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Abstract—We correct a claim from [Vem97] and provide a
status update.

Learning convex sets is a fundamental topic in algorithms.

The simplest convex concept, a single halfspace, can be PAC-

learned in polynomial time via efficient linear programming

algorithms. The complexity of PAC-learning an intersection of

two halfspaces is open. Progress has been made on learning

an intersection of halfspaces under restricted distributions and

on learning using restricted hypothesis classes [She10].

In 1990, Baum [Bau90] gave an algorithm for learning an

intersection of two homogeneous halfspaces over any origin-

symmetric distribution. Baum’s algorithm was recently shown

to work for logconcave distributions [KLT09]. A few years

after Baum’s work, Blum and Kannan [BK93], [BK97] found a

polynomial-time algorithm to learn the intersectio of a constant

number of halfspaces under the uniform distribution in the unit

ball. The running time, the number of examples required and

the size of the hypothesis reported by their algorithm are all

doubly exponential in k, namely n2O(k)
.

In 1997, we presented an algorithm [Vem97], [Vem04] with

running time and sample complexity nk(k/ε)O(k), i.e., singly

exponential in k. The conference version [Vem97] claimed

a fixed polynomial dependence on n and this was corrected

in [Vem04]. The algorithm is based on (a) approximating

the positive region using a large sample of examples (b)

estimating the normal subspace of the positive region using

one-dimensional random projections and (c) greedily choosing

a subset of normal vectors from the normal subspace. The

algorithm was shown to work for near-uniform distributions

on the unit ball with the property that the density does not vary

by more than a polynomial factor. The hypothesis learned is

itself an intersection of O(k log(1/ε)) halfspaces. Recently,

in the full journal version [Vem10b], this algorithm and its

analysis were extended to any logconcave distribution in R
n

with the same complexity bounds.

Klivans, O’Donnell and Servedio [KOS08] gave an algo-

rithm based on approximating an intersection of k halfspaces

with a low-degree polynomial threshold function. Their ap-

proach has time and sample complexity nO(log k/ε4), works for

Gaussian input distributions, and outputs a hypothesis that is

a polynomial threshold function of degree O(log k/ε4). Thus,

their complexity was a substantial improvement as a function

of k, although worse as a function of the error parameter ε.

Our paper in this proceedings [Vem10a], based on PCA,

achieves a complexity of

poly(n, k, 1/ε) + n · min kO(log k/ε4), (k/ε)O(k),

improving on both [Vem04], [KOS08] and achieving a fixed

polynomial dependence on n for Gaussian input distributions.

The algorithm from [Vem97] remains the state of the art for

learning an intersection of halfspaces from input distributions

other than Gaussians. All these results are summarized in the

following table.

Reference complexity distribution
[Bau90] (k = 2) poly(n, 1/ε) origin-symmetric

[BK93], [BK97] (n/ε)2
O(k)

uniform in ball

[Vem97], [Vem04] nk(k/ε)O(k) nonconcentrated
[KLT09] (k = 2) poly(n, 1/ε) logconcave

[Vem10b] nk(k/ε)O(k) logconcave

[KOS08] nO(log k/ε4) Gaussian
[Vem10a] poly(n, k, 1/ε)+ Gaussian

n min kO(log k/ε4), (k/ε)O(k)
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