
A Multiplicative Weights Mechanism for Privacy-Preserving Data Analysis

Moritz Hardt

Center for Computational Intractability
Department of Computer Science

Princeton University
Email: mhardt@cs.princeton.edu

Guy N. Rothblum

Center for Computational Intractability
Department of Computer Science

Princeton University
Email: rothblum@alum.mit.edu

Abstract—We consider statistical data analysis in the in-
teractive setting. In this setting a trusted curator maintains
a database of sensitive information about individual partici-
pants, and releases privacy-preserving answers to queries as
they arrive. Our primary contribution is a new differentially
private multiplicative weights mechanism for answering a large
number of interactive counting (or linear) queries that arrive
online and may be adaptively chosen.

This is the first mechanism with worst-case accuracy guar-
antees that can answer large numbers of interactive queries
and is efficient (in terms of the runtime’s dependence on the
data universe size). The error is asymptotically optimal in its
dependence on the number of participants, and depends only
logarithmically on the number of queries being answered. The
running time is nearly linear in the size of the data universe.

As a further contribution, when we relax the utility require-
ment and require accuracy only for databases drawn from a
rich class of databases, we obtain exponential improvements
in running time. Even in this relaxed setting we continue to
guarantee privacy for any input database. Only the utility
requirement is relaxed. Specifically, we show that when the
input database is drawn from a smooth distribution — a
distribution that does not place too much weight on any single
data item — accuracy remains as above, and the running time
becomes poly-logarithmic in the data universe size.

The main technical contributions are the application of
multiplicative weights techniques to the differential privacy
setting, a new privacy analysis for the interactive setting, and
a technique for reducing data dimensionality for databases
drawn from smooth distributions.

I. INTRODUCTION

Statistical analysis of sensitive information about indi-

viduals comes with important benefits. However, since the

results of the analysis are often made public, these benefits

might come at a serious cost to the privacy of individuals’

sensitive data. A recent line of work, starting with the

seminal works of Dinur and Nissim [3] and Dwork and

Nissim [9] aims to provide a rigorous mathematical founda-

tion for protecting the privacy of individuals in the setting

of statistical analysis. This research has yielded the robust

privacy guarantee of differential privacy, due to Dwork et
al. [5], which guarantees that the outcome of the analysis on

adjacent databases (databases that differ only in one partic-

ipant’s information) is “very similar” (in a strong sense). In

particular, differential privacy guarantees that participation

in the analysis does not incur significant additional risk for

individuals (vs. non-participation). Throughout this paper

and most of the prior work, the focus is on the setting where

a trusted curator, holding a database of potentially sensitive

information about n individuals, wishes to release statistics

about the data while protecting individuals’ privacy.

A central question in this line of research regards the

tradeoff between utility and privacy. Namely, what kinds of
statistical queries can be answered, and with what accuracy,
while protecting the privacy of individuals? Early results

seemed mixed: on one hand, moderate numbers of queries

(smaller than the number of individuals in the database)

could be answered with differential privacy and excellent

accuracy by adding independent noise to the answers [3],

[9], and a growing body of subsequent work. On the other

hand, it was shown that there exist specific families of simple

queries such that answering “too many” of the queries (more

than the database size) with “overly accurate” responses

(smaller error than the sampling error1) leads to blatant

privacy violations [3], [6], [11]. Still, these negative results

left open the possibility that very rich statistical analyses,

say answering huge families of queries, could be run in

a privacy-preserving way, as long as their accuracy was

slightly worse than the sampling error.

Non-interactive mechanisms: A beautiful work of

Blum, Ligett and Roth [2] showed that huge numbers of

queries could in fact be answered in a privacy-preserving

way. They considered counting queries: counting what frac-

tion (between 0 and 1) of the participants in the analysis

satisfy some property, where the “property” is taken to be a

boolean predicate over the data universe U . They designed

a privacy-preserving mechanism where for any set C of

counting queries specified non-interactively (i.e. in advance),

the error scales only logarithmically with the number of

queries being answered. Specifically, the error’s dependence

on the database size n and query set size k was roughly

(1/n1/3) · log k (we ignore for now, and throughout the

1The “sampling error” we refer to throughout the introduction is the error
incurred by inferring statistical information about an underlying distribution
of the population from n samples. This error is inherent to statistical data
analysis. In fractional additive terms, the sampling error is asymptotically
roughly Õ(1/

√
n) w.h.p.

introduction, the constants and the many other parameters

in the error expression). Moreover, the mechanism’s output

was a synthetic database: a (privacy-preserving) database of

entries from the data universe U , where for each counting

query the fraction of participants who satisfy it in the input

and output database is within the error bound. This is

a useful output format, as it is compatible with existing

tools for analyzing databases and guarantees consistency.

While this result showed that (information theoretically at

least) massive query sets could be answered in a privacy

preserving way, it suffered from several disadvantages. First,

this was a non-interactive mechanism: the query set had

to be specified in advance, whereas previous mechanisms

such as [9] were interactive, and allowed for answering

arbitrary queries specified in an interactive and adaptive

manner.2 Moreover, the mechanism’s error was significantly

larger than the 1/
√

n sampling error. This meant that, for

fixed fractional accuracy, the number of participants in a

data analysis needed to be significantly higher. Finally, the

running time was very high: super-polynomial in the size

N = |U | of the data universe, and in k, the query set size.

These last two concerns were considered in a work of

Dwork et al. [8]. They gave a non-interactive mechanism,

whose running time was polynomial in N and k, where the

error’s dependence on the query set size grew (roughly) as

(1/
√

n) · ko(1). This output was also a synthetic database.

They showed that, under strong enough (exponential) cryp-

tographic hardness assumptions, no general mechanism for

answering counting queries that outputs synthetic data could

have sublinear running-time in N or in k. In later work,

Dwork, Rothblum and Vadhan [10] obtained a mecha-

nism with similar running time whose error was (1/
√

n) ·
polylogk. Moreover, they showed how to obtain similar

error bounds for arbitrary low-sensitivity queries (previous

work was restricted to counting queries), for general queries

the running time was no longer polynomial in N and k.

Both of these mechanisms provide a slightly relaxed privacy

guarantee known as (ε, δ)-differential privacy [5].

Interactive Mechanisms: For the interactive setting,

where the queries are specified in an interactive and adaptive

manner, it remained unclear whether large numbers of

queries could be answered accurately in a privacy-preserving

way. In a beautiful recent work, Roth and Roughgarden [13]

presented a new mechanism for answering interactive count-

ing queries, whose error scaled as (1/n1/3) · polylog(k).
They gave a super-polynomial time (in N and k) mechanism,

and a separate polynomial-time mechanism that guaranteed

similar error bound w.h.p. over a database drawn from a

random distribution.

2Note that in this setting, all other things being equal, an interactive
mechanism is preferable to a non-interactive one: if we have an interactive
mechanism, even if the queries are all specified in advance, we can still run
the interactive mechanism on the queries, one by one, and obtain privacy-
preserving answers to all of them.

Several important questions remained unanswered, even

for the case of counting queries:

1) Is there a polynomial-time interactive mechanism (i.e.,

one that runs in time poly(N) on each of the k
queries) with non-trivial error on all databases?

2) Could its error scale to the sampling error 1/
√

n

and grow only logarithmically with the number of

queries k?

3) Given the negative results of [8], we cannot hope

for sub-linear running time in N . Do there exist

mechanisms that match or nearly-match this hardness

result?

4) What are open avenues for side-stepping the negative

results of [8]? Namely, are there meaningful relax-

ations that permit mechanisms whose running time is

sub-linear or even poly-logarithmic in N?

A. This Work
Our main contribution is a new privacy-preserving interac-

tive mechanism for answering counting queries, which we

will refer to as the private multiplicative weights (PMW)

mechanism. It allows us to give positive answers to the

first three questions above, and to make partial progress

on the last question. We proceed with a summary of our

contributions. Throughout this section, when we refer to a

mechanism’s running time as being polynomial or linear,

we are measuring the running time as a function of the

data universe size N (which may be quite large for high-

dimensional data).
Linear-Time Interactive Mechanism: The PMW mech-

anism runs in linear-time and provides a worst-case accu-

racy guarantees for all input databases. The mechanism is

presented Figure 1, its performance stated in the theorem

below. The proof is in Section IV. See Section III for the

formal definitions of accuracy and differential privacy for

interactive mechanisms.

Theorem I.1. Let U be a data universe of size
N . For any k, ε, δ, β > 0, the Private Multiplica-
tive Weights Mechanism of Figure 1, is an (ε, δ)-
differentially private interactive mechanism. For any
database of size n, the mechanism is (α, β, k)-accurate
for (adaptive) counting queries over U , where α =
O

(
ε−1n−1/2 · log(1/δ) log1/4(N) · (log k + log(1/β))

)
.

The running time in answering each query is N ·poly(n) ·
polylog(1/β, 1/ε, 1/δ) .

The error (as a function of n and k) grows roughly as

(1/
√

n) · log k. In particular, this shows that even in the

interactive setting, differential privacy permits error (beyond

the 1/
√

n lower bound of [3]) that grows only logarithmi-

cally with the number of queries being answered. Moreover,

the running time is only linear in N (for each of the k
queries), nearly tight with the cryptographic hardness results

of [8]. Previous work (even in the non-interactive setting)

had higher polynomial running time. Finally, we remark that

this mechanism can also be used to generate a synthetic

database with similar error and running time bounds (in the

non-interactive setting), see below for this extensions.

Relaxed Notions of Utility: To answer Question 4 that

was raised in the introduction, we begin with a discussion

of the negative results of [8] and possible avenues for side-

stepping them. The negative results for producing synthetic

data can be side-stepped by a mechanism whose output has

a different format. This is a promising avenue, but synthetic

data is a useful output format. It is natural to try to side-

step hardness while continuing to output synthetic data. One

possibility is working for restricted query classes, but recent

work of Ullman and Vadhan [14] shows hardness even for

very simple and natural query classes such as conjunctions.

In the known hardness results, however, the databases (or

rather database distributions) that are hard to sanitize are

(arguably) “unnatural”, containing cryptographic data in [8]

and PCP proofs for the validity of digital signatures in [14].

Thus, a natural approach to side-stepping hardness is relax-

ing the utility requirement, and not requiring accuracy for

every input database.

A mechanism that works only for some input databases

is only as interesting as the class of databases for which

accuracy is guaranteed. For example, getting accuracy w.h.p.

for most databases is simple, since (speaking loosely and

informally) most databases behave like a uniformly random

database. Thus, we can get privacy and accuracy by ignoring

the input database (which gives perfect privacy) and answer-

ing according a new database drawn uniformly at random

(which, for most input databases, will give fairly accurate

answers).

Smooth databases and sublinear time: We consider ac-

curacy guarantees for the class of (pseudo)-smooth databases.

Intuitively, we think of these as databases sampled i.i.d. from

smooth underlying distributions over the data universe U .

I.e., underlying distributions that do not put too much weight

on any particular data item (alternatively, they have high

min-entropy). We say that a histogram or distribution y over

U is ξ-smooth, if for every u ∈ U , the probability of u by y
is at most ξ. We say that a histogram or database x ∈ Un is

(ξ, φ)-pseudo-smooth w.r.t a set C of queries if there exists

some ξ-smooth y that approximates it well w.r.t every query

in C. I.e., for every f ∈ C, |f(y) − f(x)| ≤ φ (where by

f(y) we mean the expectation of f over data items drawn

from y). See Section V for formal definitions.

The PMW mechanism yields a mechanism with improved

running time—sub-linear, or even polylogarithmic in N—

for pseudo-smooth databases. The new mechanism (with

smoothness parameter ξ) runs in time that depends linearly

on ξN rather than N . It guarantees differential privacy for

any input database. Its error is similar to that of the mecha-

nism of Theorem I.1 (up to an additional φ error), but this ac-

curacy guarantee is only: (i) for a set C of interactive count-

ing queries that are fixed in advance (i.e. non-adaptively).

We note that the mechanism is interactive in the sense that

it need not know the queries in advance, but accuracy is not

guaranteed for adversarially chosen queries (see the discus-

sion in Section II for motivation for this relaxation), and (ii)
for input databases that are (ξ, φ)-smooth with respect to the

query class C. The performance guarantees are in Theorem

I.2 below. The proof is in Section V

Theorem I.2 (Smooth PMW). Let U be a data universe of
size N . For any ε, δ, β, ξ, φ > 0, the Private Multiplicative
Weights Mechanism of Figure 1 is an (ε, δ)-differentially
private interactive mechanism. For any sequence C of
k interactive counting queries over U that are fixed
in advance (non-adaptively), for any database of size
n that is (ξ, φ)-pseudo-smooth w.r.t C, the mechanism
is (α, β, k)-non-adaptively accurate w.r.t. C, where α =
Õ

(
φ + ε−1n−1/2 log(1/δ) log1/4(ξN) · (log k + log(1/β))

)
The running time in answering each query is
(ξN) · poly(n) · polylog(1/β, 1/ε, 1/δ, 1/ξ, 1/φ).

In particular, for very good smoothness ξ = polylogN/N ,

the running time will depend only poly-logarithmically on

N . The main observation for achieving this improved run-

ning time is that for (pseudo)-smooth databases we can ef-

fectively reduce the data universe size by sub-sampling, and

then apply our algorithm to the smaller data universe. The

mechanism does not require knowledge of the histogram

which certifies that the given input database is pseudos-

mooth.

The privacy guarantee is the standard notion of differential

privacy. I.e., privacy holds always and for every database.

The accuracy guarantee is only for pseudosmooth databases,

and we interpret it as follows. The dataset is drawn i.i.d from

an unknown underlying distribution D (the standard view

in statistics). The mechanism guarantees accuracy and sub-

linear efficiency as long as the underlying data distribution

is smooth. If the underlying distribution is ξ-smooth, then

w.h.p. the database x (which we think of as being drawn

i.i.d from D and of large enough size) is “close” to D on

every query f ∈ C, and so w.h.p. x is (ξ, φ)-smooth and the

mechanism is accurate. An important aspect of this guar-

antee is that there is no need to know what the underlying
distribution is, only that it is smooth. A promising approach

in practice may be to run this mechanism as a very efficient

heuristic. The heuristic guarantees privacy, and also has a

rigorous accuracy guarantee under assumptions about the

underlying distribution. We note that Dwork and Lei [4]

also proposed mechanisms that always guarantee privacy,

but guarantee accuracy only for a subset of databases (or

underlying distributions).

We also note that [13] considered databases drawn from

a distribution that was itself picked randomly from the set

of all distributions. Such “random distributions” are indeed

very smooth (w.h.p. ξ ≤ O(log N/N)) and therefore a spe-

cial case of our model.

An interesting direction for future work is finding dif-

ferentially private mechanisms for other and more useful

or well motivated families of databases, or finding natural

applications where pseudo-smooth databases are of particu-

lar interest. We note that (as one would expect given these

positive results) the negative results for producing synthetic

data are for databases that are neither smooth nor pseudo-

smooth.

II. OVERVIEW OF PROOF AND TECHNIQUES

Multiplicative Weights: We use a (privacy-preserving)

multiplicative weights mechanism (see [12], [1]). The mech-

anism views databases as histograms or distributions (also

known as “fractional” databases) over the data universe U
(as was done in [8]). At a high level, the mechanism works as

follows. The real database being analyzed is x (we view x as

distribution or histogram over U , with positive weight on the

data items in x). The mechanism also maintains an updated

fractional database, denoted as xt at the end of round t.
In each round t, after the t-th counting query ft has been

specified, xt−1 is updated to obtain xt. The initial database

x0 is simply the uniform distribution over the data universe.

I.e., each coordinate u ∈ U has weight 1/N .

In the t-th round, after the t-th query ft has been spec-

ified, we compute a noisy answer ât by adding (properly

scaled) Laplace noise to ft(x)—the “true” answer on the

real database. We then compare this noisy answer with the

answer given by the previous round’s database ft(xt−1). If

the answers are “close”, then this is a “lazy” round, and we

simply output ft(xt−1) and set xt ← xt−1. If the answers

are “far”, then this is an “update” round and we need to

update or “improve” xt using a multiplicative weights re-

weighting. The intuition is that the re-weighting brings xt

“closer” to an accurate answer on ft. In a nutshell, this is

all the algorithm does. The only additional step required

is bounding the number of “update” rounds: if the total

number of update rounds grows to be larger than (roughly)

n, then the mechanism fails and terminates. This will be a

low probability event. See Figure 1 for the details. Given

this overview of the algorithm, it remains to specify how

to: (i) compute ft(xt−1), and (ii) re-weight or improve the

database on update rounds. We proceed with an overview of

the arguments for accuracy and privacy.

For this exposition, we think of the mechanism as explic-

itly maintaining the xt databases, resulting in complexity

that is roughly linear in N = |U |. Using standard tech-

niques we can make the memory used by the mechanism

logarithmic in N (computing each coordinate of xt as it is

needed). Either way, it is possible to compute ft(xt−1) in

linear time.

The re-weighting (done only in update rounds), proceeds

as follows. If in the comparison we made, the answer ac-

cording to xt−1 was “too small”, then we increase by a

small multiplicative factor the weight of items u ∈ U that

satisfy the query ft’s predicate, and decrease the weight of

those that do not satisfy it by the same factor. If the answer

was “too large” then do the reverse in terms of increasing

and decreasing the weights. We then normalize the resulting

weights to obtain a new database whose entries sum to 1.

The intuition, again, is that we are bringing xt “closer” to

an accurate answer on ft. The computational work scales

linearly with N .

To argue accuracy, observe that as long as the number

of update rounds stays below the (roughly n) threshold,

our algorithm ensures bounded error (assuming the Laplace

noise we add is not too large). The question is whether the

number of update rounds remains small enough. This is in

fact the case, and the proof is via a multiplicative weights

potential argument. Viewing databases as distributions over

U , we take the potential of database y to be the relative

entropy RE(x||y) between y and the real database x. We

show that if the error of xt−1 on query ft is large (roughly

larger than 1/
√

n), then the potential of the re-weighted xt is

smaller by at least (roughly) 1/n than the potential of xt−1.

Thus, in every “update” round, the potential drops, and the

drop is significant. By bounding the potential of x0, we get

that the number of update rounds is at most (roughly) n.

“Pay as you go” privacy analysis: At first glance,

privacy might seem problematic: we access the database and

compute a noisy answer in every round. Since the number

of queries we want to answer (number of rounds) might be

huge, unless we add a huge amount of noise this collection of

noisy answers is not privacy preserving. The point, however,

is that in most rounds we don’t release the noisy answer. All

we do is check whether or not our current database xt−1 is

accurate, and if so we use it to generate the mechanism’s

output. In all but the few update rounds, the perturbed true

answer is not released, and we want to argue that privacy

in all those lazy rounds comes (essentially) “for free”. The

argument builds on ideas from privacy analyses in previous

works [8], [7], [13]).

A central concern is arguing that the “locations” of the

update rounds be privacy-preserving (there is an additional,

more standard, concern that the noisy answers in the few

update rounds also preserve privacy). Speaking intuitively

(and somewhat inaccurately), for any two adjacent databases,

there are w.h.p. only roughly n “borderline” rounds, where

the noise is such that on one database this round is update

and on another this round is lazy. This is because, condition-

ing on a round being “borderline”, with constant probability

it is actually an “update” round. Since the number of update

rounds is at most roughly n, with overwhelming probability

the number of borderline rounds also is roughly n. For non-

borderline rounds, those rounds’ being an update or a lazy

round is determined similarly for the two databases, and

so privacy for these rounds come “for free”. The borderline

rounds are few, and so the total privacy hit incurred for them

is small.

Given this intuition, we want to argue that the “privacy

loss”, or “confidence gain” of an adversary, is small. At

a high level, if we bound the worst-case confidence gain

in each update round by roughly O(ε/
√

n), then by an

“evolution of confidence” argument due to [3], [9], [10],

the total confidence gain of an adversary over the roughly n
update rounds will be only ε w.h.p. To bound the confidence

gain, we define “borderline” rounds as an event over the

noise values on a database x, and show that: (1) Conditioned

on a round being borderline on x, it will be an update round

on x w.h.p. This means borderline rounds are few. (2) Con-

ditioned on a round being borderline on x, the worst-case

confidence gain of an adversary viewing the mechanism’s

behavior in this round on x vs. an adjacent x′ is bounded

by roughly ε/
√

n. This means the privacy hit in borderline

rounds isn’t too large, and we can “afford” roughly n of

them. (3) Conditioned on a round not being borderline, there

is no privacy loss in this round on x vs. any adjacent x′. I.e.,

non-borderline rounds come for free (in terms of privacy).

This analysis allows us to add less noise than previous

works, while still maintaining (ε, δ) differential privacy. It

may find other applications in interactive or adaptive privacy

settings. Details are in Section IV-B.

Sublinear Time Mechanism for Smooth Databases: We

observe that we can modify the PMW mechanism to work

over a smaller data universe V ⊆ U , as long as there exists
a database x∗ whose support is only over V , and gives

close answers to those of x on every query we will be

asked. We modify the algorithm to maintain multiplicative

weights only over the smaller set V , and increase slightly the

inaccuracy threshold for declaring a round as “update”. For

the analysis, we modify the potential function: it measures

relative entropy to x∗ rather than x. In update rounds, the

distance between xt−1 and this new x∗ on the current query

is large (since x∗ is close to x, and xt−1 is far from x).

This means that re-weighting will reduce RE(x∗||xt−1), and

even though we maintain multiplicative weights only over a

smaller set V , the number of update rounds will be small.

Maintaining multiplicative weights over V rather than U
reduces the complexity from linear in |U | to linear in |V |.

To use the above observation, we argue that for any

large set of counting queries C and any (ξ, φ)-pseudosmooth

database x, if we choose a uniformly random small (but

not too small) sub-universe V ⊆ U , then w.h.p there

exists x∗ whose support is in V that is close to x on

all queries in C. In fact, sampling a sub=universe of size

roughly ξN · n · log |C| suffices. This means that indeed

PMW can be run on the reduced data universe V with

reduced computational complexity. See Section V-A for this

argument.

Utility here is for a fixed non-adaptive set C of queries

(that need not be known in advance). We find this utility

guarantee to still be well motivated—note that, privacy aside,

the input database itself, which is sampled i.i.d from an

underlying distribution, isn’t guaranteed to yield good an-

swers for adaptively chosen queries. Finally, we remark that

this technique for reducing the data universe size (the data

dimensionality) may be more general than the application

to PMW. In particular, previous mechanisms such as [8],

[10] can also be modified to take advantage of this sampling

and obtain improved running time for smooth databases (the

running time will be polynomial, rather than linear as it is

for the PMW mechanism).

Synthetic databases: We conclude by noting that the

PMW mechanism can be used to generate synthetic data (in

the non-interactive setting). To do this, iterate the mechanism

over a set of queries C, repeatedly processing all the queries

in C and halting when either (i) we made roughly n+1 itera-

tions, i.e. have processed every query in C n times, or (ii) we

have made a complete pass over all the queries in C without

any update rounds (whichever of these two conditions occurs

first). If we make a complete pass over C without any update

rounds, then we know that the xt we have is accurate for

all the queries in C and we can release it (or a subsample

form it) as a privacy-preserving synthetic database. By the

potential argument, there can be at most roughly n update

rounds. Thus, after n+1 iterations we are guaranteed to have

a pass without any update rounds. Previous mechanisms for

generating synthetic databases involved linear programming

and were more expensive computationally.

III. PRELIMINARIES

Let x, y ∈ R
N . We define the relative entropy between

x and y as RE(x||y) =
∑

i∈[N] xi log
(

xi

yi

)
+ yi − xi .

This reduces to the more familiar expression
∑

i xi log(xi

yi
)

when
∑

i xi =
∑

i yi = 1 (in particular this happens when

x, y correspond to distributions over [N]). We let Lap(σ)
denote the one-dimensional Laplacian distribution centered

at 0 with scaling σ and corresponding density f(x) =
1
2σ exp

(
− |x|

σ

)
. We denote by 〈x, y〉 =

∑
i∈[N] xiyi the

real valued inner product between two vectors x, y ∈ R
N .

When x ∈ R
S is a vector supported on a subset of

the coordinates S ⊆ [N] and y ∈ R
N , we still write

〈x, y〉 =
∑

i∈S xiyi.
Histograms and linear queries: A histogram x ∈ R

N

represents a database or data distribution over a universe U
of size |U | = N. We will assume that x is normalized so

that
∑

i∈U xi = 1. We use histograms in the natural way

to denote standard databases of size n (n-item multisets in

U), and also to denote distributions over the data universe.

The only difference is that databases have support size n,

whereas distributions do not necessarily have small support.

In this work we focus on linear queries f : R
N → [0, 1].

As usual we may view a linear query as a vector f ∈ [0, 1]N .
We then use the equality f(x) = 〈f, x〉, where the histogram

x can be either an n-item database or a data distribution.

By our normalization of x, the sensitivity of a linear query

is 1/n. While we assume that ft ∈ [0, 1]N , our algorithm

applies to any linear query ft ∈ [−c, c]N by considering the

query defined as 1/2+ft[i]/2c in coordinate i. In this case,

the error of the algorithm scales linearly in c.

A special case of linear queries are counting queries. A

counting query associated with a predicate from U to {0, 1},

outputs what fraction of the items in its input database satisfy

the predicate. We view a counting query f as a vector

over {0, 1}N specifying which data items satisfy the query’s

predicate.

Accuracy and privacy in the interactive setting: For-

mally, an interactive mechanism M(x) is a stateful random-

ized algorithm which holds a histogram x ∈ R
N . It receives

successive linear queries f1, f2, . . . ∈ F one by one, and in

each round t, on query ft, it outputs a (randomized) answer

at (a function of the input histogram, the internal state, and

the mechanism’s coins). For privacy guarantees, we always
assume that the queries are given to the mechanism in an

adversarial and adaptive fashion by a randomized algorithm

A called the adversary. For accuracy guarantees, while we

usually consider adaptive adversarial, we will also consider

non-adaptive adversarial queries chosen in advance—we still

consider such a mechanism to be interactive, because it does

not know in advance what these queries will be. The main

query class we consider throughout this work is the class F
of all linear queries, as well as sub-classes of it.

Definition III.1. We say that a mechanism M is (α, β, k)-
(adaptively) accurate for a database x, if when it is run for

k rounds, for any (adaptively chosen) linear queries, with all

but β probability over the mechanism’s coins ∀t ∈ [k], |at−
〈ft, x〉| ≤ α.

We say that a mechanism M is (α, β, k)-non-adaptively
accurate for a query sequence C of size k and a database x,

if when it is run for k rounds on the queries in C, with all

but β probability over the mechanism’s coins ∀t ∈ [k], |at−
〈ft, x〉| ≤ α.

For privacy, the interaction of a mechanism M(x) and an

adversary A specifies a probability distribution [M(x), A]
over transcripts, i.e., sequences of queries and answers

f1, a1, f2, a2, . . . , fk, ak. Let Trans(F , k) denote the set of

all transcripts of any length k with queries from F . We will

assume that the parameter k is known to the mechanism

ahead of time. Our privacy requirement asks that the entire

transcript satisfies differential privacy.

Definition III.2. We say a mechanism M provides (ε, δ)-
differential privacy for a class of queries F , if for ev-

ery adversary A and every two histograms x, x′ ∈ R
N

satisfying ‖x − x‖1 ≤ 1/n, the following is true: Let

P = [M(x), A] denote the transcript between M(x) and

A. Let Q = [M(x′), A] denote the transcript between

M(x′) and A. Then, for every S ⊆ Trans(F , k), we have

P (S) ≤ eεQ(S) + δ .

We will find it useful to work with the following condi-

tion, which (by Lemma III.1 below) is no weaker than (ε, δ)
privacy:

Pru∼P

{∣∣∣log
(

P (u)
Q(u)

)∣∣∣ > ε
}
≤ δ. (1)

(Note that here we are identifying the distribution P with

its density function dP.)

Lemma III.1. (1) implies (ε, δ)-differential privacy.

IV. PRIVATE MULTIPLICATIVE WEIGHTS MECHANISM

Parameters: A subset of the coordinates V ⊆ U with

|V | = M (by default V = U), intended number of rounds

k ∈ N, privacy parameters ε, δ > 0 and failure probability

β > 0. Put σ = 10·log(1/δ) log
1/4 M√

n·ε , η = log
1/4 M√

n
, T =

4σ · (log k + log(1/β))
Input: Database D ∈ Un corresponding to a histogram

x ∈ R
N

Algorithm: Set y0[i] = x0[i] = 1/M for all i ∈ V
In each round t ← 1, 2 . . . , k when receiving a linear

query ft do the following:

1) Sample At ∼ Lap(σ). Compute the noisy answer

ât ← 〈ft, x〉 + At.

2) Compute the difference d̂t ← ât − 〈ft, xt−1〉:
If |d̂t| ≤ T , then set wt ← 0, xt ← xt−1, output

〈ft, xt−1〉, and proceed to the next iteration.

If |d̂t| > T , then set wt ← 1 and (a) for all

i ∈ V, update yt[i] ← xt−1[i] · exp(−η · rt[i]) ,
where rt[i] = ft[i] if d̂t > 0 and rt[i] = 1 − ft[i]
otherwise. (b) Normalize, xt[i] ← yt[i]∑

i∈V yt[i]
. (c)

Let m =
∑t

j=1 wj . If m > n · log1/2 M , then abort

and output “failure”. Otherwise, output the noisy

answer ât and proceed to the next iteration.

Figure 1. Private Multiplicative Weights (PMW) Mechanism

In the PMW mechanism of Figure 1, in each round t,
we are given a linear query ft over U and xt denotes a

fractional histogram (distribution over V ⊆ U) computed in

round t. The domain of this histogram is V rather than U.
Here, V could be much smaller than U and this allows for

some flexibility later, in proving Theorem I.2, where we aim

for improved efficiency. For this section, unless otherwise

specified, we assume that V = U. In particular this is the

case in the statement of Theorem I.1, the main theorem that

we prove in this section.

We use at to denote the true answer on the database on

query t, and ât denotes this same answer with noise added

to it. We use dt to denote the difference between the true

answer at and the answer given by xt−1, and d̂t to denote the

difference between the noisy answer and the answer given

by xt−1. The boolean variable wt denotes whether the noisy

difference was large or small. If d̂t is smaller (in absolute

value) than ≈ 1/
√

n, then this round is lazy and we set

wt = 0. If d̂t is larger than threshold then this is an update
round and we set wt = 1.

We are now ready to prove Theorem I.1, i.e. the utility

and privacy of the PMW mechanism. This follows directly

from the next two lemmas that are proved in Section IV-A

and Section IV-B, respectively.

A. Utility analysis

To argue utility, we need to show that even for very large

total number of rounds k, the number of update rounds is

at most roughly n with high probability. This is done using

a potential argument. Intuitively, the potential of a database

xt is the relative entropy between the true histogram x and

our estimate xt.

Since in general V �= U, we will actually define the

potential with respect to a target histogram x∗ ∈ R
N with

support only over V . This x∗ need not be equal to x, nor

does it have to be known by the algorithm. This added bit

of generality will be useful for us later in Section V when

we modify the mechanism to run in sublinear time. For this

section, however, unless we explicitly note otherwise the

reader may think of x∗ as being equal to x. The potential

function is then defined as

Φt = RE(x∗||xt) =
∑

i∈V x∗[i] log
(

x∗[i]
xt[i]

)
. (2)

Note that x∗ and xt are both normalized so that we can think

of them both as distributions or histograms over U . We start

with two simple observations: First, note that Φ0 ≤ log M .
Indeed, by the nonnegativity of entropy H(x∗) we get that

Φ0 = log M−H(x∗) ≤ log M . Second, by the nonnegativity

of relative entropy, we have Φt ≥ 0 for every t. Our goal

is to show that if a round is an update round (and wt = 1),

then the potential drop in that round is at least log1/2 M/n.

In Lemma IV.3 we show that this is indeed the case in every

round, except with β/k probability over the algorithm’s

coins. Taking a union bound, we conclude that with all

but β probability over the algorithm’s coins, there are at

most n · log1/2 M update rounds. The next lemma quantifies

the potential drop in terms of the penalty vector rt and the

parameter η using a multiplicative weights argument.

Lemma IV.1. In each update round t, we have Φt−1−Φt ≥
η〈rt, xt−1 − x∗〉 − η2 .

Proof: A direct calculation shows that

Φt−1 −Φt = −η〈rt, x
∗〉− log

(∑
i∈V exp(−ηrt[i])xt−1[i]

)
Note that exp(−ηrt[i]) ≤ 1−ηrt[i]+η2rt[i]2 ≤ 1−ηrt[i]+

η2 . Using this and
∑

xt−1[i] = 1 we get

log

(∑
i∈V

exp(−ηrt[i])xt−1[i]

)
≤ log

(
1 − η〈rtxt−1〉 + η2

)
≤ −η〈rt, xt−1〉 + η2 ,

where we used log(1+y) ≤ y for y > −1. We conclude that

Φt−1 − Φt ≥ −η〈rt, x
∗〉 + η〈rt, xt−1〉 − η2 = η〈rt, xt−1 −

x∗〉 − η2 .
In the following lemmata, we condition on the event that

|At| ≤ T/2. Since At is a centered Laplacian with standard

deviation σ and T ≥ 2σ(log k+log(1/β)), this event occurs

with all but β/k probability in every round t.
The next lemma connects the inner product 〈rt, x

∗−xt−1〉
with the “error” of xt−1 on the query ft. Here, error is

measured with respect to the true histogram x. To relate x
with x∗, we further denote err(x∗, ft) = |〈ft, x

∗〉−〈ft, x〉| .
When x∗ = x we get that err(x∗, ft) = 0 always, and

in general we will be interested in x∗ databases where

err(x∗, ft) is small for all t ∈ [k].

Lemma IV.2. In each round t where |d̂t| ≥ T and
|At| ≤ T/2 we have 〈rt, x

∗−xt−1〉 ≥ |〈ft, x〉−〈ft, xt−1〉|−
err(x∗, ft) .

Proof: By assumption |d̂t| ≥ T and |dt − d̂t| ≤ |At| ≤
T/2. Hence, sign(dt) = sign(d̂t). Now suppose sign(dt) <
0. In other words, 〈ft, x〉 − 〈ft, xt−1〉 < 0 and therefore

rt[i] = 1 − ft[i]. Hence,∑
i∈V

rt[i](x∗[i] − xt−1[i]) = −
(
〈ft, x

∗〉 − 〈ft, xt−1〉
)

≥ −
(
〈ft, x〉 − 〈ft, xt−1〉

)
− err(x∗, ft)

= |〈ft, x〉 − 〈ft, xt−1〉| − err(x∗, ft) .

The case where sign(dt) = sign(d̂t) ≥ 0 is analogous. The

claim follows.

Combining the previous two lemmas, we get the following

claim (whose simple proof is omitted).

Lemma IV.3. In each round t where |d̂t| ≥ T and At ≤
T/2 we have Φt−1 − Φt ≥ η

(
T
2 − err(x∗, ft)

) − η2 .

We are now ready to prove our main lemma about utility.

Lemma IV.4 (Utility for V = U). When the
PMW mechanism is run with V = U , it is an
(α, β, k)-accurate interactive mechanism, where α =
O

(
ε−1n−1/2 · log(1/δ) log1/4 N · (log k + log(1/β))

)
Proof: For V = U, we may choose x∗ = x so that

err(ft) = 0 for all t ∈ [k]. Furthermore, with all but β
probability over the algorithm’s coins, the event At ≤ T/2
occurs for every round t ∈ [k]. Hence, by Lemma IV.3 and

T ≥ 4η, the potential drop in every update round is at least

Φt−1 − Φt ≥ η T
2 − η2 ≥ η2 .

Since η = log
1/4 M√

n
, it follows that there are at most

n
√

log N update rounds. In particular, the algorithm termi-

nates. Furthermore, the error of the algorithm is never larger

than T + |At| ≤ 2T which is what we claimed.

We now give a utility analysis in the general case where

we are working with a smaller universe V ⊆ U. This will be

used (in Section V) to prove the utility guarantee of Theorem

I.2. The proof is analogous that the previous one except for

minor modifications.

Lemma IV.5. Let f1, f2, . . . , fk denote a sequence of k lin-
ear queries. Take γ = infx∗ supt∈[k] err(x∗, ft) where x∗

ranges over all histograms supported on V. When the PMW
mechanism is run with V on the query sequence above, and
with threshold parameter T ′ = T + γ, it is an (α, β, k)-
non-adaptively accurate interactive mechanism, where α =
O

(
γ + ε−1n−1/2 log(1/δ) log1/4 M · (log k + log(1/β))

)
.

B. Privacy analysis

Our goal in this section is to demonstrate that the in-

teractive mechanism satisfies (ε, δ)-differential privacy (see

Definition III.2). We assume that all parameters such as V, σ,

η, and T are publicly known. They pose no privacy threat

as they do not depend on the input database. For ease of

notation we will assume that V = U throughout this section.

The proof is the same for V ⊆ U. (the sub-universe V is

always public information).

Simplifying the transcript: Without loss of generality,

we can simplify the output of our mechanism (and hence the

transcript between adversary and mechanism). We claim that

the output of the mechanism is determined by the following

vector v. In particular, it is sufficient to argue that v is

differentially private. For every round t, the t-th entry in

v is defined as vt = ât in case wt = 1 and otherwise

vt =⊥ . In other words, vt is equal to ⊥ if that round

was a lazy round, or the noisy answer ât = 〈ft, x〉 + At if

round t was an update round. This is sufficient information

for reconstructing the algorithm’s output: given the prefix

v<t = (v1, . . . , vt−1), we can compute the current histogram

xt−1 for the beginning of round t. For the lazy rounds, this is

sufficient information for generating the algorithm’s output.

For the update rounds, vt = ât, which is the output for

round t. It is also sufficient information for re-weighting

and computing the new xt.

Note that to argue differential privacy, we need to prove

that the entire transcript, including the queries of the ad-

versary, is differentially private. Without loss of generality,

we may assume that the adversary is deterministic.3 In this

case ft is determined by v<t. Hence, there is no need to

include ft explicitly in our transcript. It suffices to show

that the vector v is (ε, δ)-differentially private.

3We can think of a randomized adversary as a collection of deterministic
adversaries one for each fixing of the adversary’s randomness (which is
independent of our algorithm’s coin tosses).

Lemma IV.6 (Privacy). The PMW mechanism satisfies (ε, δ)-
differential privacy.

Proof: Fix an adversary and histograms x, x′ ∈ R
N so

that ‖x − x′‖1 ≤ 1/n. Take m = n · log1/2 M and let ε0 =
1/σm (where σ is the scaling parameter in our algorithm).

Let P denote the output distribution of our mechanism

when run on the input database x and similarly let Q
denote the output of our mechanism when run on x′. Both

distributions are supported on S = ({⊥} ∪ R)k. For v ∈ S ,

we define the loss function L(v) := log
(

P (v)
Q(v)

)
. We will

then show that Prv∼P {L(v) ≤ ε} ≥ 1−δ . By Lemma III.1,

this implies (ε, δ)-differential privacy and hence our claim.

Using the chain rule for conditional probabilities, let us

rewrite L(v) as

L(v) = log
(

P (v)
Q(v)

)
=

∑
t∈[k]

log
(

P (vt | v<t)
Q(vt | v<t)

)
, (3)

where P (vt | v<t) denotes the probability of outputting vt

on input histogram x, conditioned on v<t = (v1, . . . , vt−1),
similarly defined for Q (on histogram x′). Note that condi-

tioning on v<t is necessary, since the coordinates of v are

not independent. Further, note that conditioned on v<t, the

estimate xt−1 is the same regardless of whether we started

from x or x′.
Borderline event: Fix v<t. We define an event St =

S(v<t) ⊆ R on the noise values as follows. Let dt =
〈ft, x〉 − 〈ft, xt−1〉. Note that xt−1 depends on v<t and

therefore St will depend on it as well.

We define St so it contains all of the noise values At

where |d̂t| = |dt + At| is within distance σ or more from

the threshold T . Formally, we construct St = S+ ∪ S− to

be made up of two intervals of noise values: one interval

S+ = [T − dt − σ,∞], around T − dt, and the second

interval S− = [−∞,−T − dt + σ], around −T − dt. Note

that, since T > 2σ, these two intervals never intersect.

The next three claims collect the key properties of a

borderline event. Claims IV.7 and IV.9 follow from basic

properties of the Laplacian distribution. The formal proofs

are omitted from this extended abstract.

Claim IV.7. Pr(|d̂t| ≥ T | At ∈ St, v<t) ≥ 1/6 .

Claim IV.8. For every a ∈ R ∪ {⊥}:

log
(

P (vt = a | At �∈ St, v<t)
Q(vt = a | At �∈ St, v<t)

)
= 0 .

Claim IV.9. For every a ∈ R ∪ {⊥}:

log
(

P (vt = a | At ∈ St, v<t)
Q(vt = a | At ∈ St, v<t)

)
≤ 2ε0.

Bounding the Expectation: It was shown in [10] that

Claim IV.9 implies

E

[
log

(
P (vt | At ∈ St, v<t)
Q(vt | At ∈ St, v<t)

)]
≤ 8ε2

0 . (4)

Here the expectation is taken over vt sampled according to

the conditional distribution P (vt | At ∈ St, v<t). Directly

by Claim IV.8 we have:

log
(

P (vt | At �∈ St, v<t)
Q(vt | At �∈ St, v<t)

)
= 0 , (5)

We can express P (vt | v<t) as a convex combination in

the form P (vt | v<t) = Pr(At ∈ St | v<t)P (vt | At ∈
St, v<t) + Pr(At �∈ St | v<t)P (vt | At �∈ St, v<t) , and we

can express Q(vt | v<t) similarly. These observations (with

a convexity argument) imply that

E
vt

[
log

(
P (vt | v<t)
Q(vt | v<t)

)]
≤ 8ε2

0 Pr(At ∈ St | v<t) . (6)

On the other hand, we have
∑k

i=1 Pr(At ∈ St | v<t) ≤ 6m
This is because each round where At ∈ St is a update round

with probability at least 1/6 (by Claim IV.7.) Hence,

E L(v) ≤ 48ε2
0m ≤ ε/2 . (7)

Number of Borderline Rounds: With overwhelming

probability, the number m′ of borderline rounds (rounds t
where St occurs) is not much larger than m (the bound

on the number of update rounds). This is because every

borderline round is with probability at least 1/6 a update

round (Claim IV.7. This is made formal in the claim below.

Claim IV.10. Pr(m′ > 32m log1/2(1/δ)) ≤ δ/2

Proof: Recall conditioned on At ∈ St, we have that

At ∈ Rt with probability 1/6. The latter can only happen

m times. Moreover, the noise in each round is independent

from previous rounds. Hence, by tail bounds for Bernoulli

variables, the event m′ > 32
√

log(1/δ)m has probability

less than exp(− log(2/δ)).
Putting it Together: Condition on there being at most

m′ = 32m log1/2(1/δ) borderline rounds (this is the case

with all but δ/2 probability). We proceed by an “evolution

of confidence argument” similar to [3], [9].

Specifically, we will apply Azuma’s inequality to the

set of m′ borderline rounds. Formally, let B ⊆ [k]
denote the set of borderline rounds. For each t ∈ B,

we view Xt = log
(

P (vt|v<t)
Q(vt|v<t)

)
as a random variable.

Note that L(v) =
∑

t∈B Xt. Further |Xt| ≤ 2ε0 by

Claim IV.9. Hence, by Azuma’s inequality, Pr {L(v) > ε} ≤
Pr {L(v) > E [L(v)] + ε/2} ≤ 2 exp

(
− ε2

8m′·ε2
0

)
,

where ε2

8m′·ε2
0

≥ ε2σ2n2

m′ ≥ 100 log(1/δ)2n log
1/2 N

m′ =
100 log(1/δ) m

m′ .
So, conditioning on having at most m′ borderline rounds

(occurs with all but δ/2 probability), with all but δ/2
probability the loss L(v) deviates by at most ε/2 from its

expectation. The expectation itself is at most ε/2 by (7). We

conclude that with all but δ probability, the total loss L(v)
is bounded by ε.

V. AVERAGE-CASE COMPLEXITY AND SMOOTH

INSTANCES

In this section, we define a notion of average case

complexity for interactive (and non-interactive) mechanisms

that allows us to improve the running time of the PMW

mechanism as a function of the data universe size. This is

done using an argument for reducing the data universe size.

We start by defining the notion of a smooth histogram.

We think of these histograms as distributions over the data

universe that do not place too much weight on any given

data item. In other words, we require the histogram to have

high min-entropy.

Definition V.1 (Smooth). A histogram x ∈ R
U s.t.∑

u∈U xu = 1 and ∀u ∈ U : xu ≥ 0 is ξ-smooth if

∀u ∈ U : xu ≤ ξ.

In particular, a ξ-smooth histogram has min-entropy at

least log(1/ξ). We typically think of ξ has a function of N ,

such as polylogN/N or 1/
√

N. Note that small databases

(viewed as histograms) cannot be very smooth, since a ξ-

smooth histogram has at least 1/ξ nonzero coordinates.

We therefore extend the notion of smoothness to the

notion of pseudo-smoothness with respect to a set of queries

C. A histogram is pseudo-smooth w.r.t a query class C
roughly speaking when there exists a smooth histogram x∗

that is close on every query in C. This notion allows even

very sparse histograms (corresponding to small databases) to

be very pseudo-smooth. The formal definition is as follows.

Definition V.2 (Pseudo-smooth). A histogram x ∈ R
U s.t.∑

u∈U xu = 1 and ∀u ∈ U : xu ≥ 0 is (ξ, φ)-smooth w.r.t a

class of linear queries C if there exists a ξ-smooth histogram

x∗ s.t. ∀f ∈ C : |〈f, x〉 − 〈f, x∗〉| ≤ φ .

A straightforward way of obtaining pseudo-smooth

databases is by sampling from a smooth histogram.

Claim V.1. Let U be a data universe, C a class of linear
queries over U , and x∗ a ξ-smooth histogram over U . For
any α, β > 0, sample a database x of m = (log(2/β) +
log |C|)/α2 items i.i.d from the distribution of x∗ (i.e. in each
sample we independently pick each u ∈ U with probability
x∗

u). Then with all but β probability over the samples taken,
∀f ∈ C : |〈f, x〉 − 〈f, x∗〉| ≤ α, and so the database x is
(ξ, α)-pseudosmooth w.r.t C.

A. Domain reduction for pseudosmooth histograms

For a given smoothness parameter ξ, data universe U ,

and query class C, let V ⊆ U be a sub-universe sampled

uniformly and at random from U . In this section we show

that (as long as V is large enough) if x was a pseudosmooth

histogram over U w.r.t a query class C, then w.h.p. there will

be a histogram x∗ with support only over (the smaller) V
that is “close” to x on C. We emphasize that sampling the

sub-universe V does not require knowing x nor knowing

any x∗ that certifies x being pseudosmooth, we only need

to know ξ. In particular, this approach is privacy-preserving.

This technique for reducing the universe size can be used to

improve the efficiency of the PMW mechanism for pseudos-

mooth input databases.

Lemma V.2. Let U be a data universe and C a collection of
linear queries over U . Let x be (ξ, φ)-psuedo-smooth w.r.t
C. Take α, β > 0, and sample uniformly at random (with
replacement) V ⊆ U so that M = |V | = 4max{ξN ·
(log(1/β) + log |C|)/α2, log(1/β)} Then, with all but β
probability over the choice of V , there exists a histogram
x∗ with support only over V such that

∀f ∈ C : |f(x) − f(x∗)| ≤ φ + α . (8)

Proof: Let y be the ξ-smooth histogram which shows

that x is (ξ, φ)-pseudosmooth. If we sampled uniformly at

random from x or from y then by Claim V.1, we could get a

database over a very small sub-universe that is (as required)

close to x on all the queries in C. This is insufficient because

we want the sub-universe that we find to be independent of

the database x (and so also independent of y).

Still, let us re-examine the idea of sampling from y.

One way of doing this is by rejection sampling. Namely,

repeatedly sample u ∈ U uniformly at random and then

“keep” u with probability yu/ξ. Otherwise reject. When

we use this rejection sampling, since y is a ξ-smooth

distribution, each sample that we keep is distributed by

y (i.e. it is u ∈ U w.p. yu). Repeat this process until

m1 = (log(2/β)+ log |C|)/α2 samples have been accepted.

There is now a set of coordinates V1 ⊆ U , those that were

kept (of size at most m1), and a set of coordinates V2 ⊆ U ,

those that were rejected. By Claim V.1 the sub-universe V1

of samples that we keep (which are i.i.d samples from y)

supports (except with probability β/2) a database x∗ that is

“close” to y (w.r.t C), and so it will also be “close” to x. In

particular, by triangle inequality, maxf∈C |f(x) − f(x∗)| ≤
maxf∈C |f(x) − f(y)| + maxf∈C |f(y) − f(x∗)| ≤ φ + α .

But now we may take V = V1 ∪ V2. Note that V is

simply a uniformly random subset of the coordinates of U.
And by the previous argument, V supports a histogram that

satisfies (8), namely x∗. To conclude the proof it remains to

argue that V has the required size. Note that the probability

of accepting sample i in the rejection procedure is given

by
∑N

i=1
1
N · yi

ξ = 1/ξN. Hence, the expected number

of queries in total is μ = 2ξN · (log(2/β) + log |C|)/α2.
Moreover, since every sample is independent, we have con-

centration around the expectation. A multiplicative Chernoff

bound shows that the probability that V is larger than twice

its expectation is bounded by exp(−μ) ≤ β/2.
Finally, we use Lemma V.2 together with Lemma IV.5

(utility of PMW for general V), to sample a small sub-

universe V and derive the accuracy guarantee of Theorem

I.2 for the performance of the PMW mechanism on pseudo-

smooth databases. The details are omitted from this extended

abstract.

VI. ACKNOWLEDGEMENTS

We thank Boaz Barak, Cynthia Dwork, Moni Naor, Aaron

Roth, Rob Schapire and Salil Vadhan for their helpful and

insightful comments. Thanks also to the anonymous FOCS

2010 reviewers for their helpful comments.

REFERENCES

[1] S. Arora, E. Hazan, and S. Kale. The multiplicative weights
update method: a meta algorithm and applications. Technical
report, Princeton University, 2005.

[2] A. Blum, K. Ligett, and A. Roth. A learning theory ap-
proach to non-interactive database privacy. In STOC ’08:
Proceedings of the 40th annual ACM symposium on Theory
of computing, pages 609–618, New York, NY, USA, 2008.
ACM.

[3] I. Dinur and K. Nissim. Revealing information while pre-
serving privacy. In Proc. 22nd PODS, pages 202–210. ACM,
2003.

[4] C. Dwork and J. Lei. Differential privacy and robust statistics.
In Proc. 41st STOC, pages 371–380. ACM, 2009.

[5] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating
noise to sensitivity in private data analysis. In Proc. 3rd TCC,
pages 265–284. Springer, 2006.

[6] C. Dwork, F. McSherry, and K. Talwar. The price of privacy
and the limits of LP decoding. In Proc. 39th STOC, pages
85–94. ACM, 2007.

[7] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Dif-
ferential privacy under continual observation. In Proc. 42nd
STOC. ACM, 2010.

[8] C. Dwork, M. Naor, O. Reingold, G. N. Rothblum, and S. P.
Vadhan. On the complexity of differentially private data
release: efficient algorithms and hardness results. In Proc.
41st STOC, pages 381–390. ACM, 2009.

[9] C. Dwork and K. Nissim. Privacy-preserving datamining on
vertically partitioned databases. In Proc. 24th CRYPTO, pages
528–544. Springer, 2004.

[10] C. Dwork, G. N. Rothblum, and S. Vadhan. Boosting and
differential privacy. Manuscript, 2010.

[11] C. Dwork and S. Yekhanin. New efficient attacks on statistical
disclosure control mechanisms. In Proc. 28th CRYPTO, pages
469–480. Springer, 2008.

[12] N. Littlestone and M. K. Warmuth. The weighted majority
algorithm. Inf. Comput., 108(2):212–261, 1994.

[13] A. Roth and T. Roughgarden. Interactive privacy via the
median mechanism. In STOC, pages 765–774, 2010.

[14] J. Ullman and S. Vadhan. PCPs and the hardness of generating
synthetic data. Electronic Colloquium on Computational
Complexity (ECCC), 1(17), 2010.

