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Abstract—We show that the minimum possible size of an ε-
net for point objects and line (or rectangle)-ranges in the plane
is (slightly) bigger than linear in 1/ε. This settles a problem
raised by Matoušek, Seidel and Welzl in 1990.
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I. INTRODUCTION

A range space S is a pair (X,R), where X is a (finite
or infinite) set and R is a (finite or infinite) family of
subsets of X . The members of X are called points and
those of R are called ranges. If A is a subset of X then
PR(A) = {r ∩ A : r ∈ R} is the projection of R on
A. In case this projection contains all subsets of A we say
that A is shattered. The Vapnik-Chervonenkis dimension (or
VC-dimension) of S, denoted by V C(S), is the maximum
cardinality of a shattered subset of X . If there are arbitrarily
large shattered subsets then V C(S) =∞.

For a finite set of points A in a range space, a subset N ⊂
A is an ε-net for A if any range r ∈ R satisfying |r ∩A| ≥
ε|A| contains at least one point of N . The theory of VC-
dimension and ε-nets has played a central role in discrete and
computational geometry, and has been used in a variety of
applications including range searching, geometric partitions,
and bounds on various incidence problems, as well as in
other mathematical areas such as statistics, computational
learning, discrepancy theory and combinatorics.

A well known result of Haussler and Welzl [19], following
earlier work of Vapnik and Chervonenkis [33], asserts that
for any n and ε > 0, any set of size n in a range space of VC-
dimension d contains an ε-net of size at most O(dε log 1

ε ).
See also [21] for a proof of a (1 + o(1))(dε log 1

ε ) upper
bound, and [23], [26], [5] for more details.

As shown in [21] there are known constructions in which
for fixed d the size of the smallest possible ε-net for a given
set cannot be linear in 1/ε. In fact, the O(dε log 1

ε ) bound
may be tight already for dimension d = 2, as shown in [21]

(see also [4] for another construction). Despite the existence
of these constructions, there is no known natural geometric
example demonstrating this phenomenon. Indeed, there is no
known lower bound, better than the trivial Ω(1/ε) bound, in
any concrete geometric situation. The problem, raised and
addressed 20 years ago in [24], whether or not in all natural
geometric scenarios of V C-dimension d, there always exists
an ε-net of size O(d/ε), is still wide open, and has been
considered in a substantial number of papers over the years.
Besides being interesting in its own right, this question has
an algorithmic motivation, since as shown in [7] and [13] the
existence of smaller nets supplies improved approximation
algorithms for the set cover problem and the hitting set
problem in the corresponding geometric scenarios.

A linear (in 1/ε) upper bound for the size of ε-nets has
been established for several special geometric cases, such
as point objects and halfspace ranges in two and three
dimensions, and point objects and disk or pseudo-disk ranges
in the plane; see [11], [1], [28], [10], [24],[22] and the survey
[14] for some earlier results on the subject. See also [12],
[18], [31] and [6] for more recent results, and [20], [34] for
additional improved (though not quite linear) bounds for ε-
nets in geometric settings. As mentioned in many of these
papers, the prevailing conjecture so far has been that in all
geometric scenarios, there always exists an epsilon-net of
size O(d/ε).

A. The new results

In the present short paper we show that the linear bound
does not hold, and the smallest possible size of an ε-net in
a very simple geometric situation (with VC-dimension 2)
is not linear. Unfortunately our lower bound is only barely
non-linear, providing planar geometric examples in which
the minimum size of an ε-net is at least Ω( 1

εw(1/ε)), where
w is (a version of) the inverse Ackermann function. It is
worth noting that if the VC-dimension is d = 1 there are



always ε-nets of size O(1/ε). This follows, for example,
from the result in [3] that assert that any range space of VC-
dimension 1 can be embedded in a range space of halfspaces
in dimension at most 3. Therefore, the dimension 2 in our
example is optimal.

For convenience, we state in the following two theorems
the main results demonstrating the non-linear behavior of the
functions, without specifying the precise bounds obtained.

Theorem 1 For every (large) positive constant C there exist
n and ε > 0 and a set X of n points in the plane, so that the
smallest possible size of an ε-net for lines for X is larger
than C · 1

ε

The construction in the proof of this theorem provides
examples in which ε is not much bigger than 1/n. It seems
more interesting to find examples in which for each fixed ε
in a decresaing sequence, n can be arbitrarily large. This is
done in the next theorem.

A fat line in the plane is the set of all points within
distance µ from a line in the plane. Equivalently, this is
the intersection of two half planes with parallel supporting
lines. Our construction implies the following.

Theorem 2 For every (large) positive constant C there
exists a sequence εi of positive reals tending to zero, so
that for every ε = εi in the sequence and for all n > n0(εi)
there exists a set Yn of n points in general position in the
plane, so that the smallest possible size of an ε-net for fat
lines for Yn is larger than C · 1

ε

It is not difficult to check that the VC-dimension of the range
space considered in the first theorem is 2, while that of the
space considered in the second is 5.

B. Weak ε-nets

Our bounds hold for weak ε-nets as well. For a finite set
of points X in Rm and a (possibly infinite) family of subsets
F of Rm, a set Y ⊂ Rm is a weak ε-net for X with respect
to F if any F ∈ F that satisfies |F ∩X| ≥ ε|X| contains at
least one point of Y . The difference between this notion and
that of a (strong) ε-net considered in the previous subsection
is that here Y does not have to necessarily be a subset of
X . Indeed, this makes the task of finding a small net much
easier, and unlike the case of strong nets it is known that
there is a function f(ε,m) depending only on ε and m so
that for every finite set X (of any size) in Rm, there is a
weak ε-net Y for X with respect to the set of all convex

sets in Rm, where |Y | ≤ f(ε,m). This was first proved
in [2], see also [9] and [25] for improved bounds, and [4]
and its references for several extensions. The corresponding
assertion for strong nets is easily seen to be false (and indeed
the VC-dimension of the family of all convex sets is infinite,
in every fixed dimension m ≥ 2). The best known upper
bound for the function f(ε, 2) is O( 1

ε2 ), proved in [2], and
until recently there was no known lower bound exceeding
Ω(1/ε). Such a bound (of Ω( 1

ε log 1
ε ) was proved in [8] using

an elegant technique based on a notion the authors call stair
convexity.

The results in Theorem 1 and in Theorem 2 can be
extended to weak nets as well. Although this provides much
weaker lower bounds than the above mentioned Ω( 1

ε log 1
ε )

bound of [8], these bounds are still non-linear in 1/ε and
hold for a very restricted collection of convex sets: lines,
fat lines, rectangles or triangles, all having bounded VC-
dimension. In this respect this is stronger than the results in
[8]. For convenience, as done for the case of strong nets,
we state the non-linear lower bound for the size of weak
nets too without specifying the precise estimate the proof
provides.

Theorem 3 For every (large) positive constant C there exist
n and ε > 0 and a set X of n points in the plane, so that
the smallest possible size of a weak ε-net for lines for X is
larger than C · 1

ε

The analog of Theorem 2 for weak nets holds as well.

C. Organization

The rest of this short paper is organized as follows.
In Section 2 we describe the proofs of Theorems 1 and
2. The proofs are short and simple, but are based on a
deep result of Furstenberg and Katznelson. Indeed, the main
contribution here is to point out the connection of this
theorem to the questions about ε-nets. The proof of Theorem
3 is described in Section 3. It is similar to that of the previous
two theorems, but requires an additional ingredient. The
final section contains some concluding remarks and open
problems.

II. STRONG NETS

We need a powerful combinatorial result of Fursten-
berg and Katznelson [15], [16], known as the density
Hales-Jewett Theorem. For an integer k ≥ 2, put [k] =
{1, 2, . . . , k} and let [k]d denote the set of all vectors of
length d with coordinates in [k]. A combinatorial line is



a subset L ⊂ [k]d so that there is a set of coordinates
I ⊂ [d] = {1, 2, . . . , d}, I 6= [d], and values ki ∈ [k] for
all i ∈ I for which L is the following set of k members of
[k]d:

L = {`1, `2, . . . , `k}

where

`j = {(x1, x2, . . . , xd) : xi = ki for all i ∈ I

and xi = j for all i ∈ [d] \ I}.

Thus a combinatorial line is a set of k vectors all having
some fixed values in the coordinates in I , where the jth
vector has the value j in all other coordinates. In this nota-
tion, the Furstenberg-Katznelson Theorem is the following.

Theorem 4 ([16]) For any fixed integer k and any fixed δ >
0 there exists an integer d0 = d0(k, δ) so that for any d ≥
d0, any set Y of at least δkd members of [k]d contains a
combinatorial line.

We will also use the following simple lemma.

Lemma 1 For every positive integer d there are d vectors
v1, v2, . . . , vd in the plane so that for every two nontrivial
sequences of integers (k1, k2, . . . , kd) and (k′1, k

′
2, . . . , k

′
d),

with |ki|, |k′i| < k for all i, the two vectors
∑
i kivi

and
∑
i k
′
ivi have the same direction if and only if

(k1, k2, . . . , kd) and (k′1, k
′
2, . . . , k

′
d) have the same direction

(that is, one is a multiple of the other). Moreover, there
are such vectors vi in which all coordinates are integers of
absolute value at most (2k − 1)2d.

Proof: We show that if vi = (xi, yi) and each of the 2d
numbers xi, yi is chosen randomly, uniformly and indepen-
dently among the set of integers of absolute value at most
(2k−1)2d, then with positive probability the vectors obtained
satisfy the desired properties. To prove this is indeed the
case, fix two sequences (k1, k2, . . . , kd) and (k′1, k

′
2, . . . , k

′
d),

with |ki|, |k′i| < k and assume they are not proportional. The
two vectors

∑
i ki(xi, yi) and

∑
i k
′
i(xi, yi) have the same

direction iff

(
∑
i

kixi)(
∑
i

k′iyi) = (
∑
i

kiyi)(
∑
i

k′ixi),

that is, iff ∑
i,j

(kik′j − kjk′i)xiyj = 0.

As the two vectors (k1, k2, . . . , kd) and (k′1, k
′
2, . . . , k

′
d) are

not proportional, the polynomial in the left hand side of

the last equality is nontrivial and has degree 2. It thus
follows, by the Schwartz-Zippel Lemma ([32], [35]) that
the probability it vanishes in the random assignment to the
variables xi, yi does not exceed 2

2·(2k−1)2d+1
< 1

(2k−1)2d .
Since there are less than (2k− 1)2d choices for the two se-
quences (k1, k2, . . . , kd) and (k′1, k

′
2, . . . , k

′
d) it follows that

with positive probability none of the relevant polynomials
vanishes, completing the proof.
Proof of Theorem 1: Given a large positive constant C, fix
an integer k satisfying k > 2C, let d = d0(k, 1/2) be as in
Theorem 4 and define n = kd, ε = k

kd . Let v1, v2, . . . , vd
be d vectors in R2 satisfying the assertion of Lemma 1.

Let X be the following set of kd points in the plane.

X = {m1v1 +m2v2 + . . .+mdvd : 1 ≤ mi ≤ k for all i}.

Note that for every combinatorial line L in [k]d, the set of
k points

{m1v1 +m2v2 + . . .mdvd : (m1,m2, . . . ,md) ∈ L}

lies on a (geometric) line containing exactly k points of
X . Indeed, if the combinatorial line is determined by the
set of coordinates I ⊂ [d], then the direction of the
corresponding geometric line is

∑
i∈[d]−I vi, and the generic

choice of the vectors vi ensures that this geometric line
does not contain any additional points of X . Indeed, if
m1v1 + m2v2 + . . . + mdvd is one of the points of the
line, then for any other point m′1v1 + m′2v2 + . . . + m′dvd
on it, the difference (m1 −m′1)v1 + (m2 −m′2)v2 + . . . +
(md−m′d)vd must have the same direction as

∑
i∈[d]−I vi.

This implies, by the choice of the vectors vi, that the vector
(m1 −m′1,m2 −m′2, . . . ,md −m′d) is proportional to the
characteristic vector of the set [d] − I , implying that the
vector (m′1,m

′
2, . . . ,m

′
d) also lies in the combinatorial line

L and showing that there are exactly k points of X on the
corresponding geometric line, as claimed.

It thus follows, by Theorem 4 and the choice of d, that
any set of half the points of X fully contains one of these
lines and thus its complement is not an ε-net for lines for
the set X , by the definition of ε. Therefore, the smallest
possible size of such an ε-net is bigger than

1
2
kd =

k

2
1
ε
> C · 1

ε
.

This completes the proof of Theorem 1.

Proof of Theorem 2: The construction is a simple modifi-
cation of the previous one. Given C, pick an integer k > 3C.
Let d0 = d0(k, 1/2) be as in Theorem 4. For each d ≥ d0



define ε = ε(d) = 0.9 k
kd and let X be a set of kd points

in the plane defined as in the previous proof. Thus, any ε-
net for lines for X contains at least 1

2k
d points of X . For

each n > 20 · kd, let Yn be a set of n points obtained from
X by replacing each point x of X by a set Sx of either
bn/|X|c or dn/|X|e points, all very close to x. The points
in each such set Sx are chosen sufficiently close to x to
ensure that for every collection of k sets that replace the
points corresponding to those of a combinatorial line, there
is a fat line containing all the points in these sets, and no
other points of Yn. Any subset of less than 1

2k
d of the points

in Yn must completely miss at least half of the sets Sx, and
hence, by Theorem 1, does not intersect at least one fat line
corresponding to a combinatorial line. As each such fat line
is of relative size at least

kbn/|X|c
n

> 0.9
k

|X|
= ε,

this completes the proof. Note that here the sequence εd =
ε(d) = 0.9 k

kd can serve as the one required in the statement
of the theorem, while n0(εd) here is 20kd.

III. WEAK NETS

As mentioned in the introduction, the results in Theorem
1 and in Theorem 2 can be extended to weak nets as well.
The proofs are similar to the case of strong nets but require
an additional argument. We proceed with the details.

Proof of Theorem 3:
Given a large positive C, fix an integer k satisfying k >

4C, let d = d0(k, 1/2) be as in Theorem 4, and let n = kd,
ε = k

kd be as in the proof of Theorem 1. We need the
following simple fact.

Claim: Consider the set [k]d as a subset of the d-
dimensional Euclidean space. Call a (geometric) line L in
Rd special if it contains all k points of a combinatorial line,
as defined in Section 2. Then the only points of Rd that
belong to at least two distinct special lines are the members
of [k]d.

Proof (of claim): Let

L1 = {(x1, x2, . . . , xd) + tχJ1 : t ∈ (−∞,∞) }

and

L2 = {(y1, y2, . . . , yd) + tχJ2 : t ∈ (−∞,∞) }

be two distinct intersecting special lines, where
(x1, x2, . . . , xd), (y1, y2, . . . , yd) ∈ [k]d, J1, J2 are
nonempty subsets of [d], χJi

is the characteristic vector of

Ji, xj = 1 for all j ∈ J1 and yj = 1 for all j ∈ J2. Note
that the definition of a combinatorial line implies that there
are such points (x1, x2, . . . , xd) and (y1, y2, . . . , yd), since
any combinatorial line contains a point in [k]d in which all
coordinates that are not fixed along the line are equal to j,
for any desired j ∈ [k] and in particular for j = 1.

As the lines are intersecting, there are two reals t1, t2 so
that

(x1, x2, . . . , xd) + t1χJ1 = (y1, y2, . . . , yd) + t2χJ2 . (1)

Since the lines are distinct and intersecting, they are not
parallel, and hence the two sets J1, J2 determining their
directions differ. Without loss of generality, there is an index
j ∈ J1 \ J2. Equating the values in coordinate number j of
the two vectors in (1) we conclude that xj+t1 = 1+t1 = yj ,
implying that 1+ t1 ∈ [k]. This implies that each coordinate
of the common point (x1, x2, . . . , xd) + t1χJ1 of the two
lines is in [k], proving the claim.

Returning to the proof of the theorem, let v1, v2, . . . , vd
be random vectors (in the continuous square [0, 1]2, for
example), and define X as in the proof of Theorem 1. Call
a planar line special if it is the image of a special geometric
line in Rd under the linear transformation that maps the ith
unit vector in Rd to vi, for all i.

It is not difficult to check that the assertion of the last
claim and the random choice of the vectors vi imply that
with probability 1 every special planar line contains exactly
k points of X , and the only points in the plane that lie
in more than two special planar lines are the points of X .
This enables one to replace any weak ε-net Y that intersects
all those special planar lines (ignoring all other lines) by a
strong ε-net for these lines, of size at most 2|Y |. Therefore,
by the argument in the proof of Theorem 1, 2|Y | ≥ 1

2k
d,

implying that |Y | ≥ 1
4k

d = k
4

1
ε > C · 1

ε , as needed.
This completes the proof. The derivation of the analog of
Theorem 2 for weak nets from the result for lines follows
by essentially repeating the arguments used in the proof of
Theorem 2.

IV. CONCLUDING REMARKS

• The proof of [16] applies topological arguments and is
not effective, providing no explicit bounds. Subsequent
proofs, and in particular the one in [29], do provide
some (very weak) estimates, and we can thus write some
(extremely slowly), explicit growing function w so that the
assertions of Theorems 1 and 2 hold when C is replaced
by w(d1/εe). Indeed, the proof in [29] gives roughly the



bound Ak(1/δ) for the function d0(k, δ) defined in The-
orem 4, where Ak is the kth function in the Ackermann
hierarchy defined recursively as follows: Ak(1) = 2 and
Ak(n) = Ak−1(Ak(n− 1)), with A1(n) = 2n. Thus, the
kth function is obtained by iterating the (k-1)st function,
so A2(n) is the exponential function 2n and A3(n) is the
tower function. Plugging in the proof of Theorems 1, 2
or 3 we conclude that the lower bound they provide is
of the form Ω( 1

εw(d1/εe)), where w(s) is the minimum
number k so that kAk(2) > s.

• The density Hales-Jewett Theorem of Furstenberg and
Katznelson is a far reaching strengthening of the Hales-
Jewett Theorem [17], that asserts that for any fixed k and
`, there exists a d0 = d0(k, `), so that for any d ≥ d0,
any coloring of [k]d by ` colors contains a monochromatic
combinatorial line. The Hales-Jewett Theorem is applied
in [27], using a similar construction to the one described
here, to prove the existence of an infinite collection of
lines in the plane so that each point in the plane is covered
by at least k lines, and yet in any partition of the lines
into two disjoint sets, there is always a point that is not
covered by the lines in one of these sets. Note that this
only requires the original Hales-Jewett Theorem, and not
its stronger density version.

• The example described in Theorem 2 clearly implies the
same lower bound for several similar range spaces, like
the one in which the objects are points in the plane and
the ranges are planar rectangles or triangles.

• An equivalent concise way of describing the proof of
Theorem 1 is the following. Consider the set Z = [k]d

as a subset of the Euclidean space Rd. As in the proof
of Theorem 3 call a (geometric) line in this space special
if it contains all k points of one of the combinatorial
lines defined in Section 2. Put ε = k

kd . The Furstenberg-
Katznelson result (Theorem 4) implies that if d is suf-
ficiently large, then the minimum possible size of an
ε-net for Z with respect to the range space consisting
of all special lines is at least 1

2k
d. Now map Z by a

random linear transformation to the plane R2, and note
that with probability 1 no two points of Z are mapped to
the same point, and every special line is mapped to a line
containing exactly k points of the image of Z. (This is
proved algebraically in Lemma 1.) Let X be the image of
Z. The smallest size of an ε-net for X is at least 1

2k
d, as

the set of points of Z mapped to any such net intersects
all special lines.
The result for weak nets (Theorem 3) follows in a similar

way. As shown in the Claim appearing in the proof of
this theorem, the only points in Rd that are common to at
least two special lines are the points of Z, and thus any
weak net for these lines in Rd can be converted into a
strong net of the same cardinality, which has to be large,
by Theorem 4. A random projection to R2 maps Z to
a set of points X and maps each special line to a line
we call a special planar line. Moreover, with probability
1 the only points of the plane that belong to more than
2 of the special planar lines are the points of X . Thus
for any weak ε-net Y for X in the plane with respect to
the special planar lines, its inverse image in the set of
all points belonging to at least one special line in Rd is
of size at most 2|Y | and forms a weak ε-net for Z with
respect to the set of all special lines. This shows that if
d is sufficiently large, then 2|Y | ≥ 1

2k
d, providing the

required estimate.
• It may be a bit better in terms of the estimates obtained

to consider Moser numbers rather than Hales-Jewett num-
bers (c.f. [30] for the definition of Moser numbers). This
will still provide very poor (and yet non-linear) lower
bounds.

• The problem of deciding whether or not there are natural
geometric range spaces of VC-dimension d in which the
minimum possible size of an ε-net is Ω(dε log 1

ε ) remains
open. It seems plausible to conjecture that there are such
examples, and even to speculate that this is the case for
the range space of lines in the plane, for appropriately
defined planar sets of points.
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