
Cryptography Against Continuous Memory Attacks

Yevgeniy Dodis
New York University

dodis@cs.nyu.edu

Kristiyan Haralambiev
New York University

kkh@cs.nyu.edu

Adriana López-Alt
New York University

lopez@cs.nyu.edu

Daniel Wichs
New York University

wichs@cs.nyu.edu

Abstract—We say that a cryptographic scheme is Continuous
Leakage-Resilient (CLR), if it allows users to refresh their secret
keys, using only fresh local randomness, such that:
• The scheme remains functional after any number of key

refreshes, although the public key never changes. Thus, the
“outside world” is neither affected by these key refreshes,
nor needs to know about their frequency.

• The scheme remains secure even if the adversary can
continuously leak arbitrary information about the current
secret-key, as long as the amount of leaked information is
bounded in between any two successive key refreshes. There
is no bound on the total amount of information that can
be leaked during the lifetime of the system.

In this work, we construct a variety of practical CLR
schemes, including CLR one-way relations, CLR signatures,
CLR identification schemes, and CLR authenticated key agree-
ment protocols. For each of the above, we give general
constructions, and then show how to instantiate them efficiently
using a well established assumption on bilinear groups, called
the K-Linear assumption (for any constant K greater than or
equal to 1). Our constructions are highly modular, and we
develop many interesting techniques and building-blocks along
the way, including: leakage-indistinguishable re-randomizable
relations, homomorphic NIZKs, and leakage-of-ciphertext non-
malleable encryption schemes.

I. INTRODUCTION

MAIN TECHNICAL CONTRIBUTION. As our main technical
contribution, we design an efficiently verifiable relation
R(pk, sk), on public keys pk (the statement) and secret keys
sk (the witness), which is continuous leakage resilient in the
following sense. The user can periodically refresh the secret-
key sk, using only some additional fresh local randomness,
without affecting the public-key pk. The adversary first sees
pk and then can attack the system for arbitrarily many
periods, where, in each period, she can adaptively learn up
to ` bits of arbitrary information about the current witness
sk, for some parameter ` < |sk|, called the leakage bound.
The secret-key sk is then refreshed for the next period.
Nevertheless, after attacking the system for any polynomial
number of periods, the attacker still cannot produce a valid
witness sk∗ such that R(pk, sk∗) = 1. Notice that, while
there is a necessary bound on the amount of leakage in each
period (learning the secret-key of any single period in full
necessarily breaks the system), no restriction is placed on
its type, and the overall amount of leakage during the attack
is unbounded.

APPLICATIONS. We call such a relation R an `-continuous-
leakage-resilient (CLR) one-way relation (OWR) (`-CLR-
OWR; see Definition 2). More generally, we say that a
cryptographic primitive is `-CLR, if its secret key can
be similarly refreshed using only fresh local randomness,
and the usual security of this primitive holds even in the
presence of a “continuous key leakage attack”, as described
above. Using CLR-OWRs, we design more advanced CLR
primitives, including CLR signatures, CLR identification
(ID) schemes, and CLR authenticated key agreement (AKA)
protocols. For each of the above, we give general construc-
tions, and then show how to instantiate them efficiently using
the same number-theoretic assumption we used to derive
our efficient CLR-OWR. This well established assumption
is called K-Linear [9], [23], [33], and is believed to hold
in appropriate bilinear groups for constants K ≥ 1. In
particular, the 1-linear assumption is equivalent to the DDH
assumption, which only holds in some asymmetric bilinear
groups, while 2-linear is regularly assumed to hold in many
symmetric and asymmetric bilinear groups. The assumption
gets weaker as K grows. The amount of leakage that the
schemes can tolerate in each period, measured by the ratio
α = `

|sk| (i.e. the fraction of the secret-key that can leak),
is given by α ≈ 1/2 under DDH, α ≈ 1/3 under 2-linear,
and generally α ≈ 1

K+1 under K-linear.

BIGGER PICTURE. Recently, works on various kinds of
leakage-resilient (LR) cryptography have received a lot of at-
tention. The goal is to design cryptographic primitives which
provably resist large classes side-channel attacks, where the
attacker may obtain additional unanticipated information
about the secret key sk, not captured by the traditional
definitions. Very roughly, state-of-the-art LR schemes fall
into two categories. Schemes secure against “(one-time)
memory attacks” [1], [29], [3], [27], [2], do not restrict the
type of leakage that the adversary can see, but have some
a-priori upper bound ` on the overall amount of leakage.
They do not offer a method for refreshing the secret-key.
In contrast, current “continuous leakage” models [11], [24],
[28], [16], [30], [17] use secret-key evolution, allowing them
to only restrict the amount of key leakage per period (as
opposed to overall), but pay the price by placing additional
non-trivial restrictions on the type of leakage. For example,
a popular assumption [28], [16], [30], [17] is the “only

computation leaks information” (OCLI) model of Micali
and Reyzin [28], where any part of the secret-key that isn’t
accessed by the user during a given period cannot leak.

A major open question in the area, articulated, for ex-
ample, by Goldwasser during her invited talk at Euro-
crypt’09 [19], is to get “the best of both worlds”: allowing
for continuous (overall unbounded) leakage, without addi-
tionally restricting the type of leakage. In this work, we show
how to achieve this for several cryptographic primitives.

RELATED PRIOR WORK. We only give a brief overview
of the most relevant prior work. See the full version for
a more extensive review of prior work in leakage-resilient
cryptography.

The model of (one-time) memory attacks was introduced
by Akavia, Goldwasser and Vaikuntanathan [1] in the con-
text of public-key encryption (PKE), also studied in [29], [2],
[14]. Signature schemes in this model were constructed in
[3], [27], [14]. The only work to consider continuous leakage
in the context of memory attacks is [3], which showed a
general method of refreshing secret keys using an external
“master refreshing key”, which must be stored securely and
cannot leak (essentially, the master key is used to sign a
completely fresh key pair used for that period only). In
contrast, our work does not assume any secure storage, and
keys can be refreshed using only fresh local randomness.

Various prior works considered continuous leakage in
models that restrict the type, as well as amount, of in-
formation that the adversary can learn. For example [24]
considers a model where the wires of a circuit can (only) be
leaked individually, while [17] allows the adversary to (only)
observe low-complexity (e.g. AC0) or noisy functions of the
wires. Micali and Reyzin [28] introduced the “only com-
putation leaks information” model, where each invocation
of a cryptographic primitive can leak an arbitrary function
of only the bits accessed during that invocation. Several
primitives have been constructed in this setting including
stream ciphers [16], [30] and signatures [17]. More recently,
[26], [20] construct a general compiler that can secure all
primitives in this setting assuming the use of some limited
leak-free components. We note that all of these constructions
are easily broken in the model of memory attacks, when no
restrictions are placed on the type of leakage allowed to the
adversary.

CONCURRENT WORK. Subsequent to our work, Brakerski
et al. [10] solve the main remaining open problem, by
constructing CLR public-key encryption (and IBE) schemes
under the K-Linear assumption. Their techniques also yield
an alternate construction of signature schemes under the
K-Linear assumption (same as our work), with improved
relative-leakage α ≈ 1/K. Prior to our work, the prelimi-
nary results of Brakerski et al. showed the feasibility of CLR
primitives under a strong and non-falsifiable assumption on
hash functions.

STRUCTURE OF OUR PAPER. Our main technical contri-
bution lies in building a CLR-OWR (Sections III-V). We
do so in a modular manner. First, in Section III, we show
how to reduce the problem of analyzing continuous leakage
for OWR to that of only analyzing one-time leakage, albeit
in a more complicated primitive, which we call leakage-
indistinguishable re-randomizable relations (LIRR). Then,
in Section IV we show how to build LIRR generically
from encryption schemes and NIZKs (having some well-
specified additional properties). Finally, in Section V we
instantiate the required components efficiently using the
K-Linear assumption in bilinear groups to get a CLR-
OWR. In Section VI, we then show how to leverage a
CLR-OWR to get other more interesting CLR primitives:
signatures, ID schemes, and AKA protocols. Lastly, in
Section VII we mention several extensions of our results
to even stronger models/notions of CLR security. Most
importantly, we address the issue of the adversary (also)
leaking on the random-coins used to refresh the secret-keys
and to generate signatures.

II. CONTINUOUS LEAKAGE & ONE-WAY RELATIONS

A one-way relation (OWR) generalizes the standard no-
tion of a one-way function (OWF). It consists of a key-
generation algorithm (pk, sk) ← KeyGen(), and a verifica-
tion algorithm Ver(pk, sk), which decides whether a secret-
key sk is valid for the public-key pk. The security of a OWR
says that, if an adversary only sees pk she should be unable
to come up with any sk∗ for which Ver(pk, sk∗) = 1.

Of course, we can always include all of the randomness
of the KeyGen algorithm in sk, so that pk = KeyGen(sk)
is a OWF. However, when defining leakage-resilient one-
wayness (which we do next), this equivalence of OWR and
OWF might no longer hold – by putting more information
into the secret key we would also have to give the adversary
more information during key-leakage attacks. Therefore, we
consider OWRs, rather than OWFs, as the basic crypto-
graphic primitive for leakage-resilience.

MODELING LEAKAGE ATTACKS. We model leakage at-
tacks (also called memory attacks in prior work) against a
secret key sk, by giving the adversary access to a leakage
oracle Oλsk(·), defined as follows:

Definition 1 (Leakage Oracle). A leakage oracle Oλsk(·) is
parameterized by a secret key sk and a security parameter
λ. A query to the oracle consists of a description of a 1-
bit probabilistic leakage function h : {0, 1}∗ → {0, 1}.
The oracle runs h(sk) for poly(λ) steps: if the computation
completes it outputs h(sk), else it outputs 0.

In our definitions of leakage-resilient primitives, the ad-
versary can adaptively access Oλsk(·) to learn information
about the secret key sk during an attack. Each query
provides 1 bit of information. Our definitions will therefore

place some upper bounds ` on the number of queries that
the adversary can make during various stages of the attack.

LEAKAGE RESILIENT OWR. We can define a leakage-
resilient OWR (`-LR-OWR) by allowing the adversary to
make up to ` queries to the oracle Oλsk(·), after seing pk
and before outputting sk∗. It was shown (e.g. in [4]) that any
second-preimage resistant1 (SPR) function F automatically
gives an `-LR-OWR, where ` is roughly the number of bits
by which F shrinks its input. This follows from a simple
entropy argument: if an adversary sees y = F (x) and ` bits
of leakage on x, then x still has entropy. Therefore, if the
adversary outputs x′ such that F (x′) = y, then, with high
probability, x′ 6= x and hence the adversary breaks SPR.

CONTINUOUS LEAKAGE RESILIENCE. A continuous-
leakage-resilient (CLR) one-way relation (OWR) consists of
the algorithms KeyGen and Ver as before, but also includes
a re-randomization algorithm sk′ ← ReRandpk(sk), which
can be used to update the secret key (we will omit the
subscript pk, when clear from context). On a high level,
a OWR is continuous-leakage-resilient if an adversary can
observe ` bits of leakage on each of arbitrarily many re-
randomized secret keys, and still be unable to produce a
valid secret key herself.

Definition 2 (CLR-OWR). We say that a scheme
(KeyGen, ReRand, Ver) is an `-continuous-leakage-resilient
(`-CLR) one-way relation if it satisfies the following cor-
rectness and security properties.

• Correctness: For any polynomial q = q(λ), if we sample
(pk, sk1)← KeyGen(1λ), {ski+1 ← ReRand(ski)}q−1

i=1

then, with overwhelming probability (w.o.p.)
Ver(pk, sk) = Ver(pk, sk1) = . . . = Ver(pk, skq) = 1.
• Security: For any PPT adversary A, we have
Pr[A wins] ≤ negl(λ) in the following game:
• Challenger chooses (pk, sk)← KeyGen(1λ).
• A gets pk and runs for arbitrarily many leakage rounds.

In each round A makes up to ` calls to Oλsk(·), leaking
on the current secret key sk. At the end of the round,
the challenger samples sk′ ← ReRand(sk) and updates
sk := sk′.

• A wins if it outputs sk∗ such that Ver(pk, sk∗) = 1.

WHY PRIOR LR TECHNIQUES FAIL FOR CLR. Prior works
on one-time memory-leakage attacks crucially relied on an
entropy argument: given the leakage and the public-key, the
secret-key sk still had some entropy left. For example, this
was the main step of our argument for the leakage-resilience
of SPR functions. However, it is unclear how to translate
this type of argument to the setting of continuous leakage-
resilience, where the total amount of information seen by

1A function F is SPR if, given a random x, it’s hard to find any x′ 6= x
such that F (x) = F (x′).

the adversary is unbounded. We show a novel strategy for
reasoning about continuous leakage in the next section.

III. CONTINUOUS LEAKAGE FROM ONE-TIME LEAKAGE

In this section, we define a new primitive, called a
leakage-indistinguishable re-randomizable relation (LIRR),
and show that it can be used to construct a CLR-OWR. Al-
though the definition of the new primitive is fairly complex
with several security requirements, its main advantage is that
it reduces the problem of continuous-leakage resilience for
OWR to a simpler one-time leakage-resilience property.

A LIRR allows one to sample two types of secret-keys:
“good” keys and “bad” keys. Both types of keys look valid
and are acceptable by the verification procedure, but they are
produced in very different ways. In fact, given the ability to
produce good keys, it is hard to produce any bad key and
vice-versa. On the other hand, even though the two types
of keys are very different, they are hard to distinguish from
each other. More precisely, given the ability to produce both
types of keys, and ` bits of leakage on a “challenge” key of
an unknown type (good or bad), it is hard to come up with a
new key of the same type. More formally, a LIRR consists
of PPT algorithms (Setup, SampG, SampB, ReRand, Ver,
isGood) with the following syntax:
• (pk, samG, samB , dk) ← Setup(1λ) : Outputs a public-

key pk, a “good” sampling-key samG, a “bad” sampling
key samB , and a distinguishing-trapdoor dk.
• skG ← SampGpk(samG), skB ← SampBpk(samB): These

algorithms sample good/bad secret-keys using good/bad
sampling keys respectively. We omit the subscript pk when
clear from context.
• b = isGood(pk, sk, dk): Uses dk to distinguish good

secret-keys sk from bad ones.
• sk′ ← ReRandpk(sk), b = Ver(pk, sk). These have the

same syntax as in the definition of CLR-OWR.

Definition 3 (LIRR). We say that the scheme (Setup,
SampG, SampB, ReRand, Ver, isGood) is an `-leakage-
indistinguishable re-randomizable relation (`-LIRR) if it
satisfies the following properties:
• Correctness: If (pk, samG, samB , dk) ← Setup(1λ),
skG ← SampG(samG), skB ← SampB(samB) then w.o.p.

Ver(pk, skG) = 1, isGood(pk, skG, dk) = 1
Ver(pk, skB) = 1, isGood(pk, skB , dk) = 0

• Re-Randomization: We require that
(pk, samG, sk0, sk1)

c
≈ (pk, samG, sk0, sk

′
1), where:

(pk, samG, samB , dk)← Setup(1λ),
sk0 ← SampG(samG), sk1 ← SampG(samG),
sk′1 ← ReRand(sk0)

• Hardness of Bad Keys: Given samG, it’s hard to produce
a valid “bad key”. Formally, for any PPT adversary A:

Pr
[

Ver(pk, sk∗) = 1
isGood(pk, sk∗, dk) = 0

]
≤ negl(λ)

• KeyGen(1λ): Sample (pk, samG, ·, ·) ← Setup(1λ), sk ←
SampG(samG) and output (pk, sk).
• ReRand, Ver: Same as for LIRR.

Figure 1. Constructing CLR-OWR from a LIRR

where probability is over

(pk, samG, ·, dk)← Setup(1λ), sk∗ ← A(pk, samG)

• Hardness of Good Keys: Given samB , it’s hard to produce
a “good key”. Formally, for any PPT adversary A:

Pr [isGood(pk, sk∗, dk) = 1] ≤ negl(λ)

where the probability is over

(pk, ·, samB , dk)← Setup(1λ), sk∗ ← A(pk, samB).

• `-Leakage-Indistinguishability: Given both sampling keys
samG, samB , and ` bits of leakage on a secret-key sk
(which is either good or bad), it is hard to produce a secret-
key sk∗ which is in the same category as sk. Formally,
for any PPT adversary A, we have

∣∣Pr[A wins]− 1
2

∣∣ ≤
negl(λ) in the following game:
• The challenger chooses (pk, samG, samB , dk) ←
Setup(1λ) and gives pk, samG, samB to A.

• The challenger chooses b ← {0, 1}. If b = 1 then set
sk ← SampG(samG), else sk ← SampB(samB).

• A can make up to ` queries to Oλsk(·). At the end, it
outputs sk∗ and wins if isGood(pk, sk∗, dk) = b.

An `-LIRR can be used to construct an `-CLR-OWR,
where the ReRand, Ver algorithms are kept the same, while
KeyGen samples pk and a “good” secret key skG (see
Figure 1). Note that the CLR-OWR completely ignores
the the bad sampling algorithm SampB, the “bad” sampling
key samB , the distinguishing algorithm isGood, and the
distinguishing key dk of the LIRR. These are only used
in the argument of security. Moreover, the “good” sampling
key samG is only used as an intermediate step during key-
generation to sample the secret-key sk, but is never explicitly
stored afterwards.

Theorem 4. Given any `-LIRR scheme, the construction in
Figure 1 is a secure `-CLR-OWR.

We argue that the above construction is secure. Assume an
adversary attacks the construction and, after several leakage-
rounds, produces a valid secret key sk∗. Since the adversary
does not see any information related to the bad sampling
key samB , we can use the hardness of bad keys property
to argue that sk∗ must be a “good” key. However, we then
argue that the adversary cannot notice if we start switching
good keys to bad keys in the leakage rounds. More precisely,
we define several hybrid games, where each game differs
from the previous by replacing a good key with a bad key
in one additional leakage round. We argue that, by the `-
leakage-indistinguishability property, the probability that the
adversary produces a good key sk∗ as her forgery does not

change between any two hybrids. Notice that this argument
allows us to only analyze leakage in a single round at a time,
and thus avoids the main difficulty of analyzing continuous
leakage. In the last of the hybrids, the adversary only sees
“bad keys”, yet still manages to produce a good key sk∗ as
her forgery. But this contradicts the hardness of good keys
property, and proves the security of the scheme.

IV. CONSTRUCTING LIRR
We now instantiate an `-LIRR using two public-key

encryption schemes and a NIZK argument system.

REVIEW OF NIZK. We remind the reader of the basic
syntax of non-interactive zero-knowledge (NIZK) arguments
[7], [31], [8]. Let R be an NP relation on pairs (y, x) with
corresponding language LR = {y | ∃x s.t. (y, x) ∈ R}.
A NIZK argument system for R, consists of four PPT
algorithms (Setup, Prov, Ver, Sim) with syntax:
• (CRS, TK) ← Setup(1λ): Creates a common reference
string (CRS) and a trapdoor key to the CRS.
• π ← ProvCRS(y, x): Creates an argument π for the
statement y ∈ LR, using the witness x.
• π ← SimCRS(y, TK): Creates a simulated argument for a
statement y using the trapdoor TK.
• 0/1← VerCRS(y, π): Verifies whether or not the argument
π is correct.

For the sake of clarity, we write Prov and Ver without
the CRS in the subscript, when clear from context. The
definition of security for NIZK arguments is given in the
full version [13]. For this work, the default notion of NIZKs
includes composability (real/simulated NIZKs cannot be
distinguished even given the trapdoor key TK).

OVERVIEW OF CONSTRUCTION. We first start by describ-
ing the high level idea and the syntax of the construction. Let
E1 = (KeyGen1, Enc1, Dec1), E2 = (KeyGen2, Enc2, Dec2)
be two public-key encryption schemes, with perfect cor-
rectness. We define the plaintext equality relation for the
schemes E1, E2 by:
Req

def=
{

(y, x) | y = (pk1, pk2, c1, c2), x = (m, r1, r2)
s.t. c1 = Enc1

pk1
(m; r1), c2 = Enc2

pk2
(m; r2)

}
.

The corresponding language Leq , is that of ciphertext pairs
that encrypt the same plaintext. Let Π = (SetupΠ, ProvΠ,
VerΠ, SimΠ) be a NIZK argument system for Req . We will
often omit the public-keys pk1, pk2 from the descriptions of
statements y ∈ Leq , when clear from context.

We will assume that the schemes E1, E2,Π can share some
common system parameters prms ← ParamGen(1λ) (e.g.
the description of some group) which are implicitly used
as inputs by all of the algorithms of each of the schemes.
The parameters define a common message-space M for the
schemes E1, E2. The basic syntax of our construction of
LIRR, except for the re-randomization algorithm, is shown
in Figure 2. The main idea is to encrypt a random message

• Setup(1λ): Output pk = (prms, CRS, pk1, pk2, c1), samG =
(m, r1), samB = TK, dk = (sk1, sk2) where:
prms← ParamGen(1λ), (pk1, sk1)← KeyGen1(prms),
(pk2, sk2)← KeyGen2(prms), m←M,
c1 ← Enc1

pk1
(m; r1), (CRS, TK)← SetupΠ(prms)

• SampG(samG): Output skG = (c2, π) where:
c2 ← Enc

2
pk2(m; r2), π ← Prov

Π((c1, c2), (m, r1, r2))

• SampB(samB): Output skB = (c2, π) where:
c2 ← Enc

2
pk2(1), π ← Sim

Π((c1, c2), TK)

• Ver(pk, sk): Parse sk = (c2, π), output VerΠ((c1, c2), π).
• isGood(pk, sk, dk): Parse sk = (c2, π), dk = (sk1, sk2).

Output 1 iff Dec1
sk1

(c1) = Dec2
sk2

(c2).

Figure 2. Construction of LIRR.

m using the scheme E1, and put the ciphertext c1 in the
public-key. The secret key consists of a ciphertext/proof pair
(c2, π). In a good secret-key, c2 is a new random encryption
of m under E2, and π is a proof of plaintext-equality. In a
bad secret-key, c2 is just an encryption of the message 1,
and π is a simulated proof. The verification procedure just
checks the proof π against the statement (c1, c2).

It is easy to see that the scheme satisfies the correctness
property. The hardness of bad keys, follows directly from
the soundness of the NIZK argument system. The hardness
of good keys, on the other hand, follows from the security
of the encryption scheme E1. In fact, we only need one-way
security (see the full version [13] for a formal definition),
which is weaker than semantic-security and only requires
that an encryption of a random message is hard to invert.

Lemma 5. Assume that E1 is a one-way secure and Π is
a sound NIZK. Then the construction in Figure 2 satisfies
the correctness, hardness of good keys and hardness of bad
keys properties of the LIRR definition (Definition 3).

We are left to show (1) how to re-randomize secret keys,
and (2) that the leakage-indistinguishability property holds.
We do so in the next two sections, by requiring additional
properties from the building-blocks E1, E2,Π.

A. Re-randomization: Homomorphic Encryptions & NIZKs

We now show how to perfectly re-randomize the secret
keys of our LIRR construction. Recall that a secret-key
consists of a pair (c2, π) where π is a proof of plaintext-
equality for the statement (c1, c2). To re-randomize the key,
we need to first re-randomize the ciphertext c2 into a new
ciphertext c∗2 with the same plaintext. We then need to update
the proof π to look like a fresh new proof of a new statement
(c1, c∗2), for which we do not know the witness! We show
that this is indeed possible if the encryption schemes E1, E2
and the argument-system Π are all homomorphic over some
appropriate group. In particular, we define a new notion of
homomorphic NIZKs, which is influenced by the notions of
re-randomizable and malleable NIZKs from [6].

Definition 6 (Homomorphic Encryption). We say that
an encryption scheme (KeyGen, Enc, Dec) is homomor-
phic if the system-parameters of the scheme define groups
(M, ·), (R,+), (C, ·) for the message-space, randomness-
space, and ciphertext-space respectively, such that, for any
m,m′ ∈M any r, r′ ∈ R:

c = Encpk(m; r), c′ = Encpk(m′; r′) ⇒
c · c′ = Encpk(m ·m′; r + r′)

It is easy to see that for any homomorphic encryption
scheme and any public-key pk, we have Encpk(1M; 0R) =
1C (i.e. encryption of the identity -message under identity-
randomness gives an identity-ciphertext).

Definition 7 (Homomorphic Relation). We say that a rela-
tion R ⊆ Y×X is homomorphic if (Y, ·), (X ,+) are groups
and, for any (y, x), (y′, x′) ∈ R, we have (y ·y′, x+x′) ∈ R.

Definition 8 (Homomorphic NIZK). We say that a
NIZK argument-system (Setup, Prov, Ver, Sim) for a
homomorphic-relation R ⊆ Y × X is itself homomorphic
if there are groups (R,+), (P, ·) for the randomness of the
prover and the proofs themselves respectively, such that for
any (y, x), (y′, x′) ∈ R, any r, r′ ∈ R:

π = Prov(y, x; r), π′ = Prov(y′, x′; r′) ⇒
π · π′ = Prov(y · y′, x+ x′; r + r′)

where π, π′ ∈ P .

We now connect the above definitions of homomorphic
primitives to our construction in Figure 2, showing how to
re-randomize the secret-keys if E1, E2, and Π are homomor-
phic. First, we show that the plaintext-equality relation is
homomorphic if we fix the public-keys pk1, pk2. That is, for
each pk1, pk2, define the relation R

(pk1,pk2)
eq ⊆ Req where

pk1, pk2 are fixed and the statements only consist of (c1, c2).
It is easy to verify the following lemma.

Lemma 9. If E1, E2 are homomorphic with the same
message-group M, randomness-groups R1,R2, and
ciphertext-groups C1, C2 respectively, then, for any pk1, pk2,
the relation R

(pk1,pk2)
eq is a homomorphic relation over

Y = C1 × C2 and X =M×R1 ×R2.

To simplify the discussion, we will say that a proof-system
Π for Req is homomorphic if, for every fixed choice of
the public-keys pk1, pk2, it is homomorphic for the (ho-
momorphic) relations R(pk1,pk2)

eq . Now assume that E1, E2
are two homomorphic encryption schemes satisfying the
requirements of Lemma 9, and that Π is a homomorphic
NIZK for Req , with randomness-group R3 and proof-group
P . In Figure 3, we show how to re-randomize the secret
keys of our LIRR construction from Figure 2.

The main idea is to re-randomize the ciphertext c2 in the
secret key (without modifying the encrypted message), by
multiplying c2 with a random encryption c′ of the identity
message 1M. We then need to update the proof π in the

ReRand(sk): Parse sk = (c, π). Choose (r′2, r
′
3)←R2 ×R3.

Set c′ := Enc2
pk2

(1M; r′2),
π′ := Prov((1C1 , c

′), (1M, 0R1 , r
′
2); r

′
3)

Output sk∗ = (c · c′, π · π′).

Figure 3. Re-randomization

secret key to look like a fresh new proof of the new true
statement (c1, c2 ·c′) ∈ Leq . We do so by multiplying π with
a random proof π′ of the true statement (1C1 , c

′) ∈ Leq .

Lemma 10. The re-randomization method in Figure 3
satisfies the re-randomization of LIRR (Definition 3).

B. Leakage-Indistinguishability

We are left to show the leakage-indistinguishability of our
construction. To do so, we need to define a new security
property, called leakage-of-ciphertext non-malleability, for
the encryption scheme E2. Intuitively, this property says that,
given ` bits of leakage on a ciphertext c, the adversary cannot
produce a related ciphertext c∗.

Definition 11 (LoC-NM Encryption). A public-key en-
cryption scheme E = (KeyGen, Enc, Dec) is `-leakage-
of-ciphertext non-malleable (`-LoC NM) if, for any PPT
adversary A, we have

∣∣Pr[A wins]− 1
2

∣∣ ≤ negl(λ) in the
following game:
• The challenger chooses (pk, sk) ← KeyGen(1λ) and
gives pk to A.
• A chooses two messages m0,m1.
• Challenger chooses b← {0, 1}, c← Encpk(mb)
but does not give c to A.
• A can make up to ` queries to a leakage-oracle Oλc (·),
on the ciphertext c.
• A chooses any c∗ and gets m∗ = Decsk(c∗).
• A outputs a bit b̃ and wins if b̃ = b.

REMARKS ON THE DEFINITION. Note that, in the defi-
nition, the leakage is only on the ciphertext c and not on
the secret-key sk. It is easy to see that even 1-LoC-NM
security (i.e. adv. gets only 1 bit of leakage) already implies
semantic-security, since a 1-bit leakage function can act
as a distinguisher. On the other hand, the standard notion
of non-malleable encryption from [15] implies `-LoC-NM
security where ` approaches the message-size of the scheme.
This is because an adversary that leaks less than ` bits
about a ciphertext c is unlikely to be able to re-produce
c exactly, and the decryption of any other ciphertext c∗ 6= c
safely keeps the challenge message hidden. However, non-
malleable encryption is inherently not homomorphic while,
as we will soon see, LoC-NM encryption is simpler to
achieve and can be homomorphic as well.

APPLICATION TO LEAKAGE-INDISTINGUISHABILITY. We
now show that, if the scheme E2 in our construction
is `-LoC-NM, then the construction satisfies `-leakage-

indistinguishability (Definition 3). This is because the secret-
key contains a ciphertext c, and the decision wether the
secret-key is “good” or not depends on the encrypted mes-
sage. Therefore, the ability to create a secret-key which is
in the same category as a challenge key, requires the ability
to create “related ciphertexts”.

Lemma 12. Assume that, in the construction of Figure 2, the
scheme E2 is `-LoC-NM and that Π is a secure NIZK. Then
the construction satisfies the leakage-indistinguishability
property of LIRR (Definition 3).

C. Summary of Construction and its Requirements

The following theorem follows directly from Lemmata 5,
10 and 12 and Theorem 4.

Theorem 13. The construction in Figure 2, with the re-
randomization procedure in Figure 3, is a secure `-LIRR as
long as the components E1, E2,Π satisfy:
• E1, E2 are homomorphic encryption schemes with perfect
correctness and a common message-space M.
• E1 is one-way secure and E2 is `-LoC-NM secure.
• Π is a homomorphic NIZK argument system for the
plaintext-equality relation Req .

Therefore, the existence of such components E1, E2,Π im-
plies the existence of a `-CLR-OWR.

V. INSTANTIATING THE COMPONENTS

In this section, we now show how to instantiate the
homomorphic encryption and NIZK schemes E1, E2,Π so
as to satisfy the requirements of Theorem 13. We will do so
under the K-linear assumption (a generalization of DDH)
in Bilinear Groups. The main tool here will be the Groth-
Sahai (GS) NIZK argument system, which we notice to be
homomorphic. This observation is influenced by [6], who
noticed that GS proofs are re-randomizable and malleable.

NUMBER THEORETIC ASSUMPTIONS. Let G be a group
generation algorithm, which outputs (p,G,g) ← G(1λ),
where G is (some description of) a cyclic group of prime
order p with generator g.

Decisional Diffie-Hellman (DDH).: The DDH assump-
tion on G states that

(G,g0,g1,gr0,g
r
1)

c
≈ (G,g0,g1,gr00 ,g

r1
1)

where (p,G,g)← G(1λ), g0,g1 ← G, and r, r0, r1 ← Zp.
K-Linear [9], [23], [33].: Let K ≥ 1 be constant. The

K-Linear assumption on G states that

(G,g0,g1, . . . ,gK ,gr11 ,g
r2
2 , . . . ,g

rK

K ,g
∑K

i=1
ri

0)
c
≈

(G,g0,g1, . . . ,gK ,gr11 ,g
r2
2 , . . . ,g

rK

K ,gr00)

where (p,G,g) ← G(1λ), g0, . . . ,gK ← G, and
r0, r1, . . . , rK ← Zp.
The K-linear assumption for K = 1 is the DDH assumption
(in disguise). Also, K-linear implies (K + 1)-linear, so the

Let prms = (p,G,g)← G(1λ).
• KeyGen(prms): Choose x← Zp. Set f = gx. Output
(pk = f , sk = x).
• Encpk(m): Choose r ← Zp. Output c := (m gr, fr).
• Decsk(c): Parse c = (z, c). Output z c−1/x.

Figure 4. ElGamal Encryption (variant)

assumptions get progressively weaker as K grows. For K =
2, it is called the decisional-linear (DLIN) assumption.

PAIRINGS. Let Gpair be a pairing generation algorithm,
which outputs (p,G,Γ,GT , e,g,γ) ← Gpair(1λ), where
G,Γ,GT are groups of prime order p, g is a generator of G,
and γ is a generator of Γ. The map e : G× Γ→ GT is an
efficiently computable bilinear map, which satisfies: (1) non-
degeneracy: the element e(g,γ) generates GT , and (2) bi-
linearity: for any a, b ∈ Zp, we have e(ga,γb) = e(g,γ)ab.
We call G,Γ the base groups and GT is the target group. If
G = Γ and g = γ, we say that the pairing is symmetric.

OUR INSTANTIATIONS. We show how to instantiate the
components E1, E2 and Π assuming the K-linear assumption,
for any constant K ≥ 1, holds in both base groups G
and Γ of a symmetric or asymmetric pairing Gpair. For
K = 1, this is equivalent to assuming DDH holds in
the base groups. Although, the DDH assumption is always
invalid in the case of symmetric pairings (G = Γ), it is
believed to hold for some asymmetric pairings, if there is
no efficiently computable linear mapping between G and Γ.
This is also sometimes called the External Diffie-Hellman
(SXDH) assumption [32], [9], [5], [18], [34]. For symmetric-
pairings (when G = Γ), it is often reasonable to assume that
the K-linear assumption holds in G for K = 2 (and higher).
Although the K-linear assumption gets progressively weaker
as K grows, there seems to be little reason to use K > 2
(i.e. anything other than DLIN) in practice.

For simplicity, we only concentrate on the K = 1 (DDH)
case in the main body, and the generalization to K > 1
appears in the full version [13]. We note that our encryption
schemes E1, E2 do not make use of pairing operations at all,
but the NIZK argument system Π will.

A. The encryption schemes E1, E2
For the scheme E1, we can use any homomorphic one-

way secure encryption. We choose to use (a slight variant
of) the ElGamal encryption scheme, shown in Figure 4.

For the scheme E2, we need a homomorphic encryp-
tion satisfying `-LoC-NM security. We use a variant of
the “Cramer-Shoup Lite” (CS-Lite) [12] scheme shown in
Figure 5. We implicitly show that `-LoC-NM security can
be constructed from any “1-universal hash proof system”
(of which CS-Lite is an example), but, since we will
need a scheme based on K-linear, we restrict ourselves to
generalizations of CS-Lite.
For n = 0, the encryption scheme above is already
semantically-secure under the DDH assumption. For n = 1,

Let n ∈ Z+. Let prms = (p,G,g0,g1) where (p,G,g0) ←
G(1λ) and g1 ← G.
• KeyGen(prms): Choose (n + 1) random pairs{
~xi = (xi,0, xi,1)

> ← Z2
p

}n
i=0

.
Set h0 := g

x0,0
0 g

x0,1
1 , h1 := g

x1,0
0 g

x1,1
1 , . . . , hn :=

g
xn,0
0 g

xn,1
1 .

Output pk := (h0,h1, . . . ,hn), sk := (~x0, . . . , ~xn).
• Encpk(m): To encrypt a message m ∈ G, choose r ← Zp

and compute c0 := hr0, c1 := hr1 , . . . , cn := hrn.
Output c := (gr0, gr1, m c0, c1, . . . , cn).
• Decsk(c): Parse c = (y0,y1, z, c1, . . . , cn). Set c̃0 :=
y
x0,0
0 y

x0,1
1 , c̃1 := y

x1,0
0 y

x1,1
1 , . . . , c̃n := y

xn,0
0 y

xn,1
1 .

If c̃1
?
= c1, . . . , c̃n

?
= cn, then output z/c̃0. Else output ⊥.

Figure 5. Multiple CS-Lite Scheme

we recover the original CS-Lite encryption scheme, in which
the ciphertext includes an additional verification element c1,
which certifies that the ciphertext is well-formed. The CS-
Lite scheme is known to be CCA-1 secure under the DDH
assumption, but CCA-1 security does not, in general, seem
to imply LoC-NM security. We show that the Multiple CS-
Lite scheme is `-LoC-NM secure, where the leakage-bound
` is proportional to the number of verification elements n.

The high level idea goes as follows. By the DDH assump-
tion, the adversary cannot distinguish a correctly generated
challenge ciphertext from one where y0 = gr00 ,y1 = gr11

are uniformly random and independent values (not a DDH
tuple), and c0, . . . , cn are replaced with the corresponding
c̃i, as computed as during decryption. In that case, the value
c̃0 is uniformly random over the randomness of the secret
vector ~x0, and m is statistically hidden by the ciphertext and
the public-key. We only have to argue that the decryption
query keeps m hidden. If the ciphertext c∗ in the decryption
query includes a DDH-tuple y∗0,y

∗
1 , then the decrypted

message m∗ is determined by the public-key alone, and does
not reveal any additional information about ~x0 or m. On
the other hand, if y∗0,y

∗
1 are not a DDH-tuple, we argue

that c∗ decrypts to ⊥. Consider the values c̃∗1, . . . , c̃
∗
n, used

by the challenger to check “well-formedness” during the
decryption of c∗. These values are uniformly random over
the randomness of the secret components ~xi. Unfortunately,
they not independent of the challenge-ciphertext components
c̃i.2 However, since the adversary only sees ` bits of leakage
on the challenge ciphertext, this is not enough to guess all
of the values c̃∗i correctly (if n is big enough), and so the
ciphertext c∗ will decrypt to ⊥.

Theorem 14. Under the DDH assumption, the multiple CS-
Lite scheme (Figure 5) with parameter n, is an `-LoC-NM
secure encryption with leakage ` = n log(p)− λ. The ratio
of leakage to ciphertext-size approaches 1, as n grows.
The scheme is homomorphic over the messages M = G,
randomness R = Zp, and ciphertexts C = Gn+3.

2For example, if (y∗0 ,y∗1) = (y0,y1), then c̃∗i = c̃i are the same! But
even if (y∗0 ,y∗1) 6= (y0,y1), the values are still not independent.

The proof of the Theorem 14 appears in the full version,
where the schemes E1, E2 are also generalized to get security
under the K-linear assumption, for arbitrary values of K.

B. The NIZK System Π : Groth-Sahai Proofs

We consider the language of satisfiable systems of linear
equations, over a group G of primer order p. A system
of M equations over N variables consists of a matrix of
coefficients B ∈ GM×N and a vector of target values
~c ∈ GM :

B =
{
~bi = (bi,1,bi,2, . . . ,bi,N)

}M
i=1

, ~c = (c1, . . . , cM)

We say that the system (B,~c) is satisfiable if there exists a
vector ~x = (x1, . . . , xN) ∈ ZNp such that

bx1
i,1b

x2
i,2 . . .b

xN

i,N = ci for i ∈ {1, . . . ,M}.

We call the vector ~x, the satisfying assignment for the
system (B,~c). We define the relation Rlinear as consisting
of all pairs ((B,~c), ~x), where the system (B,~c) acts as a
statement and the satisfying assignment ~x acts as a witness.
We define the corresponding language Llinear of satisfiable
linear equations.

If we fix the coefficients B, and define the relation
RB
linear = {(~c, ~x) : ((B,~c), ~x) ∈ Rlinear}, The Groth-

Sahai (GS) [21] NIZK argument system is (among other
things) an argument system for the relation Rlinear. We
give a brief overview of the GS construction in the full
version [13]. We notice that the GS NIZKs already give
us a homomorphic NIZK argument system for Rlinear, in
the above-described sense. Therefore, the following lemma
follows directly from the work of [21] (and generalizes to
the K-linear assumption).

Lemma 15. Assume the DDH assumption holds in both base
groups of some pairing Gpair. Then there exists a homomor-
phic NIZK argument system for the relation Rlinear.

PROOFS OF PLAINTEXT EQUALITY FOR E1, E2. Let E1
be the ElGamal encryption scheme and E2 be the CS-Lite
encryption scheme as described in Figure 4 and Figure 5,
respectively. It is relatively easy to show (see full version
[13]) that the corresponding language for plaintext-equality
Leq can be expressed in terms of a satisfiable sets of linear
equations. In particular, for each statement (prms, pk, c1, c2)
there exists some system (Beq,~ceq) such that the statement
is in Leq if and only if the system is satisfiable. Moreover,
the matrix Beq only depends on (prms, pk) while the com-
ponents of (c1, c2) define ~c. Therefore, the GS scheme is a
homomorphic NIZK for the plaintext-equality relation Req .

C. Parameters of Instantiation

In the full version [13], we generalize the schemes E1, E2
and the NIZK system Π to the K-linear assumption. If K
is constant, the ciphertext c2 consists of n + O(1) group
elements. The proof π grows linearly with K, and requires

Kn+O(1) group elements. The leakage, is ` = n log(p)−λ
bits. Therefore, the relative leakage of the scheme ap-
proaches `

|sk| = 1
K+1 . Recall that, in practice, only the

choices K = 1, 2 are interesting, yielding a relative leakage
of 1

2 (based on DDH) and 1
3 (based on DLIN) respectively.

Theorem 16. Fix a constant K ≥ 1, and assume that the
K-linear assumption holds in the base group(s) of some
pairing Gpair. Then, for any constant ε > 0, there exists
an `-CLR-OWR, with relative-leakage `

|sk| ≥
1

K+1 − ε.
The public/secret keys of the scheme contain O(1) group
elements, and the algorithms of the scheme use O(1) expo-
nentiation/pairing operations.

VI. APPLICATIONS: SIGNATURES, ID SCHEMES, AKA
We now show how to use CLR-OWRs to build other

CLR primitives; in particular, we define and achieve CLR
security for signatures, ID schemes, and Authenticated Key
Agreement (AKA). Our constructions are based on the prior
works of [3], [27], [14], which (sometimes implicitly) con-
struct “one-time” leakage-resilient versions of these primi-
tives, from underlying “one-time” leakage-resilient OWRs.
We notice that these constructions naturally extend to the
continuous case. The details are given in the appendices,
and we just sketch the results.

SIGNATURES. An `-CLR Signature scheme is defined
analogously to a CLR-OWR: the adversary’s attack consists
of many rounds, during each of which the adversary can
interleave arbitrary signature queries with up to ` leakage
queries on the current secret key. At the end of each round,
the key is updated using a ReRand procedure. Our construc-
tion is based on the the leakage-resilient signature scheme of
[14], which slightly generalizes the original scheme of [27].
We start with a CLR-OWR C = (KeyGenC , ReRand, VerC),
and a NIZK Ψ = (SetupΨ, ProvΨ, VerΨ) for the relation

RC = {(y, x) | y = (pk,m), x = sk
s.t. VerC(pk, sk) = 1}.

The signature scheme construction is shown in Figure 6. For
security, we need the NIZK system Ψ to be true-simulation
extractable (tSE); even if an adversary sees simulated proofs
of arbitrary true statements y ∈ LR, if she produces a valid
proof ψ∗ for a new statement y∗, then there is a way to
extract a valid witness x∗ from ψ∗, so that (y∗, x∗) ∈ R.
Notice that this explains the (seemingly useless) role of m in
the relation RC . Even if the adversary sees simulated proofs
for statements that contain many different values m, any
proof she produces for a new m∗ is extractable. We note
that, as observed in [14], tSE NIZKs can be constructed
by either (1) composing a simulation-sound NIZK with a
CPA-secure encryption, yielding the scheme of [27], or (2)
composing a standard NIZK with a CCA-secure encryption,
yielding a (possibly) more efficient scheme.

On a high level, this construction preserves the (contin-
uous) leakage-resilience security of the underlying OWR,

• KeyGen(1λ): Run (pk, sk) ← KeyGenC(1λ), (CRS, ·) ←
SetupΨ(1λ). Output: vk := (pk, CRS), sk.
• Signsk(m): Output σ ← ProvΨ((pk,m), sk).
• SigVervk(m,σ): Output VerΨ((pk,m), σ).
• ReRand(sk): Run the re-randomization procedure of the

CLR-OWR C.

Figure 6. A CLR-Signature Scheme from a CLR-OWR and a tSE NIZK

since the signatures do not reveal any information about
sk. In particular, the signatures can be simulated using the
trapdoor TK for the NIZK system, without any knowledge of
sk. Nevertheless, we can extract a valid secret-key sk∗ from
any forgery σ∗ on a new message m∗. See the full version
[13] for the formal definitions of CLR secure signatures, tSE
NIZKs and a proof of security for the above construction.

In the full version, we also show that the above signature
scheme can be instantiated efficiently from our efficient con-
struction of a CLR-OWR based on the K-linear assumption.
This requires us to use the efficient GS NIZK system to
prove statements about the GS NIZK proofs themselves!

ID SCHEMES AND AKA PROTOCOLS. The CLR security of
identification (ID) schemes and authenticated key agreement
(AKA) protocols is defined naturally in the full version [13].
We give black-box constructions of such schemes from CLR
signatures, naturally extending the prior constructions of [3],
[14] in the (one-time) LR setting. In particular, we can use
a CLR signature to define a simple CLR ID scheme, where
the prover simply signs a random challenge chosen by the
verifier. For AKA, the parties use a CLR signature scheme
to set up a public-key infrastructure (PKI). Then, any pair
of parties can agree on a fresh ephemeral session keys, by
running a passively-secure key agreement protocol (such as
the Diffie-Hellman key agreement, or its generalization to
K-linear), and authenticating the flows of the protocol by
signing them. Even if the adversary repeatedly sees (limited)
leakage on many updated versions of the long-term signing
keys, she will be unable to impersonate an honest user, or
break the privacy of past session-keys.

SIGNATURES/ID/AKA UNDER K-LINEAR. The construc-
tions of signature, ID, and AKA schemes use the same
secret-key as the underlying CLR-OWR, and preserve the
absolute and relative leakage of the CLR-OWR. Thus, as a
corollary of our CLR-OWR construction under the K-linear
assumption, and our constructions of ID/Signatures/AKA
from CLR-OWR, we get the following result.

Theorem 17. Fix any constant K ≥ 1, and assume that
the K-linear assumption holds in the base group(s) of
some pairing Gpair. Then, for any ε > 0, there exist
`-CLR Signatures, ID schemes, and AKA protocols, with
relative-leakage `

|sk| ≥
1

K+1 − ε. The above schemes are
efficient: public-keys, secret-keys, communication/signatures
each consist of O(1) group elements and all algorithms use
at most O(1) group operations.

VII. EXTENSIONS

LEAKING RANDOM COINS OF REFRESHING. In our basic
model of CLR security, we only consider leakage on the se-
cret keys sk stored in memory in-between refresh operations.
However, the internal secret state of the system also depends
on the random coins used by the refreshing algorithm and the
cryptographic computation itself (e.g. signing, identifying
. . .). A-priori, it may be possible that even some very small
amount of such leakage (say 1 bit per period) can harm
security, since the total amount of leakage observed by
the adversary is large. Let us start with leakage on the
random coins of refreshing. Brakerski et al. [10] show that
a particular CLR scheme is secure w.r.t. logarithmic (in the
security parameter) amount of such leakage. It was observed
by Brent Waters [35] that this, in-fact, holds generically
for all CLR OWRs, Signatures, and Public-Key Encryption
(PKE) schemes (and carries over to our generic construc-
tions of ID schemes and AKA from these primitives). We
formalize this observation in the full version [13]. The
result shows that our schemes are all resilient to logarithmic
leakage of the randomness-of-refreshing (or more, if we are
willing to assume exponential exact security of the K-linear
assumption). It remains an important open problem to allow
for super-logarithmic leakage of the refreshing randomness
under standard assumptions against polynomially bounded
attackers.

LEAKING RANDOM COINS OF COMPUTATION. Allowing
leakage of the random coins of the cryptographic com-
putation (signing, identifying, authenticating) is perhaps
even more important since, presumably, such computation
occurs much more frequently than key-refreshing. In the full
version [13], we show that if one starts with a CLR-OWR
having relative leakage α, one can generically construct the
following schemes with leakage-of-randomness security: (1)
an ID scheme in the standard model with relative leakage
α, (2) a signature scheme in the random-oracle model
with relative leakage α/2, (3) an AKA protocol in the
random-oracle model with relative leakage α. We note that
constructions differ from the ones presented in Section VI. It
remain an important open problem to construct (even one-
time) leakage-resilient signature schemes with leakage-of-
randomness security in the standard model.

NOISY & CONCURRENT LEAKAGE. In the full version, we
also explore two additional extensions. First, we consider
noisy leakage (previously studied in [29]), where instead of
bounding the size of the leakage, we bound the entropy-loss
that the leakage causes on the secret-key. In other words,
we allow long leakage, as long as it does not reveal too
much useful information. Second, instead of considering an
adversary who leaks on the secret-keys of the device in
sequential leakage-periods, we also consider the concurrent
setting, where the adversary can leak on all the secret keys

that ever were or will be used concurrently (as long as the
amount of leakage is bounded on each such key). We show
that our primitives are also secure in these stronger models.

REFERENCES

[1] A. Akavia, S. Goldwasser, and V. Vaikuntanathan, “Simul-
taneous hardcore bits and cryptography against memory at-
tacks,” in TCC, ser. Lecture Notes in Computer Science,
O. Reingold, Ed., vol. 5444. Springer, 2009, pp. 474–495.

[2] J. Alwen, Y. Dodis, M. Naor, G. Segev, S. Walfish, and
D. Wichs, “Public-key encryption in the bounded-retrieval
model,” in EUROCRYPT, ser. Lecture Notes in Computer
Science, H. Gilbert, Ed., vol. 6110. Springer, 2010, pp. 113–
134.

[3] J. Alwen, Y. Dodis, and D. Wichs, “Leakage-resilient
public-key cryptography in the bounded-retrieval model,” in
CRYPTO, ser. Lecture Notes in Computer Science, S. Halevi,
Ed., vol. 5677. Springer, 2009, pp. 36–54.

[4] ——, “Survey: Leakage resilience and the bounded retrieval
model.” 2009.

[5] L. Ballard, M. Green, B. de Medeiros, and F. Monrose,
“Correlation-resistant storage via keyword-searchable encryp-
tion,” Cryptology ePrint Archive, Report 2005/417, 2005,
http://eprint.iacr.org/.

[6] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss,
A. Lysyanskaya, and H. Shacham, “Randomizable proofs
and delegatable anonymous credentials,” in CRYPTO, ser.
Lecture Notes in Computer Science, S. Halevi, Ed., vol. 5677.
Springer, 2009, pp. 108–125.

[7] M. Blum, P. Feldman, and S. Micali, “Non-interactive zero-
knowledge and its applications (extended abstract),” in STOC.
ACM, 1988, pp. 103–112.

[8] M. Blum, A. D. Santis, S. Micali, and G. Persiano, “Nonin-
teractive zero-knowledge,” SIAM J. Comput., vol. 20, no. 6,
pp. 1084–1118, 1991.

[9] D. Boneh, X. Boyen, and H. Shacham, “Short group signa-
tures,” in CRYPTO, ser. Lecture Notes in Computer Science,
M. K. Franklin, Ed., vol. 3152. Springer, 2004, pp. 41–55.

[10] Z. Brakerski, Y. T. Kalai, J. Katz, and V. Vaikuntanathan,
“Overcoming the hole in the bucket: Public-key cryptography
resilient to continual memory leakage,” FOCS, 2010, full
version: http://eprint.iacr.org/2010/278.

[11] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai,
“Exposure-resilient functions and all-or-nothing transforms,”
in EUROCRYPT, ser. Lecture Notes in Computer Science,
B. Preneel, Ed., vol. 1807. Springer, 2000, pp. 453–469.

[12] R. Cramer and V. Shoup, “A practical public key cryp-
tosystem provably secure against adaptive chosen ciphertext
attack,” in CRYPTO, ser. Lecture Notes in Computer Science,
H. Krawczyk, Ed., vol. 1462. Springer, 1998, pp. 13–25.

[13] Y. Dodis, K. Haralambiev, A. López-Alt, and D. Wichs,
“Cryptography against continuous memory attacks,” Cryptol-
ogy ePrint Archive, Report 2010/196, 2010.

[14] ——, “Efficient public-key cryptography in the presence of
key leakage,” Cryptology ePrint Archive, Report 2010/154,
2010.

[15] D. Dolev, C. Dwork, and M. Naor, “Non-malleable cryptog-
raphy,” in STOC. ACM, 1991, pp. 542–552.

[16] S. Dziembowski and K. Pietrzak, “Leakage-resilient cryptog-
raphy,” in FOCS. IEEE Computer Society, 2008, pp. 293–302.

[17] S. Faust, E. Kiltz, K. Pietrzak, and G. N. Rothblum,
“Leakage-resilient signatures,” in TCC, ser. Lecture Notes in
Computer Science, D. Micciancio, Ed., vol. 5978. Springer,
2010, pp. 343–360.

[18] S. D. Galbraith and V. Rotger, “Easy decision-diffie-hellman
groups,” LMS Journal of Computation and Mathematics,
vol. 7, p. 2004, 2004.

[19] S. Goldwasser, “Cryptography without (hardly any) secrets
?” in EUROCRYPT, ser. Lecture Notes in Computer Science,
A. Joux, Ed., vol. 5479. Springer, 2009, pp. 369–370.

[20] S. Goldwasser and G. N. Rothblum, “How to play mental
solitaire under continuous side-channels: A completeness
theorem using secure hardware,” to Appear at CRYPTO 2010.

[21] J. Groth and A. Sahai, “Efficient non-interactive proof sys-
tems for bilinear groups,” in EUROCRYPT, ser. Lecture Notes
in Computer Science, N. P. Smart, Ed., vol. 4965. Springer,
2008, pp. 415–432.

[22] S. Halevi, Ed., Advances in Cryptology - CRYPTO 2009, 29th
Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 16-20, 2009. Proceedings, ser. Lecture
Notes in Computer Science, vol. 5677. Springer, 2009.

[23] D. Hofheinz and E. Kiltz, “Secure hybrid encryption from
weakened key encapsulation,” in CRYPTO, ser. Lecture Notes
in Computer Science, A. Menezes, Ed., vol. 4622. Springer,
2007, pp. 553–571.

[24] Y. Ishai, A. Sahai, and D. Wagner, “Private circuits: Se-
curing hardware against probing attacks,” in CRYPTO, ser.
Lecture Notes in Computer Science, D. Boneh, Ed., vol. 2729.
Springer, 2003, pp. 463–481.

[25] A. Joux, Ed., Advances in Cryptology - EUROCRYPT 2009,
28th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Cologne, Ger-
many, April 26-30, 2009. Proceedings, ser. Lecture Notes in
Computer Science, vol. 5479. Springer, 2009.

[26] A. Juma and Y. Vahlis, “Protecting cryptographic keys against
continual leakage,” to appear at CRYPTO 2010.

[27] J. Katz and V. Vaikuntanathan, “Signature schemes with
bounded leakage resilience,” in ASIACRYPT, ser. Lecture
Notes in Computer Science, M. Matsui, Ed., vol. 5912.
Springer, 2009, pp. 703–720.

[28] S. Micali and L. Reyzin, “Physically observable cryptog-
raphy,” in TCC, ser. Lecture Notes in Computer Science,
M. Naor, Ed., vol. 2951. Springer, 2004, pp. 278–296.

[29] M. Naor and G. Segev, “Public-key cryptosystems resilient
to key leakage,” in CRYPTO, ser. Lecture Notes in Computer
Science, S. Halevi, Ed., vol. 5677. Springer, 2009, pp. 18–35.

[30] K. Pietrzak, “A leakage-resilient mode of operation,” in EU-
ROCRYPT, ser. Lecture Notes in Computer Science, A. Joux,
Ed., vol. 5479. Springer, 2009, pp. 462–482.

[31] A. D. Santis, S. Micali, and G. Persiano, “Non-interactive
zero-knowledge with preprocessing,” in CRYPTO, ser. Lec-
ture Notes in Computer Science, S. Goldwasser, Ed., vol. 403.
Springer, 1988, pp. 269–282.

[32] M. Scott, “Authenticated id-based key exchange and remote
log-in with simple token and pin number,” Cryptology ePrint
Archive, Report 2002/164, 2002.

[33] H. Shacham, “A cramer-shoup encryption scheme from the
linear assumption and from progressively weaker linear vari-
ants,” Cryptology ePrint Archive, Report 2007/074, 2007.

[34] E. R. Verheul, “Evidence that xtr is more secure than super-
singular elliptic curve cryptosystems,” J. Cryptology, vol. 17,
no. 4, pp. 277–296, 2004.

[35] B. Waters, personal Communication. April 2010.

