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Abstract—We generalize algorithms from compu-
tational learning theory that are successful under
the uniform distribution on the Boolean hypercube
{0, 1}n to algorithms successful on permutation in-
variant distributions. A permutation invariant dis-
tribution is a distribution where the probability
mass remains constant upon permutations in the
instances. While the tools in our generalization mimic
those used for the Boolean hypercube, the fact that
permutation invariant distributions are not product
distributions presents a significant obstacle.

Under the uniform distribution, halfspaces can be
agnostically learned in polynomial time for constant
ε. The main tools used are a theorem of Peres [Per04]
bounding the noise sensitivity of a halfspace, a re-
sult of [KOS04] that this theorem implies Fourier
concentration, and a modification of the Low-Degree
algorithm of Linial, Mansour, Nisan [LMN93] made
by Kalai et. al. [KKMS08]. These results are extended
to arbitrary product distributions in [BOW08].

We prove analogous results for permutation in-
variant distributions; more generally, we work in
the domain of the symmetric group. We define noise
sensitivity in this setting, and show that noise sensitiv-
ity has a nice combinatorial interpretation in terms
of Young tableaux. The main technical innovations
involve techniques from the representation theory of
the symmetric group, especially the combinatorics of
Young tableaux. We show that low noise sensitivity
implies concentration on “simple” components of the
Fourier spectrum, and that this fact will allow us to
agnostically learn halfspaces under permutation in-
variant distributions to constant accuracy in roughly
the same time as in the uniform distribution over the
Boolean hypercube case.

I. INTRODUCTION

In this paper we:

• Generalize the Low-Degree algorithm (and the
agnostic learning algorithm of [KKMS08]) to
the symmetric group, taking special care to ac-
count for the fact that the Fourier coefficients
are matrices.

• Generalize the concept of noise sensitivity to a
function f : Sn → R, and give an expression
for noise sensitivity in terms of the Fourier
spectrum of such functions. This expression
will be useful for learning applications.

• Prove that the noise sensitivity of generalized
linear threshold functions f : Sn → R have
bounded noise sensitivity.

Our primary motivation is the class of binary
classification problems over the instance space X =
Xn for some set |X| with |X| = poly(n). Consider
the following algorithm for learning in such a
scenario:

Given m examples of training data
(−→x 1, y1), . . . , (−→x m, ym) ∈ Xn × {−1, 1},

1) Convert each instance −→x i into a vec-
tor in {0, 1}n·|X|, one bit for each
attribute-value pair.

2) Consider “features” which are prod-
ucts of up to d of the new 0-1 at-
tributes.

3) Find the linear function W in the
feature space that best fits the training
labels under some loss measure `:
e.g., squared loss, hinge loss, or L1

loss.
4) Output the hypothesis sgn(W − θ),

where θ ∈ [−1, 1] is chosen to mini-
mize the hypothesis’ training error.



We note that the above algorithm, which we will
refer to as polynomial regression (as in [BOW08]),
is a version of the wildly popular SVM algo-
rithm. It is known that the above algorithm runs
in poly(m,nd) time, given m examples. Given
m = Ω(nd/ε) examples, the SVM algorithm does
generalize to unseen data, even in the case that
X is an arbitrary product distribution [BOW08].
In fact, in [BOW08], many X can be the prod-
uct of different sets, which can be of any finite
cardinality (and even uncountably infinite under
distributional assumptions). Further, to achieve any
provable guarantee that the hypothesis generalizes,
m = θ(nd)/ε examples are necessary.

In the literature, much effort has been put into the
case where the attributes are mutually independent.
In this case, the data is drawn i.i.d. from a product
distribution over X . The uniform distribution over
{0, 1}n has received much attention in a number
of different scenarios [KM93], [Jac95], [BBL98],
[KOS04], [MOS04], [OS07], [KKMS08], [OW09];
some of these results extend to product distribu-
tions. This was the explicit motivation of [BOW08].
In [KST09], the authors show that learning of
some natural concepts is possible under a randomly
chosen product distribution with high probability. In
practice, the assumption that the attributes are all
mutually independent is unrealistic.

The assumption we make in this work is that
the distribution is permutation invariant. By this,
we mean that PrX [X = (x1,x2, . . . ,xn)] =
PrX [X = (xσ(1),xσ(2), . . . ,xσ(n))] for any per-
mutation σ. A permutation invariant distribution
need not even be pairwise independent, although
product distributions with equal biases for each
coordinate are permutation invariant. Considering
this type of distribution has already proven helpful
in other work. In the context of learning monotone
functions over the uniform distribution on {0, 1}n,
[OW09] show that product distributions are too
spread out for a natural approach to work. Con-
verting to permutation invariant distributions of the
previously mentioned form allows for stronger anal-
ysis. The approach in [OW09] is to learn monotone
functions over one level of the Boolean cube at a
time, focusing on the instances with a fixed number
of 1’s at a time.

To prove our results, we use ideas from rep-
resentation theory over the symmetric group. We
define noise sensitivity for the symmetric group,
and achieve similar learning results to those over
the uniform distribution. The results and connec-
tions between computational learning theory and
representation theory are interesting, and the rep-
resentation theory themed results we show may be
of independent interest.

A. The learning framework

Our goal is binary classification learning in the
“agnostic” model introduced in [KSS94]. In this
model, there is an unknown target function t : X →
{−1, 1} which we are trying to recover. Our access
to t is limited; we receive labeled examples of
the form {x, t(x)}, where the marginal distribution
on the first coordinate is some distribution D on
the set X . Further, the examples are generated
independently. The algorithm’s task is to output
a hypothesis h : X → {−1, 1} with minimal
classification error with respect to t; that is, we wish
to choose h minimizing errt(h) = Prx∼D[h(x) 6=
t(x)]. We compare the error of our hypothesis to
the minimum error achievable using a function from
some fixed class C of functions X → {−1, 1}. We
say that we can “agnostically learn with respect to C
under the distribution D” if, for any target function
t, any ε > 0, given labeled examples, our algorithm
returns a hypothesis satisfying

E[errt(h)] ≤ inf
f∈C

errt(f) + ε,

where the expectation is over the randomness of
our algorithm.

In light of strong computational hardness results
for such problems when the distribution is arbi-
trary, much work has gone into the case where
the distribution D is a product distribution; that
is, all of the coordinates are mutually independent.
The advantage of such a distribution is the ease
with which an orthogonal decomposition can be
constructed and analyzed.

II. ALGORITHMS FOR LEARNING

We recount some algorithms for learning. First,
we make a definition:



Definition II.1. For a function f : {0, 1}N →
{−1, 1}, we say that f is ε-concentrated to degree d
with respect to D if there exists a polynomial of de-
gree at most d such that Ex∼D[(f(x)−p(x))2] ≤ ε.
We say that a class of functions C is ε-concentrated
to degree d if every f ∈ C is ε-concentrated to
degree d.

The concept of ε-concentration has proved fruit-
ful in computational learning theory. The Low-
Degree Algorithm of Linial, Mansour, and Nisan
was the first result to use ε-concentration. In their
paper, they considered learning under the uniform
distribution on {0, 1}n. They show that if the target
function t is computable by a size s, depth c circuit,
then t is ε-concentrated to degree (O(log(s/ε)))c}.
We note that the original result does not hold in the
agnostic framework; the assumption is that the t is
in the concept class C.

In [KOS04], Klivans, O’Donnell, and Servedio
develop the “noise sensitivity method” along these
lines. They show ε-concentration results for func-
tions with bounded noise sensitivity. Specifically,
they show that any function f : {0, 1}n → {−1, 1}
that can be written as a function of k linear thresh-
old functions is ε-concentrated to degree O(k2/ε2)
under the uniform distribution on {0, 1}n. Again,
the result in their paper is only applicable to learn-
ing when t is in the concept class C.

A significant step forward is given in [KKMS08].
In their paper, they consider the agnostic problem,
where we do not assume that t ∈ C. Specifically,
they show that L2-approximability bounds can be
used to imply L1-approximability bounds, which
can be used to achieve results in the agnostic
setting. Under the uniform distribution on {0, 1}n,
they show that ε2-concentration on the set S im-
plies agnostic learning with accuracy loss ε. Their
algorithm is slightly different than the Low-Degree
algorithm; their algorithm solves a linear program
for estimates for the Fourier coefficients indexed
by S such that the L1-error of the estimates is
minimized. They also note that this is a version of
the wildly popular Support Vector Machine (SVM)
algorithm.

A further step in the distribution is given
in [BOW08]. Blais, O’Donnell, and Wimmer show
that nearly all results about ε-concentration with
respect to the uniform distribution on {0, 1}n can be

applied to arbitrary product distributions; distribu-
tions where the coordinates are mutually indepen-
dent, but each coordinate has an arbitrary distribu-
tion. The main tools therein are an extension of the
“noise sensitivity method” of [KOS04] to product
distributions and an application of the algorithm
of [KKMS08]. In this paper, we use both of these
techniques, suitably adjusted for functions over the
symmetric group.

The main technique we will use comes from
representation theory of the symmetric group. We
recall the work of Boneh [Bon95], which used rep-
resentation theory of groups of size 2n to establish
learning results for the uniform distribution on the
hypercube. The symmetric group is not mentioned
in Boneh’s paper. We note that learning results of
a more applied nature are known for the symmetric
group, particularly in the realm of multi-object
tracking [Kon08], [KHJ07], [KB08], [HGG09]. All
of these results make heavy use of representation
theory; this document combines the techniques used
in these works with the tools and ideas from
the field of computational learning theory. Fur-
ther, [SJ06] introduces a similar idea which they
call permutation-invariant SVMs, where the classi-
fier is forced to be invariant under permutations. We
note that our assumption is that the distribution is
invariant under permutations, but the classifier need
not be.

III. OVERVIEW OF RESULTS

The main result in this paper concerns learning
linear threshold functions, which we define here.

Definition III.1. We say that f : Xn → {−1, 1}
is a linear threshold function if its “attribute-value
pair” analogue f : {0, 1}n·|X| is a linear threshold
function.

Each attribute-value pair is a {0, 1} indicator of
the event Xi = xj , where 1 ≤ i ≤ n and 1 ≤
j ≤ |X|. We will also consider linear threshold
functions f : Sn → {−1, 1}, which we massage
into the above definition by encoding a permutation
as n2 attribute-value pairs: the indicators of σ(i) =
j for 1 ≤ i, j ≤ n.

Theorem III.2. Let C be the class of functions of
k linear threshold functions over {0, 1, 2, . . . , B −



1}n, and let D be any permutation invariant dis-
tribution over {0, 1, 2, . . . , B − 1}n. There is an
algorithm that agnostically learns with respect to
C under the distribution D, using nO(k2/ε4+B) time
and examples.

We remark that the attribute-value pair distribu-
tion is not a permutation invariant distribution.

Corollary III.3. Let C be the class of functions of
k linear threshold functions over {0, 1}n, and let
D be any permutation invariant distribution over
{0, 1}n. There is an algorithm that agnostically
learns with respect to C under the distribution D,
using nO(k2/ε4) time and examples.

We note that in a permutation invariant distri-
bution, the attributes need not even be pairwise
independent. The class of permutation invariant
distributions includes some product distributions as
a special case. Specifically, any product distribution
where all the bits have the same bias is a permu-
tation invariant distribution. In some sense, permu-
tation invariant distributions are a generalization of
p-biased distributions.

To prove Theorem III.2, we will prove the fol-
lowing theorem:

Theorem III.4. Let C be the class of functions
of k linear threshold functions over Sn. There is
an algorithm that agnostically learns C under the
uniform distribution on D, using nO(k2/ε4) time and
examples.

For consistency with our previous definitions,
here we take X = {1, 2, 3, . . . , n}, and D is the
distribution supported solely on permutations of the
vector (1, 2, 3, . . . , n). We can identify a permuta-
tion of this vector with an element of σ ∈ Sn by
setting the ith element of the permuted vector to be
σ(i).

To prove Theorem III.4, we consider the well-
studied noise sensitivity method first introduced
in [KOS04]. However, it is not immediately clear
how noise should be defined in the case of a
nonproduct distribution; we were unable to find
a definition in the literature. We give an informal
definition here.

Imagine that Alice wishes to communicate a
permutation σ ∈ Sn to Bob. She will attempt to do
so by transmitting σ(1), then σ(2), and so on until

σ(n). However, each transmission has a probability
of 1 − δ of succeeding in reaching Bob; for each
i ∈ [n], with probability δ no information about
σ(i) is relayed to Bob. Bob selects a permutation σ′

uniformly at random from the set of permutations
consistent with the information he received from
Alice. With respect to some function f : Sn →
{−1, 1}, we can define the noise sensitivity of f
to be NSδ(f) = Prσ,σ′ [f(σ) 6= f(σ′)] where σ
is uniformly distributed over Sn, and σ′ is a ran-
dom permutation consistent with the successfully
received images of σ.

We first formalize our definition of noise sen-
sitivity in Section IV. In Section V, we intro-
duce machinery from representation theory. We tie
noise sensitivity and representation theory together
and sketch the technical theorems needed to es-
tablish that bounded noise sensitivity implies ε-
concentration in Section VI. We generalize a theo-
rem of Peres [Per04], obtaining a useful bound the
noise sensitivity of linear threshold functions in the
domain of the symmetric group in Section VII; this
step does not require any representation theory. Fi-
nally, in section VIII, we prove Theorem III.2 from
Theorem III.4 in a manner similar to [BOW08].

IV. NOISE SENSITIVITY

To formalize our noise sensitivity experiment, we
make an intermediate definition.

Definition IV.1. With respect to Sn, let N q be the
uniform distribution over all permutations with at
least n− q fixed points.

In our previously mentioned scenario with Alice
and Bob, the fixed points are the images σ(i)
successfully received. Our actual noise experiment
will be a mixture of N q distributions, where we
will choose q randomly.

Definition IV.2. With respect to Sn, let Nδ be the
distribution whose samples are generated in the
following way: let q be a binomially distributed
random variable with n trials and a success prob-
ability of δ. Then Nδ is a random draw from Nq.

It what follows, q is always a binomially dis-
tributed random variable with n trials and success
probability δ.



Definition IV.3. Let N q(σ) (Nδ(σ)) be the distri-
bution ψσ, where ψ is chosen from N q (Nδ).

The set of permutations having at most q fixed
points is a union of conjugacy classes, so N q is a
class distribution, meaning N q is uniform on con-
jugacy classes. It follows that if ψ is chosen from
N q, then ψσ and σψ have the same distribution for
every σ. Also, Nδ is a class distribution, because it
is a mixture of class distributions. In our definition
of N q(σ), we could have taken σψ instead of ψσ.

Definition IV.4. We define the functional operator
Tδ such that, given a function f : Sn → R.

(Tδf)(σ) = E
ψ∼Nδ(σ)

[f(ψ)] = E
ψ∼Nδ

[f(ψσ)]

= E
ψ∼Nδ

[f(σψ)].

Definition IV.5. If f : Sn → {−1, 1}, then

NSδ(f) = Pr
σ,ψ∼Nδ(σ)

[f(σ) 6= f(ψ)]

It is not hard to show that NSδ(f) = 1
2 −

1
2 Eσ,ψ∼Nδ(σ)[f(σ)f(ψ)] = 1

2 −
1
2〈f, Tδ(f)〉,

where we have implicitly defined the inner product
〈f, g〉 = Eσ[f(σ)g(σ)].

We prove the following generalization of Peres’
Theorem [Per04]:

Theorem IV.6. Let f : Sn → {−1, 1} be a linear
threshold function. Then NSδ(f) ≤ O(

√
δ).

We note that the bound O(
√
δ) is the same bound

for product distribution versions of this theorem,
and the constant is no larger than the constant for
the uniform distribution. The advancement of noise
sensitivity bounds is very recent; the uniform distri-
bution case is discussed in [Per04], and the arbitrary
product distribution case is proved in [BOW08].

V. REPRESENTATION THEORY

Ideally, noise sensitivity should have a nice inter-
pretation in terms of the Fourier spectrum of f , as
in the case of functions whose domain is {0, 1}n. It
is not clear that such an interpretation should exist,
much less that it should be useful. When we appeal
to the Fourier spectrum of a function f : Sn → R,
the components of the Fourier spectrum are matri-
ces, not all scalars. However, we show that with a

suitable definition of noise, noise sensitivity is well-
behaved; the noise sensitivity involves multiplying
each component of the Fourier spectrum by some
scalar independent of f . Finally, we show that
we can use our interpretation of noise sensitivity
along with our noise sensitivity bound to achieve
ε-concentration. Applying the result of [KKMS08]
finishes the claim.

To use tools from Fourier analysis, we first
mention background about representation theory of
finite groups.

Definition V.1. We say that a representation ρ of
a group G is a mapping ρ : G → Rdρ×dρ which
preserves the algebraic structure of G; that is, for
σ1, σ2 ∈ G we have ρ(σ1σ2) = ρ(σ1) · ρ(σ2).
The matrices in the codomain of ρ are called the
representation matrices, and dρ is the degree of the
representation.

We will be concerned with representations that
are irreducible. These are representations that can
not be decomposed into simpler representations (for
some suitable definition of decompose). A set of
irreducible representations contains all information
about the structure of G. We will not be concerned
with any specific set of irreducible representations,
but we mention that there are certain canonical
choices. As an aside, if G is abelian, then all the
irreducible representations have degree 1.

The Peter-Weyl Theorem says that the functions
given in the matrix entries of irreducible represen-
tations of G form an orthogonal basis for L2(G).
For any group G, we have the following definition.

Definition V.2. Let f : G → R be any function
on G, and let ρ be any representation on G. The
Fourier coefficient of f at the representation ρ is
given by the matrix

f̂ρ =
1
|G|

∑
σ∈G

f(σ)ρ(σ)

The collection of the matrices f̂ρ at irreducible
representations of G is called the Fourier transform
of f .

To reconstruct f from its Fourier transform, we
need the Fourier Inversion formula:



f(σ) =
∑
ρ

dρtr
(
f̂Tρ ρ(σ)

)
.

The tr expression can be thought of as a dot
product between two length-d2

ρ vector versions of
f̂ρ and ρ, arranging each matrix into a vector by
taking the elements first top to bottom, then left to
right as vectors.

As an analogue to sum of squares of Fourier
coefficients, we will use the Frobenius norm of
a matrix. If A is a square n-by-n matrix and
contains only real valued entries, then ‖A‖ =√√√√ n∑

i=1

n∑
j=1

(aij)2. We also have results such as

Parseval’s theorem in this setting; specifically,∑
ρ

dρ‖f̂ρ‖2 = 1 for functions whose range is

{−1, 1}.

A. The symmetric group and Young tableaux

We will be very interested in the irreducible
representations of Sn. We define a partition λ
of n to be a nonincreasing sequence of integers
(λ1, λ2, . . . , λm), where

∑
i λi = n and each λi >

0. We write this as λ ` n. The following is well-
known:

Theorem V.3. The irreducible representations of
Sn are indexed by partitions of n.

It is common to use Ferrer’s diagrams to visual-
ize a partition of n. The Ferrer’s diagrams represent
each component of each partition as the number of
squares in the corresponding row. A standard Young
tableaux is a Ferrer’s diagrams with the numbers
1, 2, . . . , n each occurring in one cell, such that the
numbers in the cells are increasing downwards and
to the right. (We refer the reader to [Ful97] for a
thorough treatment of Young tableaux.) We define
the dominance order on partitions of n in the fol-
lowing way: we write λ�µ if

∑k
i=1 λi ≥

∑k
i=1 µi

for all k, where we pad the partitions with extra
zeroes.

Another combinatorial concept that will be im-
portant for us is the concept of skew diagrams.
Given a partition λ ` n, and µ ` k, a skew diagram
of shape λ/µ is the diagram formed by the set-
theoretic difference of λ and µ. A skew-standard

Young tableau is a skew diagram filled with 1 up
to the number of cells in the diagram (which may be
more than n−k), each number occurring in exactly
one cell, where the numbers increase downwards
and to the right. We will only be concerned with
skew tableaux with µ = (k).

1 2 5
3 6
4

A standard Young tableau of shape (3,2,1)

1 4 5
2 3

A skew-standard Young tableau of shape (4,2)/(1)

We say that the degree of a Ferrer’s diagram of
shape λ is the number of standard Young tableaux
of shape λ, and we denote the degree dimλ or
dλ. We will also refer to this as the degree of the
partition λ. Similarly, we define dimλ/µ as the
number of skew-standard Young tableaux of shape
λ/µ. A variety of expressions for these dimensions
are known.

Because of the equivalence of irreducible repre-
sentations and partitions, we will frequently identify
ρλ and λ, where ρλ is an irreducible representa-
tion corresponding to the class of representations
indexed by the partition λ. We will shorten ρλ to ρ
when the correspondence is clear from context. The
fact that we called the degree of a Ferrer’s diagram
dλ is suggestive of the following theorem:

Theorem V.4. The degree of any irreducible rep-
resentation is equal to the degree of the Ferrer’s
diagram of the corresponding partition. That is,
dλ = dρλ , which we will write as dρ when clear
from context. Further, we can write f̂λ in place of
f̂ρ.

We remark here that it is well-known (see, for
example, [HGG09]) that the representations cor-
responding to partitions λ where λ1 > n − k
span the vector space spanned by all functions that
depend on k coordinates. This will allow us to use
the polynomial regression algorithm stated near the
beginning at the document. More specifically, using
Plancherel’s theorem, we can satisfy the definition
of ε-concentration up to degree d− 1 by showing



∑
λ:λ1≤n−d

dλ‖f̂λ‖2 ≤ ε.

The associated polynomial can be taken to be
equivalent to

∑
λ:λ1>n−d f̂λ when the domains are

suitably adjusted.

VI. SKETCH OF TECHNICAL RESULTS

The proofs of the theorems in this section are
omitted due to space restrictions.

Theorem VI.1. Given f : Sn → R and δ > 0,
there exist constants cλ,δ independent of f for each
λ ` n such that

〈f, Tδf〉 =
∑
λ`n

cλ,δdλ‖f̂λ‖2.

This result tells us that noise is independent
of the irreducible representations used, and only
depends on the corresponding partition λ indexing
the representation. Using this result, we get:

NSδ(f) = 1
2 −

1
2〈f, Tδf〉

= 1
2 −

1
2

∑
λ`n

cλ,δdλ‖f̂λ‖2

Restricting f to be {−1, 1}-valued and assuming
NSδ(f) ≤ ε, we have:

ε ≥ 1
2 −

1
2

∑
λ`n

cλ,δdλ‖f̂λ‖2

= 1
2(
∑
λ`n

dλ‖f̂λ‖2 −
∑
λ`n

cλ,δdλ‖f̂λ‖2)

= 1
2(
∑
λ`n

(1− cλ,δ)dλ‖f̂λ‖2)

≥ 1
2(

∑
λ:λ1≤n−1/δ

(1− cλ,δ)dλ‖f̂λ‖2),

using Parseval’s identity in the first equality.
We will show that functions f : Sn → {−1, 1}

satisfying NSδ(f) ≤ ε are O(ε)-concentrated up to
degree 1/δ for by showing that

max
λ:λ1≤n−1/δ

cλ,δ ≤ 2e−0.9 < 1

Intuitively, these coefficients cλ,δ should decrease
as λ becomes more “complex.” This is indeed the

case. In the Boolean hypercube case, it is fairly
straightforward to determine the values of these
coefficients; it is significantly more difficult in our
setting. The bulk of our effort goes into analyzing
these coefficients. For technical reasons, we will
assume δ > 12/n.

We prove a connection between our noise oper-
ator on the symmetric group and Young tableaux.
This result requires analysis of group characters,
which we do not discuss here. It also holds for real-
valued functions on Sn.

Theorem VI.2. Let ρ be some irreducible repre-
sentation, and λ its corresponding partition. Then
the Fourier spectrum of Tδf consists of matrices

of the form Eq[
dimλ/(q)

dρ
]f̂ρ at the representation

ρ, where the Fourier spectrum of f consists of the
matrices f̂ρ.

Thus cλ,δ = Eq[
dimλ/(q)

dλ
], where q is a bino-

mially distributed random variable with n trials and
success probability δ.

We turn our attention to expressions of the form
dimλ/(q)

dλ
. Intuitively, these expectations should

decrease as λ (and ρ) become more complex. We
use a deep combinatorial result of [OO96]:

dimλ/(q)
dλ

=
(n− q)!
n!

∑
i1≥i2≥...≥iq≥1

q∏
j=1

(λij−j+1)

Using this result, we prove the following theo-
rem, which may be of independent interest:

Theorem VI.3. Let λ ` n, β ` n, and β�λ in the
dominance ordering. Then for any integer q ≥ 0,

dimβ/(q)
dβ

≤ dimλ/(q)
dλ

.

It follows that max
λ:λ1≤n−1/δ

cλ,δ occurs when λ =

(n− 1/δ, 1/δ), so it suffices to consider partitions
into two parts.

Theorem VI.4. Let λ ` n, where λ = (λ1, λ2).
Then

dimλ/(q)
dλ

≤
(

dimλ/(2)
dλ

)q−1



Set λ = (n − 1/δ, 1/δ). We analyze cλ,δ as
follows:

Eq[
dimλ/(q)

dλ
] ≤ Eq[

(
dimλ/(2)

dλ

)q−1

]

=
dλ

dimλ/(2)
Eq[
(

dimλ/(2)
dλ

)q
]

=
dλ

dimλ/(2)

(
1−

(
1− dimλ/(2)

dλ

)
δ

)n
. (1)

Using Equation VI, it is not difficult to show

that
dimλ/(2)

dλ
= 1 − (1/δ)(n− 1/δ + 1)

n(n− 1)
. Also,

dλ
dimλ/(2)

≤ 2, since 1/δ ≥ n/2.

Continuing from (1), we have

dλ
dimλ/(2)

(
1−

(
1− dimλ/(2)

dλ

)
δ

)n
≤

dλ
dimλ/(2)

(
1− (n− 1/δ + 1)

n(n− 1)

)n
≤

2 exp(−(n− 1/δ + 1)
(n− 1)

) ≤ 2 exp(−0.9)

when δ > 12/n. Therefore, max
λ:λ1≤n−1/δ

cλ,δ ≤

2e−0.9, and∑
λ:λ1≤n−1/δ

dλ‖f̂λ‖2 ≤
2

1− 2e−0.9
ε.

Given a bound on noise sensitivity of the form
NSδ(f) ≤ g(δ) for some function g decreasing to
0 as δ goes to 0, we can achieve ε2-concentration
by choosing a sufficiently small value for δ. This
is sufficient to invoke the polynomial regression
algorithm along the lines of [KKMS08] for agnostic
learning of functions with low noise sensitivity.

VII. BOUNDING NOISE SENSITIVITY

We remind the reader of our definition for linear
threshold functions f : Sn → {−1, 1}, which is
more convenient for our purposes here.

Definition VII.1. We say that a function f :
Sn → {−1, 1} is a linear threshold function if its
“attribute-value pair” function {0, 1}n2 → {−1, 1}
is a linear threshold function.

Another way to think of this is to encode
permutations using their permutation matrices in

{0, 1}n×n, then converting to a vector in {0, 1}n2

by taking the columns of such a permutation matrix
in column major order.

Theorem VII.2. Let f : Sn → {−1, 1} be a linear
threshold function. Then NSδ(f) ≤ 2

√
δ, under the

uniform distribution on Sn.

Proof: Our proof will closely mirror the
proof of Peres’ Theorem given in [O’D07]. As
in [O’D07], we prove a slightly stronger statement.
Let F1, . . . , Fm be any partition of n. For each Fi,
we have an associated permutation ψi such that
every point of [n] − Fi is a fixed point of ψi. We
then apply one of the ψi’s to σ, chosen uniformly
at random.

The first statement we prove is the following:

Lemma VII.3. Let f : Sn → {−1, 1} be a
linear threshold function, let F1, . . . , Fm ⊆ [n] be
a partition of n, and let ψ1, . . . , ψm be permuta-
tions as previously mentioned. Then Prσ,i[f(σ) 6=
f(ψiσ)] ≤ m−1/2.

When m = 1/δ, it is straightforward to check
that the distribution on ψiσ is the same as our
previously mentioned noise experiment, when the
partition and the ψi’s are chosen uniformly at
random as well. Every coordinate in σ is non-fixed
with probability δ.

Proof: We note that all the ψi’s commute. We
identify every string x ∈ {0, 1}m with the permuta-
tion ψI1(x)σ, where ψI1(x) denotes the composition
of the ψi’s where xi = 1. We note that ψI1(x)σ is
uniformly distributed on Sn if σ is, for any x. We
define g(x) = f(ψI1(x)σ). We have

Pr
σ,i

[f(σ) 6= f(ψiσ)] = E
σ

[Pr
i

[f(σ) 6= f(ψiσ)]]

= E
σ,x

[Pr
i

[f(ψI1(x)σ) 6= f(ψI1(x(i))σ)]]

= E
σ,x

[Pr
i

[g(x) 6= g(x(i))]].

Consider Prx[g(x) 6= g(x(i))], where x(i) de-
notes the string x with the ith bit flipped. Since f
is a linear threshold function and the φi’s are all
disjoint, g is also a linear threshold function (in
the traditional binary sense). Further, Pri[g(x) 6=
g(x(i))] is the average influence of g, which is
known to be at most m−1/2 when g is a linear



threshold function. This completes the proof of the
lemma.

To complete the proof, we notice that the noise
experiment can be thought of in the following way,
when δ = 1/m for an integer m: For each i ∈ [n],
put i in one of F1, . . . , Fm uniformly at random.
Every coordinate has an 1/m = δ chance of being
in the set Fi that ψi selects its potential non-
fixed points, and a random permutation is chosen
restricted to those coordinates.

Using the lemma:

NSδ(f) =

E
F1,...,Fm,ψ1,...,ψm

[Pr
σ,i

[f(σ) 6= f(ψiσ)]]

≤ m−1/2 ≤
√
δ

If δ is not the reciprocal of an integer, we use
the fact that noise sensitivity is increasing in δ, and
round up to the nearest reciprocal of an integer,
which can not cause us to pay more a factor of 2,
increasing our bound to 2

√
δ.

Similar to [BOW08], this proof transfers to any
class of functions that is closed under complemen-
tation and restriction and has an upper bound on
average influence over the uniform distribution on
the Boolean hypercube. For example, it is possible
to bound noise sensitivity of (suitably-defined) AC0

circuits over the symmetric group. Analogously to
the symmetric group case, we define our AC0

circuits to take as inputs the entries of the “attribute-
value” pair encoding. We leave full details to the
reader.

VIII. LEARNING APPLICATIONS

For a string x ∈ {0, 1}n, define I1(x) as the set
of indices where xi = 1. Define I0(x) similarly.
Define Um to be the uniform distribution over
strings where |I1(x)| = m.

Theorem VIII.1. There is an algorithm running in
time nO(1/ε4) for agnostically learning with respect
to the class of halfspaces over {0, 1}n under the
distribution Um.

Proof: Let f∗(x) = sgn(
∑

iwixi) be the most
accurate linear threshold function in computing the
target function t. From the previous section, we
know NS1/ε2(f∗(x)) ≤ O(ε), so f∗(x) is O(ε)-
concentrated on functions up to order 1/ε2.

Convert every example 〈x, f(x)〉 where x is
drawn from Um to a permutation σ by uniformly
randomly assigning a random permutation from
I1(x)→ [k] and I0(x)→ [n] \ [k]. Note that there
exists a linear threshold function over permutations
that classifies at least as well as f∗, since the
classifier

g(σ) = sgn(
∑
i

wi1[σ(i) ∈ [k]])

is a linear threshold function, and is consis-
tent with f∗. Further, every permutation is equally
likely, so the resulting distribution under this trans-
formation is the uniform distribution over Sn.
Therefore, the algorithm will output a hypothesis
with error at most ε worse than the error of g. To
classify future instances, we can convert from a bit
string to a permutation in the same way.

Following the noise sensitivity bound for func-
tions of k linear threshold functions given
in [KOS04], we get the following:

Theorem VIII.2. There is an algorithm running in
time nO(k2/ε4) for agnostically learning with respect
to the class of functions of k halfspaces over {0, 1}n
under the distribution Um.

One way of viewing the above learning results is
that the algorithm learns under the uniform distri-
bution over all permutations of the string 1k0n−k.
This reduction can be applied to learn over all per-
mutations of any n-character string. For example,
the symmetric group case is the case where all the
characters are different; we take X = [n], and D is
the distribution that is uniform over all permutations
of (1, 2, . . . , n).

Theorem VIII.3. Let D be any permutation invari-
ant distribution over {0, 1}n. There is an algorithm
running in time nO(k2/ε4) for agnostically learning
with respect to the class of functions of k halfspaces
over {0, 1}n under the distribution D.

Proof: Note that it is easy to achieve perfect
clustering; by observing the number of ones in
each string, we can tell from which distribution
Um any string comes from. Following the approach
in [BOW08], we can partition our examples into
n + 1 bins, one for each possible Um with 0 ≤
m ≤ n, and learn over each bin separately once



enough examples are seen. We note that we may
have to account for some loss due to a insufficient
number of examples in some bin, but this can be
factored into the ε.

Theorem VIII.4. Let D be any permutation in-
variant distribution over {0, 1, 2, . . . , B − 1}n for
constant B. There is an algorithm running in time
nO(k2/ε4+B) for agnostically learning with respect
to the class of functions of k linear threshold
functions over {0, 1}n under the distribution D.

Proof: The proof is virtually the same as the
proof of Theorem VIII.3, except that the number of
bins is now

(
n+B−1
B−1

)
= poly(nB), via a “stars and

bars” counting argument.

IX. CONCLUSIONS

We have shown a setting far removed from
the product distribution assumption in which ag-
nostic learning is achievable. Specifically, we can
efficiently agnostically learn linear threshold func-
tions (and AC0 circuits) over permutation invariant
distributions. Our main technique is the “noise
sensitivity” method, coupled with Fourier analysis.
We leave open many learning problems with the
domain of the symmetric group as well as the
question of other groups where this approach could
be successful.
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