
A Fourier-analytic approach to Reed-Muller decoding

Parikshit Gopalan
MSR-Silicon Valley.
Mountain View, CA.

parik@microsoft.com

Abstract—We present a Fourier-analytic approach to list-
decoding Reed-Muller codes over arbitrary finite fields. We
use this to show that quadratic forms over any field are locally
list-decodeable up to their minimum distance. The analogous
statement for linear polynomials was proved in the celebrated
works of Goldreich-Levin [1] and Goldreich-Rubinfeld-Sudan
[2]. Previously, tight bounds for quadratic polynomials were
known only for q = 2 or 3 [3]; the best bound known for
other fields was the Johnson radius.

Departing from previous work on Reed-Muller decoding
which relies on some form of self- corrector [2]–[5], our work
applies ideas from Fourier analysis of Boolean functions to
low-degree polynomials over finite fields, in conjunction with
results about the weight- distribution. We believe that the
techniques used here could find other applications, we present
some applications to testing and learning.

Keywords-Polynomials; error-correcting codes; Reed-Muller
codes; Fourier analysis.

I. INTRODUCTION

Traditional algorithms to decode error-correcting codes
require that the received word is within less than half the
minimum distance of a codeword, so that the codeword
can be uniquely recovered. In the 1950s, Elias [6] and
Wozencraft [7] introduced the notion of list-decoding in
order to decode beyond this barrier. Rather than returning
a single codeword, a list-decoding algorithm outputs all
codewords within a specified radius of a received word.
It took over thirty years before Goldreich and Levin [1]
and Sudan [8] gave efficient list-decoding algorithms for
Hadamard codes and Reed-Solomon codes, respectively.
Since these breakthroughs, there has been much progress in
devising list-decoders for various codes [9], [10]. Indeed,
list-decoding algorithms are the only tools that we have
for solving the nearest codeword problem beyond half the
minimum distance in the adversarial error model.

Algorithms for list-decoding error-correcting codes have
proved tremendously useful in computer science (see [9,
Chapter 12] and references therein), with applications rang-
ing from hardness amplification for weakly hard functions,
constructions of hard-core predicates from any one-way
function, constructions of extractors and pseudorandom gen-
erators and the average-case hardness of the permanent.
Despite the considerable progress in this area, for several
natural and well-studied families of codes including Reed-
Solomon and Reed-Muller codes, the list-decoding radius, or

the largest error radius up to which the list-decoding problem
is tractable is as yet unknown. This problem for Reed-Muller
codes is the focus of our paper.

Reed-Muller codes (RM codes for short) were discov-
ered by Muller in 1954. The message space of the code
RMq(n, d) consists of all degree d polynomials in n vari-
ables over Fq , the codewords are the evaluations of these
polynomials at all points in Fnq . Let δq(d) denote the nor-
malized minimum distance of RMq(n, d). If d = a(q−1)+b
where 0 6 b 6 q − 1, then

δq(d) =
1

qa

(
1− b

q

)
. (1)

The case when d < q is the famous Schwartz-Zippel lemma.
Reed-Muller codes are one of the most well-studied

families of error-correcting codes in coding theory [11].
They are ubiquitous in computer science, indeed several of
the aforementioned applications of list-decoding use Reed-
Muller codes. A closely related problem is that of low-degree
testing, where we are given a function and asked to test if
it is close to a codeword in the Reed-Muller code. This is
a problem that has been studied extensively in computer
science, and plays in a key role in the (original) proof of
the celebrated PCP theorem.

For most applications above, the model of interest is the
local-decoding model where we are given an oracle for the
received word R : Fnq → Fq that can be queried at chosen
points. The goal is to devise an algorithm whose running
time is polynomial in the size of the message (rather than
the codeword). The message being a degree d polynomial (d
will be constant) in n variables over Fq , our goal is to run
in time poly(n). So we are interested in the settings where
the list-size is a constant, or at worst poly(n). Our running
times are typically polynomial in q.

A. Previous Work

For (a family of) codes C ⊂ [q]n, let `(C, η) denote the
maximum list-size at radius η (radius η ∈ [0, 1] denotes
normalized Hamming distance). LDR(C) is the largest η
for which `(C, η − ε) can be bounded by a function of ε
(independent of n) for every ε > 0.

The study of list-decoding algorithms for Reed-Muller
codes was initiated by the seminal work of Goldreich
and Levin on list-decoding Hadamard codes over F2

or equivalently RM2(n, 1) codes [1]. They showed that
LDR(RM2(n, 1)) = 1/2. Goldreich, Rubinfeld and Sudan
generalized this to Hadamard codes over Fq , showing that
LDR(RMq(n, 1)) = 1− 1/q [2]. An important development
was the discovery of powerful algorithms for list-decoding
univariate polynomials over Fq , due to Sudan [8] and
Guruswami and Sudan [12]. Sudan, Trevisan and Vadhan
used these algorithms to devise a list-decoder that works up
to radius 1 −

√
2d/q for [5], improving on work by Arora

and Sudan [4] and Goldreich et al. [2] (see also [13]).
All of the aforementioned decoding algorithms reach a

coding theoretic bound known as the Johnson bound [14],
[15]. The Johnson bound guarantees that for any code of
minimum distance δ over Fq , LDR(C) > Jq(δ) = (1 −
1/q)(1 −

√
1− qδ/(q − 1)). Since the Johnson bound is

oblivious to the structure of the code apart from its minimum
distance, one does not expect it to be tight for every code, yet
examples of codes decodeable beyond the Johnson bound are
relatively few and recent (see the discussion in [3], [16]). A
tantalizing open problem in this area is whether the Johnson
bound is tight for Reed-Solomon codes, this is precisely the
radius achieved by the Guruswami-Sudan algorithm [12].

Recently, Gopalan, Klivans and Zuckerman (GKZ) con-
sidered the problem of list-decoding Reed-Muller codes over
F2 [3]. They showed that LDR(RM2(n, d)) = 2−d which
for d > 2 is much better than the Johnson bound. The
GKZ algorithm is a generalization of the Goldreich-Levin
algorithm: we assume that we have the correct value of the
polynomial given as advice on a small random subspace A.
This advice allows us to self-correct the values at randomly
chosen shifts of A, usin1g a unique decoding algorithm. As
pointed out in GKZ, this relies crucially on the coincidence
that the ratio of minimum distance to unique decoding radius
equals the field size (which is 2), and does not seem to
generalize to larger fields (see Section II-B). They propose
the following conjecture:

Conjecture 1: [3] For any constants q, d,
LDR(RMq(n, d)) = δq(d).

It is easy to show that LDR(RMq(n, d)) 6 δq(d), the crux
of the conjecture is the matching lower bound. GKZ show
that once we bound `(RMq(n, d), η), (a suitable modification
of) the [5] algorithm can be used to recover the list of poly-
nomials within radius η. Thus the the algorithmic problem
reduces to the combinatorial problem of bounding th list-
size. GKZ showed that LDR(RMq(n, d)) > 1

2δq(d − 1);
by Equation 3 this establishes the conjecture whenever
d ≡ 0 mod q − 1. This bound beats the Johnson bound
for d sufficiently large. However when d = 2, Conjecture
1 states that agreement exceeding 2/q guarantees a small
list, the Johnson bound guarantees a small list for agree-
ment Ω(1/

√
q) whereas the GKZ bound requires agreement

exceeding 1/2. Indeed, we believe that the hard(est) case of
Conjecture 1 is when d is small, this precisely is where the
gap between δq(d) and known bounds is largest.

II. OUR RESULTS

Previous work on local decoding of RM codes [2]–[5]
relies on the notion of a self-corrector. Starting the correct
values at some points as advice, the algorithm self-corrects
the values of the polynomial along some low-dimensional
subspace. This relies on the locality of the property of being
a low-degree polynomial. Our work departs entirely from
this paradigm. We seek to explain the good list-decoding
properties of RM codes by using the rich structure in the
weight distribution of these codes. While the RM code has
low-weight codewords, a random codeword is very likely
to have weight which is close to 1 − 1

q (this is in fact
true of any linear code). But in RM codes, the low-weight
codewords are far from random in a very strong sense: they
have very special structure. Results of this form date back
to the classical sum-of-squares result for quadratic forms
(due to Jacobi and Sylvester) [17], and the work of Kasami
and Tokura for the F2 case [18]. More recently, there has
been great progress made in structure versus randomness
dichotomies for low-degree polynomials [19]–[21].

Our approach is to reduce the problem of RM decoding
to list-decoding low-weight codewords using the Deletion
Lemma from [3], [16]. We then use the structure of low-
weight codewords to bound the list size. We note that
the work of [3], [22] also uses the weight-distribution to
bound the list-size for RM codes over F2. However, these
papers only require a bound on the number of low-weight
codewords, whereas we make crucial use of the structure of
these codewords. The structural property that we use is that
of being low-dimensional. A k-dimensional function is one
that can be expressed as a k-junta (a function of at most
k variables) under a suitable change of basis for F. The
choice of low-dimensional codewords is natural for a couple
of reasons: firstly, the examples we know for exhibiting large
lists at radius δq(d) are all low-dimensional [3, Theorem 12].
Secondly, there are classical results showing that in the cases
d = 2 and q = 2 respectively, all low-weight codewords in
RM codes are low-dimensional [17], [18].

Definition 1: The dimension of F : Fnq → Fq denoted
dim(F) is the smallest k for which there exist linear func-
tions α1, . . . , αk : Fnq → Fq such that F can be expressed
as a function of α1, . . . , αk.

Let RMk
q (n, d) be the sub-code of RMq(n, d) consisting of

all polynomials of dimension at most k (where k is constant).
Theorem 2.1: For all q, k and d it holds that

LDR(RMk
q (n, d)) = δq(d).

We prove this bound by designing a new Fourier-based
algorithm for list-decoding low-dimensional polynomials.
This algorithm and its analysis are the principal contributions
of this work.

In the case of quadratic forms, our notion of dimension
coincides with the classical notion of the rank of a quadratic
form. It is well known that as the rank of a quadratic

form increases, the distribution of its values approaches the
uniform distribution over Fq [17]. We use this to prove:

Theorem 2.2: For all q, it holds that LDR(RMq(n, 2)) =
δq(2). Further, for any q and ε > 0, we have
`(RMq(n, 2), δq(2)− ε) = poly(q, ε−1).

This gives a tight bound on the list-decoding radius of
quadratic forms, resolving what is a special, but important
case of the GKZ conjecture, given the rich history of
quadratic forms in mathematics and coding theory [11], [17].
In fact their conjecture was only for constant q, whereas
our bound is reasonable even for q = poly(n). Using the
local list-decoder from GKZ, we get an algorithm to recover
all quadratic polynomials that have agreement 2

q + ε in
time poly(n, q, ε−1). This improves on both the Johnson
bound, which requires agreement 1√

q and the GKZ bound
which requires 1

2 . Concretely, for q = 256, Theorem 2.2
guarantees constant list-size for agreement exceeding 1

128 ,
whereas Johnson and GKZ require agreement more than 1

16
and 1

2 respectively.
In the case of F2, classical results of Kasami and Tokura

[18] imply that deletion of low- dimensional codewords
doubles the distance of RM codes . This gives an alternate
proof of the GKZ result that LDR(RM2(n, d)) = 2−d.

When d and q are arbitrary, we propose a conjecture
quantifying how the deletion of low-dimensional codewords
improves the distance of RM codes (see Conjecture 2 and
Theorem 6.2 in Section VI). If the conjecture holds true,
then with Theorem 2.1, we get an improvement on the
best known current bounds for all d and q, which however
falls short of the GKZ conjecture for d > 3. Nevertheless,
Theorem 2.1 shows that low-dimensional polynomials are
not an obstacle to the GKZ conjecture. Since the tight
examples with large list-size at radius δq(d) stem from
low-dimensional polynomials [3], this might be considered
evidence in its favor.

A. Our Techniques

All previous work on Reed-Muller decoding [2]–[5] relies
on the notion of a self-corrector. Starting the correct values
at some point(s) as advice, the algorithm self-corrects the
values of the polynomial along some low-dimensional sub-
space. Our work departs entirely from the self-correction
paradigm and draws on ideas from Fourier analysis of
Boolean functions; notably (a generalization of) the notion
of influence of a variable. Fourier analytic methods are
extensively used in learning, typically for concept classes
such as halfspaces or decision trees [23] whose Fourier
spectra show good concentration. Reed-Muller decoding is
equivalent to (agnostically) learning low-degree polynomials
over Fq . It is not at all clear that Fourier analysis ought to
be useful even for d = 2, since quadratic forms over F2

are the canonical examples of bent functions whose Fourier
spectrum is maximally anti-concentrated [11]. However, the

deletion lemma allows us to focus on low-degree polyno-
mials which are additionally low-dimensional (dimension
at most 6 for quadratic forms). The Fourier spectrum
of a k-dimensional polynomial P is supported on a k-
dimensional subspace which we denote by Spec(P). Our
key insight is that within Spec(P), the Fourier mass is
anti-concentrated, which makes it possible to identify this
subspace via Hadamard decoding, even after the adversary
has corrupted the codeword. We outline the main steps in
our proof below:

1) Finding Spec(P): Fix q = 2 for simplicity. The
Fourier mass of a k-dimensional polynomial P lies entirely
on a k-dimensional subspace Spec(P). It is easy to recover
P if we know Spec(P), by enumerating over all degree
d polynomials in k variables and replacing the variables
by linear forms (recall that k is constant). Our goal is to
show for any received word F where ∆(F, P) 6 δq(d), the
large Fourier coefficients of F contain a basis for Spec(P).
Equivalently, the large Fourier coefficients α of F that lie in
Spec(P) should not all fall in a low-dimensional subspace
B ⊂ Spec(P) satisfying an additional equation b · α = 0.
One can try and prove this using the Fourier expression for
`2 distance, but this approach fails. This suggests that one
needs to use the discreteness of F .

2) The Influence of a Direction: Given a function F ,
the Fourier mass that lies in the set Sb = {α : b · α 6= 0}
captures the influence of direction b, which is defined as
Prx∈Fn

2
[F (x) 6= F (x + b)]. This generalizes the notion of

the influence of a variable [24]. Influences in low-degree
polynomials P show a dichotomy: they are 0 over a subspace
Spec(P)⊥, and large for all other b. We use this to show
that if ∆(F, P) 6 δq(d), and if b is influential in P , then it
has noticeable influence on F . Hence, a noticeable fraction
of the Fourier mass of F lies in the set Sb. But it falls short
of the claim we really wish to prove, which is that there
is noticeable Fourier mass lying in Spec(P) ∩ Sb, since F
(unlike P) need not be low-dimensional.

3) Folding the Received word: The crucial step of
our analysis is to go from F to a randomized function F,
which is F folded over the subspace Spec(P). While we
defer the formal definition of folding, the following example
is illustrative: if P depends only on X1, . . . , Xk, then so
does F; for each setting of x1, . . . , xk, F(x1, . . . , xk) equals
F (x1, . . . , xn) where xk+1, . . . , xn are set randomly. From
the viewpoint of P , F is a received word where the noise
added at each point is randomized. The crucial observation
is that the noise rate stays the same, so ∆(F, P) 6 δq(d),
hence every influential direction b of P still has influence on
F. But since F is obtained by folding F over Spec(P), the
Fourier spectrum of F if just the spectrum of F projected
on to Spec(P). Thus we conclude that F (and hence F) has
noticeable Fourier mass lying in Spec(P) ∩ Sb. Note that
folding is just introduced for the sake of analysis, it plays
no role in the algorithm.

4) Fourier analysis over Fq: Implementing the above
scheme over Fq is fairly challenging, since it is unclear
what the Fourier expansion of F : Fnq → Fq should
mean. Our main technical innovation is to associate q − 1
Fourier polynomials with every such F , this allows us to
exactly arithmetize Hamming distance over Fq and handle
randomized functions which is crucial in our setting.

We believe the Fourier analytic techniques here will
find other applications. We use them prove an equivalence
between learning parity with worst-case noise and weaker
noise models over Fq , generalizing a result of [25] for F2.
Working with many Fourier polynomials as opposed to a
single one is crucial for this result.

B. Comparison to Previous Work

It is interesting to contrast our approach to that of [3].
While GKZ the bound also involves a dimension reduction
step, the term refers to restricting the received word to a
random low-dimensional subspace, which is very different
from what we do. The GKZ algorithm is based on a self-
corrector that works correctly given the right advice. The
self-correction argument already shows that the list-size at
radius 2−d − ε is quasi-polynomial in ε−1. The deletion
lemma is used only to improve the bounds to polynomial
in ε−1. As remarked earlier though, this self-corrector does
not seem to generalize well to larger fields. Our approach
is in fact inspired by the list-decoding algorithms of [16]
for tensor products and interleaved codes, which reduce
bounding the list-size to the low-rank case (in their setting,
codewords are matrices and rank refers to the rank of these
matrices).

Organization: We present Fourier-analytic prelimi-
naries in Section III. The proofs for this section can be
found in the full version of this paper [26]. The decoding
algorithm for low-dimensional polynomials and its analysis
are in Section IV, with the proof of Theorem 2.2. We present
further reductions to the low-dimensional case in Section V,
and a discussion of the case d > 3 in Section VI. We apply
our techniques to give a worst-case noise to average-case
noise reduction for the Noisy Parity problem in Section VII,
the proofs for this are in the full version.

III. LOW-DIMENSIONAL FUNCTIONS, FOLDING AND
INFLUENCES

All proofs for this Section can be found in [26].
Fourier analysis: Let p = char(q) and let q = ph.

Let ω be a primitive pth root of unity. Given a random
variable Z taking values in Fq , we define the quantities
zc = EZ [ωTr(cZ)], which we call the (un-normalized)
Fourier coefficients of Z. For two such random variables
Y,Z, let SD(Y,Z) denote their statistical distance. The
following relation to the Fourier transform is folklore:

Fact 3.1: For two random variables Y,Z taking values in
Fq , we have

SD(Y,Z) 6
1

2

∑
c∈F?

q

|yc − zc|2
 1

2

.

Let Tr(x) =
∑h−1
i=0 x

pi denote the trace map from Fq
to Fp. The set of all linear functions Fq → Fp is given
by {Tr(cx)}c∈Fq . The character group F̂q

n
of Fnq of all

homomorphisms χ : Fnq → C comprises all functions of
the form χα(x) = ωTr(α(x)) where α : Fnq → Fq is a linear
function. It is easy to show that the functions χα form an
orthonormal basis for all functions f : Fnq → C under the
inner-product 〈f, g〉 = Ex∈Fn

q
f(x)g(x). Thus every such f

has a Fourier expansion given by

f(x) =
∑
α∈F̂q

n

f̂(α)χα(x).

We also have ‖f‖2 = 〈f, f〉 =
∑
α |f̂(α)|2. Given a

polynomial F : Fnq → Fq , we associate it with q−1 Fourier
polynomials mapping Fnq → C, one for every c ∈ F?q , given
by

f c(x) := ωTr(cP (x)) =
∑
α∈F̂q

n

f̂ c(α)χα(x).

The reason for using q−1 polynomials is that we can exactly
arithmetize agreement and Hamming distance; this is crucial
in our applications.

Fact 3.2: Given functions F,G that map Fnq → Fq ,

Ag(F,G) =
1

q
(1 +

∑
c∈F?

q

〈f c, gc〉)

=
1

q
(1 +

∑
c∈F?

q

∑
α

f̂ cαĝ
c
α) (2)

∆(F,G) =
1

2q

∑
c∈F?

q

‖f c − gc‖22

=
1

2q

∑
c∈F?

q

∑
α∈F̂q

n

|f̂ cα − ĝcα|2 (3)

Randomized Functions: We consider randomized func-
tions F : Fnq → Fq , where each F(x) is a random variable
taking values in Fq . We define the Fourier polynomials
associated with F:

Definition 2: Given a randomized function F : Fnq → Fq ,
for each c ∈ F?q , we define the polynomial f c : Fnq → C by
f c(x) = EF[ωTr(cF(x))].

Note that f c is a (deterministic) function from Fnq → C
and the values {f c(x)}c∈F?

q
give us the Fourier transform of

F(x). Given two randomized functions F,G : Fnq → Fq ,

we define

d(F,G) = Ex∈Fn
q
[SD(F(x),G(x))],

Ag(F,G) = 1− d(F,G).

generalizing the definitions for deterministic functions.
Fact 3.3: Given randomized function F,G that map

Fnq → Fq , we have

d(F,G) 6
1

2

∑
c∈F?

q

Ex[|f c(x)− gc(x)|2]

 1
2

=
1

2

∑
c∈F?

q

∑
α∈F̂q

n

|f̂ c(α)− ĝc(α)|2
 1

2

. (4)

Low-Dimensional Functions: Low dimensional determin-
istic functions are defined in Definition 1. We generalize the
definition to randomized functions:

Definition 3: A randomized function F : Fnq → Fq is k
dimensional if there exist k linear forms α1, . . . , αk : Fnq →
Fq such that knowing α1(x), . . . , αk(x) fixes the distribution
of F(x).

Hence F is a (randomized) function of α1, . . . , αk, gen-
eralizing Definition 1. Facts 3.4 and 3.5 below are proved
in [27], [28] for deterministic functions.

Fact 3.4: For each c ∈ F?q , let Supp(f c) ⊆ F̂q
n

denote the
set of non-zero Fourier coefficients of f c(x). Let Spec(F) =
Span(∪c∈F?

q
Supp(f c)). Then dim(F) = dim(Spec(F)).

Alternatively, low-dimensional functions can be defined
via invariant spaces.

Definition 4: Given h ∈ Fnq , if F : Fnq → Fq satisfies
SD(F(x+λh),F(x) = 0 for all x ∈ Fnq , λ ∈ Fq we say that
F is h-invariant. We define Inv(F) = {h : F is h-invariant}.
Inv(F) is clearly a subspace of Fnq , and is in fact dual to

Spec(F).
Fact 3.5: We have Spec(F) = Inv(F)⊥. Hence

dim(F) = codim(Inv(F)).
Folding: Folding over subspaces was introduced in [25]

(in the F2 case). Folding maps high-dimensional functions
to lower-dimensional randomized functions.

Definition 5: Let H be a subspace of Fnq and let F :
Fnq → Fq . Define the randomized function F(x) = F (x+h)
where h ∈ H is chosen randomly. We call F the folding of
F over H .

Given an oracle for F , we can simulate an oracle for F:
on query x, choose a random point x+h in the coset x+H
and return F (x+ h). Thus F is invariant on H . In fact, its
Fourier spectrum is obtained by projecting the spectrum of
F onto H⊥.

Lemma 3.6: [25] Let F be the folding of F over H .
For any c ∈ F?q , we have f̂ c(α) = f̂ c(α) if α ∈ H⊥ and
f̂ c(α) = 0 otherwise.

The Influence of a Direction: We define the influence of a
direction, which is a generalization of the notion of influence
of a variable. Given a vector b ∈ Fnq \{0n}, we partition Fnq
into lines along the direction b, which are the equivalence
classes for the relation x ∼ y if x−y = λb for some λ ∈ Fq .
This partition is nothing but Fnq /{b}, and it is isomorphic
to Fn−1

q .
Definition 6: (Influence of a direction) Given b ∈ Fnq , and

a function F : Fnq → Fq we define

Infb(F) = Pr
x∈Fn

q ,λ∈Fq

[F (x) 6= F (x+ λb)].

One can relate Infb(F) to the Fourier mass lying outside
the subspace of F̂q

n
given by b · α = 0:

Fact 3.7: Given b ∈ Fnq , we have

Infb(F) =
1

q

∑
c∈F?

q

∑
α:b·α6=0

|f̂ c(α)|2. (5)

We extend the notion of influences to randomized func-
tions generalizing the above notion. To compute the in-
fluence of b for a deterministic function, we pick sample
two points on a line in the direction b and compute their
Hamming distance. For randomized function, we sample two
such points and compute their statistical distance.

Definition 7: Given a randomized function F : Fnq → Fq
and b ∈ Fnq , we define Infb(F) as

Infb(F) = Ex∈Fn
q ,λ∈Fq

[SD(F(x),F(x+ λb)].

One can again bound the influence in terms of the Fourier
mass that lies outside the subspace b · α = 0 (though
the bound is no longer exact, owing to the application of
Cauchy-Schwartz).

Lemma 3.8: Given b ∈ Fnq , we have

Infb(F) 6
1√
2

∑
c∈F?

q

∑
α: b·α6=0

| ˆf c(α)|2
 1

2

.

IV. LIST-DECODING LOW-DIMENSIONAL POLYNOMIALS

In this section, we prove Theorem 2.1. Assume that we
have an efficient procedure Had for finding large Fourier
coefficients over Fnq . Given oracle access to f : Fnq → C
and a parameter µ, Had(f, µ) returns all α ∈ F̂q

n
so that

|f̂(α)|2 > µ. The list-size is bounded by ‖f‖22/µ. Theorem
2.1 is proved by arguing that the polynomial P will be in
the list of polynomials that is returned by the following
algorithm.

Algorithm 1: LIST-DECODING LOW-DIMENSIONAL
POLYNOMIALS
Input: d, k, ε, oracle for F : Fnq → Fq.
Output: All P : Fnq → Fq s.t. deg(P) 6
d,dim(P) 6 k and ∆(P, F) 6 δq(d)(1− ε).

1. Set µ = ε4δq(d)2/(64qk+1).
2. Run Had(f c, µ) for all c ∈ F?q.
3. Let L be the list of all linear

functions α returned.
4. Pick α1, . . . , αk from L.
5. Return all P (α1, . . . , αk) s.t. deg(P) 6

d and ∆(P, F) 6 δq(d)(1− ε).

In the last step, we enumerate over all polynomials P
in k variables of degree d, after replacing the variables by
α1, . . . , αk.

A. Correctness of the Algorithm

Fix a polynomial P with deg(P) 6 d, dim(P) 6 k and
∆(F, P) = η 6 δq(d)(1− ε). Our goal is to prove that the
list L contains a basis for Spec(P), which implies that P
one of the polynomials returned by our algorithm. For the
analysis, we work with the randomized function F obtained
by folding F over Inv(P). Folding over Inv(P) projects the
Fourier spectrum of F on to Spec(P), which is a small
subspace with only qk vectors in it. Our main lemma states
that all directions that were influential in P continue to have
some influence even in F.

Lemma 4.1: (Main) For the function F defined above and
any b 6∈ Inv(P),

Infb(F) >
ε2

4
δq(d).

Proof: Consider the vector space V = Fnq /Inv(P) ∼
Fkq . We can view P as a function P : V → Fq . Similarly,
we can view F as a randomized function F : V → Fq ,
obtained by adding random noise of rate η to P . Formally,
for each y ∈ V , define the noise rate

η(y) = Pr
F

[F(y) 6= P (y)] = Pr
x∈y+Inv(P)

[F (x) 6= P (y)]

and note that

Ey∈V η(y) = Pr
y∈V,x∈y+Inv(P)

[F (x) 6= P (y)]

= Pr
x∈Fn

q

[F (x) 6= P (x)] = η.

Our goal is to show that any b 6∈ Inv(P) has non-
negligible influence on F. Recall that for a randomized
function F : Fnq → Fq and b ∈ Fnq , we defined Infb(F)
as

Infb(F) = Ex∈Fn
q ,λ∈Fq [SD(F(x),F(x+ λb))].

Since F is invariant on Inv(P), this is equivalent to

Infb(F) = Ey∈V,λ∈Fq
[SD(F(y),F(y + λb))]. (6)

Consider V/{b}, the partition of V into lines along b. We
can rewrite Equation 6 as

Infb(F) = EL∈V/{b}
x,y∈L

[SD(F(x),F(y))]. (7)

Let us fix a basis containing the vector b for V : call it
{a1, . . . , ak−1, b}. Every vector y ∈ V can be written in this
basis as y =

∑k−1
i=1 aiyi + byk. The polynomial P can we

written as P (y1, . . . , yk) of degree d. Assume that yk occurs
with degree d2 6 q− 1 (this might depend on the choice of
basis). So we can write

P (y1, . . . , yk) = Q(y1, . . . , yk−1)yd2k

+
∑
e<d2

Qe(y1, . . . , yk−1)yek.

for some Q such that deg(Q) = d1 6 d− d2. Fixing values
for (y1, . . . , yk−1) specifies a line in V/{b}, while fixing yk
specifies a point on that line. Thus we can rewrite

Infb(F) = E[SD(F(y1, . . . , yk−1, yk),F(y1, . . . , yk−1, y
′
k)].

where the expectation is over y1, . . . , yk−1, yk, y
′
k. We say

that a line ` = (y1, . . . , yk−1) ∈ V/{b} is good if
Q(y1, . . . , yk−1) 6= 0. Since deg(Q) 6 d1, Pr`[` is good] >
δq(d1). Conditioning on the event that ` is good, P |` is a
univariate polynomial of degree d2. Hence, it takes on any
particular value in Fq no more than d2 times. In contrast, if
` is bad, then P |` is constant.

Define the noise rate η(`) for a line as η(`) = Ey∈`[η(y)].
We have E`∈V/{b}[η(`)] = η. We say that a good line is quiet
if the noise rate along the line is low:

η(`) 6

(
1− d2

q

)(
1− ε

2

)
.

We claim that at least ε/2 fraction of good lines are quiet;
else we have

E`[η(`)] > δq(d1)
(

1− ε

2

)(
1− d2

q

)(
1− ε

2

)
> δq(d1)

(
1− d2

q

)
(1− ε) > δq(d)(1− ε).

where the last inequality follows from the following property
of δq(d): for all d1, d2 s.t. d1 + d2 6 d, 0 6 d2 6 q − 1,

δq(d) 6 δq(d1)

(
1− d2

q

)
.

Fix a quiet line `. We have a polynomial P |` : `→ Fq of
degree d2 6 q − 1 and F|` such that

d(P |`,F|`) = Ex∈`[SD(P (x),F(x))]

= Ex∈`[η(x)] 6 δq(d2)− ε′

where δq(d2) = 1− d2
q and ε′ = 1

2δq(d2)ε. The final piece
of the argument is to show that for every quiet line, Infb(F)
is high, which is a claim about univariate polynomials.

Claim 4.2: For a quiet line `, we have
Ex,y∈`[SD(F(x),F(y))] > ε′.

Let us defer the proof of this claim and finish the proof
of Lemma 4.1. We have argued that

Pr
`∈V/{b}

[` is quiet] >
1

2
εδq(d1) (8)

Conditioned on the event that ` is quiet, we have proved that

E
x,y∈`

[SD(F(x),F(y))] >
1

2
εδq(d2) (9)

Plugging this into Equation 7 gives

Infb(F) = E`∈V/{b}
x,y∈`

[SD(F(x),F(y))]

>
ε2

4
δq(d1)δq(d2) >

ε2

4
δq(d) (10)

which completes the proof of Lemma 4.1.
Proof of Claim 4.2: For the purposes of this claim, we

use P and F|` to denote P |` and F` respectively. Similarly
d will denote distance between randomized functions on the
line `.

For every distribution D on Fq , we can define the (con-
stant) randomized function Dq : `→ Fq where Dq(x) = D
for every x ∈ `. We claim that d(P,Dq) > δq(d2) for
every such distribution D. In the case where D = Dy is
concentrated at a single point y ∈ Fq , this holds since
P (x) is a univariate polynomial with deg(P) = d2 and so
Prx[P (x) = y] 6 d2/q. More generally, we have

d(P,Dq) = Ex[SD(P (x),D)] =
∑
x∈Fq

1

q
(1−D(P (x))

=
∑
y∈Fq

Pr[P (x) = y](1−D(y))

> 1− d2

q

where the last inequality uses Prx[P (x) = y] 6 d2/q as
deg(P) 6 d2. By the triangle inequality

d(F,Dq) > d(P,Dq)−d(F, P) > δq(d2)−(δq(d2)−ε′) = ε′.

We compute Ex,y∈`[SD(F(x),F(y))] by first sampling
x ∈ ` and then computing the distance between F and the
distribution Dq where D = F(x).

Ex,y∈`[SD(F(x),F(y))] = Ex∈`[Ey∈`[SD(F(x),F(y))]]

= Ex∈`[d(F(x)q,F)] > ε′.

This finishes the proof of Claim 4.2.
With the Main lemma in hand, Theorem 2.1 follows

easily.
Lemma 4.3: The list L returned contains a basis for

Spec(P).

Proof: Assume that the Fourier coefficients in L ∩
Spec(P) do not span all of Spec(P), rather they span
a subspace B of it that satisfies the additional constraint
b · α = 0 for b 6∈ Inv(P). We have

2

∑
c∈F?

q

∑
α:b·α6=0

|f̂ cα|2
 1

2

> Infb(F) >
1

4
ε2δq(d) (11)

where the first inequality is from Lemma 3.8 and the second
from Lemma 4.1. Applying Lemma 3.6 to the function F
which is F folded over Inv(P), we get f̂ c(α) = f̂ c(α) for
α ∈ Spec(P) and f̂ c(α) = 0 otherwise. Combining these
equations, we get∑

c∈F?
q

∑
α∈Spec(P)\B

|f̂ cα|2 >
1

64
ε4δq(d)2

Since we sum over (qk − qk−1)(q − 1) < qk+1 Fourier
coefficients on the LHS, at least one of them is as large as
the average. Thus, there exist c ∈ F?q and α ∈ Spec(P) \B
so that

|f̂ c(α)|2 > 1

64

ε4δq(d)2

qk+1
.

This coefficient α must belong to the list L, which contra-
dicts the assumption that L ∩ Spec(P) is contained within
B.

A simple calculation which we omit gives the following
bound on the list-size for RMk

q (n, d) (we have not attempted
to optimize this bound). There exists a constant c > 0 such
that

`(RMk
q (n, d), δq(d)(1− ε)) 6 ckqk

d+k2+2k

ε4kδq(d)2k
. (12)

The running time of Algorithm 1 is polynomial in nd, q and
the list-size.

V. REDUCTION TO THE LOW-DIMENSIONAL CASE.

A. Quadratic Forms

We use the deletion lemma from [3]. The following
version of the lemma appears in [16].

Lemma 5.1: [3], [16] (Deletion Lemma) Let C ⊂ Fnq be
a linear code over Fq . Let C′ ⊆ C be a (possibly non-linear)
subset of codewords so that c′ ∈ C′ iff −c′ ∈ C′, and every
codeword c ∈ C \ C′ has wt(c) > δh. Let η = Jq(δ

h) − γ
for γ > 0. Then `(C, η) 6 γ−2`(C′, η).

For quadratic forms Q : Fnq → Fq , dim(Q) coincides
with the well-studied notion of the rank of a quadratic form.
Theorems 6.26, 6.27 and 6.32 from Chapter 6 of [17] give
the following bound:

Lemma 5.2: Let Q : Fnq → Fq be a quadratic form such
that dim(P) = k. Then

wt(Q) > 1− 1

q
− 1

qk/2
.

We use this to complete the proof of Theorem 2.2.
Proof of of Theorem 2.2.: By Lemma VI, if dim(Q) >

6, then we have

wt(Q) > 1− 1

q
− 1

q3
; Jq

(
1− 1

q
− 1

q3

)
> 1− 2

q
.

Hence we can apply Lemma 5.1 with C′ = RM6
q(n, 2) to

conclude that there exists c so that

`(RMq(n, 2), δq(2)−ε) 6 1

ε2
`(RM6

q(n, 2), δq(2)−ε) 6 c
q84

ε26
.

B. The F2 case revisited

Using our techniques, we can give an alternate proof of
the GKZ result that LDR(RM2(n, d) = 2−d. A classical re-
sult of Kasami and Tokura allows us to bound the dimension
of any codeword of RM2(n, d) which has weight less than
2δ2(d).

Lemma 5.3: [18] Let d > 2. Let P : Fn2 → F2 with
deg(P) 6 d and wt(P) < 2δ2(d). Then P is of one of the
following two types:
1. P (α1, . . . , αd+t) = α1 · · ·αd−t(αd−t+1 · · ·αd +
αd+1 · · ·αd+t) 3 6 t < d.

2. P (α1, . . . , αd+2t−2) = α1 · · ·αd−2(αd−1αd +
αd+1αd+2 + · · ·+ αd+2t−3αd+2t−2).

where the αis are independent linear forms.
Strictly speaking, the αis are affine rather than linear, but

we can safely ignore this issue.
Corollary 5.4: Let P : Fn2 → F2 be a degree d poly-

nomial with dim(P) = k > 2d. Then wt(P) > 2δ2(d) −
2−(k+d)/2.

Proof: Assume that wt(P) < 2δ2(d), else the claim is
trivial. Now applying Lemma 5.3, P must be of type (2),
since polynomials of type (1) have dimension less than 2d.
A simple calculation shows that for polynomials of type (2),
if dim(P) = k, then wt(P) > 2δ2(d)− 2−(k+d)/2.

We can now reprove the main result from [3]. Our list-
size bound is polynomial in ε−d, though the exact bound is
inferior to GKZ, who also showed a lower bound of ε−Ω(d).

Theorem 5.5: [3] For all d > 1, it holds that
LDR(RM2(n, d)) = 2−d.

Proof: Pick k = 3d. Take C′ = RMk
2(n, d). By Equation

12, we have `(C′, δ2(d)−ε) 6 cε−12d for some constant c =
c(d) that depends on d. By Corollary 5.4, if dim(P) > 3d,

wt(P) > 2 · 2−d − 2−2d; J2(2 · 2−d − 2−2d) > 2−d.

Hence applying Lemma 5.1, we get

`(RM2(n, d), δ2(d)− ε) 6 cε−(12d+2)

which completes the proof.

VI. THE CASE OF ARBITRARY d AND q.

For cubic forms and higher, codewords of weight 1− 1
q−ε

need not be low-dimensional. However the results of [19],
[20] show that when q is prime, such codewords must be
expressible as functions of a few polynomials of degree d−1.
Define Rankd(P) to be the smallest number of degree d
polynomials Q1, . . . , Qt such that P = f(Q1, . . . , Qt) for
some function f . Note that Rank1(P) = dim(P).

Theorem 6.1: [19], [20] Let q be prime. For every degree
d, there exists a function r(ε) such that if deg(P) = d and
wt(P) 6 1− 1

q − ε, then Rankd−1(P) 6 r(ε).
This suffices to show that over prime fields,

`(RMq(n, d), 1 − 1
q − ε) 6 qOε(nd−1) as opposed to

the trivial qO(nd), by using the Deletion lemma. For d = 2
Lemma suffices, and it holds for all fields. This question
(for the case d = 2) was raised by Tim Gowers in a
blog-post titled “A conversation about complexity lower
bounds, continued”. Further one can find the list of all
such polynomials in similar running time using Theorem
21 from [3].

To extend the approach taken in this work, one would
need a good list-size bound for degree d polynomials where
Rankd−1(P) 6 k. This seems fairly challenging given
current techniques. As a first step one would require the
combining function f to be made explicit. This is done for
d = 3, 4 in recent work of Haramaty and Shpilka [21].

Nevertheless, we believe that with Theorem 2.1 in hand,
it is possible to improve on currently known bounds for
all degrees. For cubic forms and higher, this leads to the
question of how much the distance improves by deleting all
low-dimensional polynomials. To formalize this, we define
δhq (d) which is the smallest weight at which codewords of
unbounded dimension appear. Let

δkq (d) = min{wt(P) : P s.t. deg(P) 6 d, dim(P) = k},
δhq (d) = lim inf

k→∞
δkq (d). (13)

In defining δkq (d), we minimize over the infinite set of all
degree d polynomials P with dim(P) = k, the number of
variables n could be arbitrary. But since dim(P) = k, we
may assume that P is on exactly k variables. Thus we are
in effect minimizing over the finite set of P : Fkq → Fq s.t.
deg(P) = d and dim(P) = k, so δkq (d) is well-defined. Our
interest in δhq (d) stems from the following theorem.

Theorem 6.2: For all d and q it holds that
LDR(RMq(n, d)) > min(Jq(δ

h
q (d)), δq(d)).

Proof: Let η = min(δq(d), Jq(δ
h
q (d)))− ε. Our goal is

to show that for any ε > 0, `(RMq(n, d), η) which is the
list-size at radius η can be bounded independent of n.

Since η 6 δq(d)− ε, by Theorem 2.1 `(RMk
q (n, d), η) 6

`(d, k, q, ε).
We choose k large enough that Jq(δkq (d)) > Jq(δ

h
q (d))−

ε/2 so that η 6 Jq(δ
h
q (d)) − ε 6 Jq(δ

k
q (d)) − ε/2. Every

codeword outside of RMk
q (n, d) has dim(P) > k, and hence

wt(P) > δkq (d). Thus we can invoke Lemma 5.1 with C′ =

RMk
q (n, d) to conclude that

`(RMq(n, d), η) 6
4

ε2
`(d, k, q, ε) = `′(d, k, q, ε).

This shows that the list-size at radius
min(δq(d), Jq(δ

h
q (d))) − ε is bounded independent of

n for every ε > 0, which proves the claim.
While it is a priori unclear if δhq (d) > δq(d), we

conjecture that it is in fact substantially larger.
Conjecture 2: For all d and q it holds that δhq (d) >(

1− 1
q

)
δq(d− 2).

It is easy to see that δqh(d) is at most the claimed bound,
by taking the product of a large rank quadratic form and a
minimum weight polynomial of degree d−2. In the case of
F2, Conjecture 2 is implied by classical results of Kasami
and Tokura [18]. For degree 3 polynomials, Amir Shpilka
observed that it follows from the results of [21].

Observe that
(

1− 1
q

)
δq(d − 2) > δq(d − 1). Hence if

Conjecture 2 holds, then Theorem 6.2 gives

LDR(RMq(n, d)) > min(Jq(δq(d− 1)), δq(d))

which improves on the bound of max(1
2δq(d−1), Jq(δq(d)))

from GKZ for all d and q where their bound is less than
δq(d).

Claim 6.3: For all d and q, it holds that

min(Jq(δq(d− 1)), δq(d)) > max(Jq(δq(d)),
1

2
δq(d− 1)).

The inequality is strict except when d = 1 and d ≡ 0 mod
q − 1, and in both those cases the RHS equals δq(d).

Proof: Note that for all η ∈ [0, 1−1/q], we have η/2 6
Jq(η) 6 η with Jq(η) = η iff η = 1 − 1

q and Jq(η) = η/2
iff η = 0.

Further, if d = a(q−1)+b for 1 6 b 6 q−1, δq(d−1) =

δq(d)
(

1 + 1
q−b

)
hence

q

q − 1
δq(d) 6 δq(d− 1) 6 2δq(d).

The former is tight when d ≡ 1 mod (q−1), the latter when
d ≡ q − 1 mod (q − 1).

We now prove the above claim. Firstly, note that from the
above inequalities, we have

Jq(δq(d− 1)) >
1

2
δq(d− 1) and Jq(δq(d− 1)) > Jq(δq).

Secondly, we also have

δq(d) >
1

2
δq(d− 1) and δq(d) > Jq(δq(d)).

The first inequality is strict, except when d ≡ q−1 mod (q−
1). In this case, the GKZ bound is already tight. Similarly,
the second inequality is strict except when δq(d) = 1 − 1

q ,
which holds when d = 1 or Hadamard codes, in which case
the Johnson bound is tight.

VII. LEARNING PARITY WITH NOISE OVER ARBITRARY
FIELDS.

The Noisy Parity problem is a central problem in learning
theory [25], [29], with connections to coding and cryptog-
raphy. There are cryptosystems whose security is based on
the assumption that learning parity with random noise is
hard over large fields. The two natural noise models for this
problem are random noise and adversarial noise, which we
define below. Unlike the F2 case, there are many possible
models for random noise over Fq of varying sophistication
[30]. Feldman et al. [25] showed that over F2 the (seemingly
harder) adversarial model reduces to the random noise
model. No analogue of their result was previously known
for other fields. We note that for cryptography, the case of
interest is the large field case.

We show that over any field, the learning parity with
adversarial noise reduces to learning parity in a weaker noise
model called the Discrete Memoryless Channel (DMC) noise
model [30]. This is a noise model that lies inbetween the
adversarial model and the additive random noise model.

In the DMC model, we are required to learn some linear
function α : Fnq → Fq , from samples of the form 〈x,F(x)〉,
The noise is modeled by a q×q stochastic matrix W , where
wij = Pr[F(x) = j | α(x) = i]. Thus the noise added may
depend on α(x) but not on x itself, unlike the adversarial
model. But the DMC model is stronger than the additive
noise model where the noise added is a random variable
that is independent of the label. The matrix W is not known
to the algorithm, but we assume that∑

i6q

wii > 1 + qη.

This is analogous to assuming a bound on the overall noise
rate since

Pr
x∈Fn

q

[F(x) = α(x)] =
∑
i∈Fq

Pr[α(x) = i]wii

=
1

q

∑
i

wii >
1

q
+ η.

The adversarial channel model seems harder, being a
generalization of the DMC model. In the adversarial setting
there could be 1

η2 linear function with agreement 1
q + η,

whereas we show that in the DMC model, one can uniquely
recover linear functions (up to scalar multiplication). We
prove the following equivalence between the two models:

Theorem 7.1: Assume there is an algorithm A that solves
the noisy parity problem over Fq in the DMC model in time
T (η, n) using S(η, n) 6 T (η, n) samples. Then there is an
algorithm B that solves the noisy parity problem over Fq in
the adversarial noise model in time poly(q, T (η, n)).

The proof is deferred to the full version [26].

ACKNOWLEDGMENTS

I thank Prasad Raghavendra and Venkatesan Guruswami
for numerous discussions about this problem, without which
this paper would not exist. I also thank Sergey Yekhanin,
David Zuckerman, Jaikumar Radhakrishnan, Madhu Sudan,
Amir Shpilka, Irit Dinur, Ran Raz and Alex Samorodnitsky
for many helpful discussions.

REFERENCES

[1] O. Goldreich and L. Levin, “A hard-core predicate for all
one-way functions.” in Proc. 21st ACM Symposium on the
Theory of Computing (STOC’89), 1989, pp. 25–32.

[2] O. Goldreich, R. Rubinfeld, and M. Sudan, “Learning polyno-
mials with queries: The highly noisy case.” SIAM J. Discrete
Math., vol. 13, no. 4, pp. 535–570, 2000.

[3] P. Gopalan, A. Klivans, and D. Zuckerman, “List-decoding
Reed-Muller codes over small fields,” in Proc. 40th ACM
Symposium on the Theory of Computing (STOC’08), 2008.

[4] S. Arora and M. Sudan, “Improved low-degree testing and
its applications.” Combinatorica, vol. 23, no. 3, pp. 365–426,
2003.

[5] M. Sudan, L. Trevisan, and S. P. Vadhan, “Pseudorandom
generators without the XOR lemma.” J. Comput. Syst. Sci.,
vol. 62, no. 2, pp. 236–266, 2001.

[6] P. Elias, “List decoding for noisy channels,” Research Labo-
ratory of Electronics, MIT, Tech. Rep. 335, 1957.

[7] J. Wozencraft, “List decoding,” Quarterly Progress Report,
Research Laboratory of Electronics, MIT, Tech. Rep. 48:90-
95, 1958.

[8] M. Sudan, “Decoding of Reed-Solomon codes beyond the
error-correction bound.” Journal of Complexity, vol. 13, no. 1,
pp. 180–193, 1997.

[9] V. Guruswami, List Decoding of Error-Correcting Codes, ser.
Lecture Notes in Computer Science. Springer, 2004, vol.
3282.

[10] M. Sudan, “List decoding: Algorithms and applications,”
SIGACT News, vol. 31, no. 1, pp. 16–27, 2000.

[11] F. MacWilliams and N. Sloane, The Theory of Error-
Correcting Codes. North-Holland, 1977.

[12] V. Guruswami and M. Sudan, “Improved decoding of Reed-
Solomon and Algebraic-Geometric codes.” IEEE Transac-
tions on Information Theory, vol. 45(6), pp. 1757–1767, 1999.

[13] R. Pellikaan and X. Wu, “List decoding of q-ary Reed-Muller
codes,” IEEE Transactions on Information Theory, vol. 50(4),
pp. 679–682, 2004.

[14] S. M. Johnson, “A new upper bound for error-correcting
codes,” IEEE Transactions on Information Theory, vol. 8, pp.
203–207, 1962.

[15] ——, “Improved asymptotic bounds for error-correcting
codes,” IEEE Transactions on Information Theory, vol. 9, pp.
198–205, 1963.

[16] P. Gopalan, V. Guruswami, and P. Raghavendra, “List-
decoding tensor products and interleaved codes,” in Proc. 41st

ACM Symposium on the Theory of Computing (STOC’09),
2009.

[17] R. Lidl and H. Neiderreiter, Finite Fields. Cambridge
University Press, 1997.

[18] T. Kasami and N. Tokura, “On the weight structure of Reed-
Muller codes,” IEEE Transactions on Information Theory,
vol. 16(6), pp. 752–759, 1970.

[19] B. Green and T. Tao, “The distribution of polynomials over
finite fields, with applications to the Gowers norms,” Contrib.
Discrete Math, no. 4(2), pp. 1–36, 2009.

[20] T. Kaufman and S. Lovett, “Worst-case to average-case
reductions for polynomials,” in Proc. 49th IEEE Symp. on
Foundations of Computer Science (FOCS’08), 2008.

[21] E. Haramaty and A. Shpilka, “On the structure of cubic and
quartic polynomials,” in Proc. 42nd ACM Symposium on the
Theory of Computing (STOC’10), 2010, pp. 331–340.

[22] T. Kaufman and S. Lovett, “Weight distribution and list-
decoding size of Reed-Muller codes,” in Proc. 1st Symposium
on Innovations in Computer Science (ICS 2010), 2010.

[23] E. Kushilevitz and Y. Mansour, “Learning decision trees using
the Fourier spectrum,” SIAM Journal of Computing, vol.
22(6), pp. 1331–1348, 1993.

[24] J. Kahn, G. Kalai, and N. Linial, “The influence of variables
on Boolean functions,” in Proc. 29th IEEE Symp. on Foun-
dations of Computer Science (FOCS’88), 1988, pp. 68–80.

[25] V. Feldman, P. Gopalan, S. Khot, and A. K. Ponnuswami,
“New results for learning noisy parities and halfspaces,” in
Proc. 47th IEEE Symp. on Foundations of Computer Science
(FOCS’06), 2006.

[26] P. Gopalan, “A Fourier-analytic approach to
Reed-Muller decoding,” 2010. [Online]. Available:
http://research.microsoft.com/∼parik

[27] P. Gopalan, S. Khot, and R. Saket, “Hardness of reconstruct-
ing multivariate polynomials over finite fields,” in Proc. 48th

IEEE Symp. on Foundations of Computer Science (FOCS’07),
2007, pp. 349–359.

[28] P. Gopalan, R. O’Donnell, A. Shpilka, R. Servedio, and
K. Wimmer, “Testing Fourier dimensionality and sparsity,”
in ICALP (1), 2009, pp. 500–512.

[29] A. Blum, A. Kalai, and H. Wasserman, “Noise-tolerant learn-
ing, the parity problem, and the statistical query model,” J.
ACM, vol. 50, no. 4, pp. 506–519, 2003.

[30] A. Lapidoth and P. Narayan, “Reliable communication un-
der channel uncertainty,” IEEE Transactions on Information
Theory, vol. 44(6), pp. 2148–2177, 1998.

