xI −BBT )−1Bbi

)
det
(
xI −BBT

)
=

(
1 +

1
‖bi‖2

bTi B
T (xI − Ũ Σ̃2ŨT )−1Bbi

)
det
(
xI −BBT

)
by extending U,Σ, V to get B = Ũ Σ̃Ṽ T

with Ũ , Σ̃ ∈ Rm×m and Ṽ ∈ Rm×n

=

(
1 +

1
‖bi‖2

bTi B
T Ũ(xI − Σ̃2)−1ŨTBbi

)
det
(
xI −BBT

)
=

(
1 +

1
‖bi‖2

bTi Ṽ Σ̃T (xI − Σ̃2)−1Σ̃Ṽ T bi

)
det
(
xI −BBT

)

=

1 +
1
‖bi‖2

m∑
j=1

σ2
j (ũj)2i
x− σ2

j

 m∏
l=1

(x− σ2
l )

=

1 +
1
‖bi‖2

n∑
j=1

σ2
j (uj)2i
x− σ2

j

 m∏
l=1

(x− σ2
l )

=
m∏
l=1

(x− σ2
l ) +

1
‖bi‖2

n∑
j=1

σ2
j (uj)2i

∏
l 6=j

(x− σ2
l )

= f(x) +
1
‖bi‖2

n∑
j=1

σ2
j (uj)2i gj(x).

Thus, cm−k+t(CiCTi ) equals the coefficient of xm−k+t in

f(x) +
1
‖bi‖2

n∑
j=1

σ2
j (uj)2i gj(x).

Once we have the singular value decomposition of B,
f(x) and gj(x) can all be computed in time O(n2) using
polynomial products. This is because there are at most n
non-zero σi’s. Thus, f(x) and all the gj(x) for 1 ≤ j ≤ m
can be computed in time O(mn2) and then using the above
formula we get cm−k+t(CiCTi ).

C. Approximate volume sampling in nearly linear time

Magen and Zouzias [17] showed that the random projec-
tion lemma of Johnson and Lindenstrauss can be generalized
to preserve volumes of subsets after embedding. Here is a
restatement of Theorem 1 of [17] using O(ε/k) instead of
ε in their original statement.

Theorem 19. [17] For any A ∈ Rm×n, 1 ≤ k ≤ n and
0 < ε ≤ 1/2, there is

d = O

(
k2 logm

ε2

)
,

and there is a mapping f : Rn → Rd such that

det
(
ASA

T
S

)
≤ det

(
ÃSÃ

T
S

)
≤ (1 + ε) det

(
ASA

T
S

)
,

for all S ⊆ [m] such that |S| ≤ k, where Ã ∈ Rm×d has
its i-th row as f(ai). Moreover, f is a linear mapping given
by multiplication with a random n by d matrix with i.i.d.
Gaussian entries, so computing Ã takes time O(mnd).

Theorem 20 (same as Theorem 9). Using random projection
for dimensionality reduction, the polynomial time algorithm
for volume sampling mentioned in Theorem 7 (i.e., Algo-
rithm 1 with Algorithm 2 as its subroutine), gives (1 + ε)-
approximate volume sampling, using

O

(
mn logm · k

2

ε2
+m logωm · k

2ω+1

ε2ω
log
(
k

ε
logm

))
arithmetic operations.

Proof: Using Theorem 19 and doing volume sampling
of k-subsets of rows from Ã gives (1 + ε)-approximation



to the volume sampling of k-subsets of rows from A. This
can be done in two steps: first, we compute Ã using matrix
multiplication in time O(mnd) and second, we do volume
sampling on Ã using the algorithm from Subsection IV-A.
Overall, it takes time O(mnd+kmdω log d), which is equal
to

O

(
mn logm · k

2

ε2
+m logωm · k

2ω+1

ε2ω
log
(
k

ε
logm

))
.

Moreover, this can be implemented using only one pass over
the matrix A with extra space m logm · k2/ε2.

V. DERANDOMIZED ROW/COLUMN-SUBSET SELECTION

Our derandomized row-subset selection algorithm is based
on a derandomization of the volume sampling algorithm in
Section IV, using the method of conditional expectations.
Again, it may be easier to consider volume sampling ex-
tended to random k-tuples (X1, . . . , Xk) where

Pr (X1 = i1, . . . , Xk = ik)

=


det
(
A{i1,...,ik}A

T
{i1,...,ik}

)
k!

∑
S⊆[m] : |S|=k

det
(
ASATS

) if i1, . . . , ik
are distinct

0 otherwise

From Theorem 2 we know that

E
[∥∥A− π{X1,...,Xk}(A)

∥∥2

F

]
≤ (k + 1) ‖A−Ak‖2F ,

where the expectation is over (X1, . . . , Xk).
Let us consider i1, . . . , it−1 for which

Pr (X1 = i1, . . . , Xt−1 = it−1) > 0. Let S =
{i1, . . . , it−1} and look at the conditional expectation.
The following lemma shows that these conditional
expectations have an easy interpretation in terms of the
coefficients of certain characteristic polynomials, and hence
can be computed efficiently.

Lemma 21. Let (i1, . . . , it−1) ∈ [m]t−1 be such that
Pr (X1 = i1, . . . , Xt−1 = it−1) > 0 for a random k-tuple
(X1, X2, . . . , Xk) from extended volume sampling. Let S =
{i1, . . . , it−1} and B = A− πS(A). Then

E
[∥∥A− π{X1,...,Xk}(A)

∥∥2

F

∣∣ X1 = i1, . . . , Xt−1 = it−1

]
=

(k − t+ 2)cm−k+t−2(BBT )
cm−k+t−1(BBT )

.

Proof:

E
[∥∥A− π{X1,...,Xk}(A)

∥∥2

F

∣∣ X1 = i1, . . . , Xt−1 = it−1

]
=

∑
(it,...,ik)∈[m]k−t+1

∥∥A− π{i1,...,ik}(A)
∥∥2

F

· Pr
(
X1 = i1, . . . , Xk = ik

∣∣ X1 = i1, . . . , Xt−1 = it−1

)
=

∑
(it,...,ik)∈[m]k−t+1

∥∥A− π{i1,...,ik}(A)
∥∥2

F

· Pr (X1 = i1, . . . , Xk = ik)
Pr (X1 = i1, . . . , Xt−1 = it−1)

=
∑

(it,...,ik)

m∑
l=1

‖dl‖2 det
(
A{i1,...,ik}A

T
{i1,...,ik}

)
∑

(jt,...,jk)

det
(
A{i1,...,it−1,jt,...,jk}A

T
{i1,...,it−1,jt,...,jk}

)
where D = A− π{i1,...,ik}(A)

=

∑
(it,...,ik)

∑
l/∈{i1,...,ik}

det
(
A{l,i1,...,ik}A

T
{l,i1,...,ik}

)
∑

(jt,...,jk)

det
(
A{i1,...,it−1,jt,...,jk}A

T
{i1,...,it−1,jt,...,jk}

)

=

(k − t+ 1)!
∑

T⊆[m],
|S∪T |=k,
|T |=k−t+1

∑
l/∈S∪T

det
(
A{l}∪S∪TA

T
{l}∪S∪T

)

(k − t+ 1)!
∑

T⊆[m] : |S∪T |=k,
|T |=k−t+1

det
(
AS∪TATS∪T

)

=

∑
T⊆[m],
|S∪T |=k,
|T |=k−t+1

∑
l/∈S∪T

det
(
ASA

T
S

)
det
(
B{l}∪TB

T
{l}∪T

)
∑

T⊆[m] : |S∪T |=k,
|T |=k−t+1

det
(
ASATS

)
det
(
BTBTT

)
by Lemma 12

=

∑
T⊆[m] : |S∪T |=k,
|T |=k−t+1

∑
l/∈S∪T

det
(
B{l}∪TB

T
{l}∪T

)
∑

T⊆[m] : |S∪T |=k,
|T |=k−t+1

det
(
BTBTT

)

=

(k − t+ 2)
∑

T⊆[m] : |S∪T |=k+1,
|T |=k−t+2

det
(
BTB

T
T

)
∑

T⊆[m] : |S∪T |=k,
|T |=k−t+1

det
(
BTBTT

)

=

(k − t+ 2)
∑

T⊆[m] : |T |=k−t+2

det
(
BTB

T
T

)
∑

T⊆[m] : |T |=k−t+1

det
(
BTBTT

)
the extra terms in the numerator and the
denominator are zero

=
(k − t+ 2)

∣∣cm−k+t−2(BBT )
∣∣

|cm−k+t−1(BBT )|
by Lemma 11.



Knowing the above lemma, it is easy to derandomize
our algorithm outlined for volume sampling. In each step,
we just compute the new conditional expectations for each
additional i, and finally pick the i that minimizes the
conditional expectation.

Algorithm 4. Derandomized row/column-subset se-
lection

Input: a matrix A ∈ Rm×n and 1 ≤ k ≤ rank(A).
Output: a subset S of k rows of A with the guarantee

‖A− πS(A)‖2F ≤ (k + 1) ‖A−Ak‖2F .

1) Initialize S ← ∅ and B ← A. For t = 1 to k do:
a) For i = 1 to m do: compute

cn−k+t−1(CTi Ci) and cn−k+t(CTi Ci),
where Ci = B − π{i}(B) is the matrix
obtained by projecting each row of B
orthogonal to bi.

b) Pick i that minimizes∣∣cn−k+t−1(CTi Ci)
∣∣ / ∣∣cn−k+t(CTi Ci)∣∣.

Let S ← S ∪ {i} and B ← Ci.
2) Output S.

Theorem 22 (same as Theorem 8). Deterministic Algorithm
4, when given a matrix A ∈ Rm×n and an integer 1 ≤
k ≤ rank(A), outputs a k-subset S of the rows of A, using
O(kmnω log n) arithmetic operations, such that

‖A− πS(A)‖F ≤
√
k + 1 ‖A−Ak‖F

‖A− πS(A)‖2 ≤
√

(k + 1)(n− k) ‖A−Ak‖2 .

Proof: By applying Lemma 21 to S ∪{i} instead of S,
as Ci = B − π{i}(B) = A − πS∪{i}(A), we see that the
step t of our algorithm picks i that minimizes

E
[∥∥A− π{X1,...,Xk}(A)

∥∥2

F

∣∣ X1=i1,...,Xt−1=it−1,
Xt=i

]
=

(k − t+ 1)
∣∣cn−k+t−1(CTi Ci)

∣∣∣∣cn−k+t(CTi Ci)∣∣
=

(k − t+ 1)
∣∣cm−k+t−1(CiCTi )

∣∣∣∣cm−k+t(CiCTi )
∣∣ .

The correctness of our algorithm follows immediately from
observing that in each step t,

E
[∥∥A− π{X1,...,Xk}(A)

∥∥2

F

∣∣ X1 = i1, . . . , Xt−1 = it−1

]
=

m∑
i=1

Pr
(
Xt = i

∣∣ X1 = i1, . . . , Xt−1 = it−1

)
· E
[∥∥A− π{X1,...,Xk}(A)

∥∥2

F

∣∣ X1=i1,...,Xt−1=it−1,
Xt=i

]

and that we started with

E
[∥∥A− π{X1,...,Xk}(A)

∥∥2

F

]
≤ (k + 1) ‖A−Ak‖2F .

The guarantee for spectral norm follows immediately
from our guarantee in the Frobenius norm, just using the
properties of norms and rank(A−Ak) ≤ n− k as follows:
‖A− πS(A)‖22 ≤ ‖A− πS(A)‖2F ≤ (k + 1)‖A−Ak‖2F ≤
(k + 1)(n− k)‖A−Ak‖22.

Moreover, this algorithm runs in time O(kmnω log n) if
we use the subroutine in Subsection IV-A to compute the
characteristic polynomial of CiCTi using that of CTi Ci.

VI. LOWER BOUND FOR RANK-1 SPECTRAL
APPROXIMATION USING ONE ROW

Here we show a lower bound for row/column-subset
selection. We prove that there is a matrix A ∈ Rn×(n+1)

such that using the span of any single row of it, we can
get only Ω(

√
n)-approximation in the spectral norm for the

nearest rank-1 matrix to A. This can be generalized to a
similar Ω(

√
n) lower bound for general k by using a matrix

with k block-diagonal copies of A.

Theorem 23 (same as Theorem 10). There exists a matrix
A ∈ Rn×(n+1) such that∥∥A− π{i}(A)

∥∥
2

= Ω(
√
n) ‖A−A1‖2 , for all 1 ≤ i ≤ n,

where π{i}(A) ∈ Rn×(n+1) is the matrix obtained by
projecting each row of A onto the span of its i-th row ai.

Proof: The lower bound example is A ∈ Rn×(n+1) with
entries as follows:

1 ε 0 . . . 0
1 0 ε . . . 0
1 0 0 . . . 0
1 0 . . . 0 ε

 , 0 < ε < 1.

Let B be the best rank-1 approximation to A whose rows lie
in the span of (1, ε, 0, . . . , 0) (or for that matter, any fixed
row of A). Then, we want to show that

‖A−B‖2 ≥
√
n

2
‖A−A1‖2 =

√
n

2
σ2(A).

We first compute the singular values of A, i.e., the positive
square roots of the eigenvalue of AAT ∈ Rn×n.

AAT =


1 + ε2 1 1 . . . 1

1 1 + ε2 1 . . . 1
1 1 . . . 1 1
1 . . . 1 1 + ε2 1
1 . . . 1 1 1 + ε2

 .

(1, 1, . . . , 1) is an eigenvector of AAT with eigenvalue n+
ε2. Thus, σ1(A) =

√
n+ ε2. Observe that, by symmetry,

all other singular values of A must be equal, i.e., σ2(A) =
σ3(A) = . . . = σn(A). Now ‖A‖2F =

∑n
i=1 σi(A)2 gives

n+nε2 = σ1(A)2+(n−1)σ2(A)2 = n+ε2+(n−1)σ2(A)2.



Therefore, ‖A−A1‖2 = σ2(A) = ε.
Now denote the i-th row of A by ai. By definition, the

i-th row of B is the projection of ai onto span (a1). We are
interested in the singular values of A−B. For i ≥ 2:

ai − bi = ai −
〈ai, a1〉
‖a1‖2

a1

=

 ε2

1 + ε2
,
−ε

1 + ε2
, 0, ε︷ ︸︸ ︷

(i+ 1)-th coord.

, 0, . . . , 0

 .

Thus, (A−B)(A−B)T ∈ Rn×n can be written as

0 0 . . . 0 0
0 ε2(2+ε2)

1+ε2
ε2

1+ε2 . . . ε2

1+ε2

. . . ε2

1+ε2
ε2(2+ε2)

1+ε2 . . . ε2

1+ε2

0 ε2

1+ε2 . . . ε2(2+ε2)
1+ε2

ε2

1+ε2

0 ε2

1+ε2 . . . ε2

1+ε2
ε2(2+ε2)

1+ε2

 .

Again, (0, 1, 1, . . . , 1) is the top eigenvector of (A−B)(A−
B)T and using this we get,

‖A−B‖22 = σ1(A−B)2 =
ε2(2 + ε2)

1 + ε2
+ (n− 2)

ε2

1 + ε2
.

Therefore,

‖A−B‖2 =
ε√

1 + ε2

√
n+ ε2 ≥

√
n

2
‖A−A1‖2 .

VII. DISCUSSION

We analyzed efficient algorithms for volume sampling that
can be used for row/column subset selection. Here are some
ideas for future investigation suggested by this work:
• It would be interesting to explore how these algorithmic

ideas are related to determinantal sampling [16], [13]
and, in particular, the generation of random spanning
trees.

• Find practical counterparts of the algorithms discussed
here. In particular, we do not analyze the numerical
stability of our algorithms.

• Is there an efficient algorithm for volume sampling
based on random walks? This question is inspired by
MCMC as well as random walk algorithms for the
generation of random spanning trees.
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