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Abstract—In the MINIMUM CONVEX COVER (MCC) prob-
lem, we are given a simple polygon P and an integer k, and
the question is if there exist k convex polygons whose union is
P . It is known that MCC is NP-hard [Culberson & Reckhow:
Covering polygons is hard, FOCS 1988/Journal of Algorithms
1994] and in ∃R [O’Rourke: The complexity of computing
minimum convex covers for polygons, Allerton 1982]. We prove
that MCC is ∃R-hard, and the problem is thus ∃R-complete.
In other words, the problem is equivalent to deciding whether
a system of polynomial equations and inequalities with integer
coefficients has a real solution.

If a cover for our constructed polygon exists, then so does
a cover consisting entirely of triangles. As a byproduct, we
therefore also establish that it is ∃R-complete to decide whether
k triangles cover a given polygon.

The issue that it was not known if finding a minimum cover
is in NP has repeatedly been raised in the literature, and it
was mentioned as a “long-standing open question” already in
2001 [Eidenbenz & Widmayer: An approximation algorithm
for minimum convex cover with logarithmic performance
guarantee, ESA 2001/SIAM Journal on Computing 2003]. We
prove that assuming the widespread belief that NP 6= ∃R, the
problem is not in NP.

An implication of the result is that many natural approaches
to finding small covers are bound to give suboptimal solutions
in some cases, since irrational coordinates of arbitrarily high
algebraic degree can be needed for the corners of the pieces
in an optimal solution.

Keywords-Polygon decomposition, Minimum Convex Cover,
Existential Theory of the Reals

I. INTRODUCTION

Polygons are among the geometric structures that are
most frequently used to model physical objects, as they
are suitable for representing a wide variety of shapes and
figures in computer graphics and vision, pattern recogni-
tion, robotics, computer-aided design and manufacturing,
and other computational fields. Polygons may have very
complicated shapes that make it difficult to find algorithms
to process them directly. A natural first step in designing
algorithms is to decompose the given polygon P into more
basic pieces of a restricted type that permits very efficient
processing. Here, the union of the pieces must be exactly
the given polygon P . When such a decomposition has been
obtained, the partial solutions to the individual pieces can
be combined to obtain a solution for the complete polygon
P . By “more basic pieces,” we mean pieces that belong

∗ This is an extended abstract of the paper [1].

to a more restricted class of polygons. Ideally, we find a
decomposition of the polygon P into the minimum number
of pieces.

Many different decomposition problems arise this way,
depending on restrictions on the polygon P , the type of
basic pieces, and whether the decomposition is a cover or
a partition. In covering problems, we just require the union
of the pieces to equal P , whereas in partition problems,
we have the further requirement that the pieces be interior-
disjoint. Another important distinction is whether or not
Steiner points are allowed. A Steiner point is a corner of
a piece in a decomposition which is not also a corner of P .
Furthermore, it often makes a big difference whether or not
P is allowed to have holes.

Because of the many variants of decomposition problems,
their applicability within many practical domains, and the
very appealing fundamental nature and the creativity and
technical skills required to solve them, numerous papers
have been written about these problems. The vast literature is
documented in several highly-cited books and survey papers
that give an overview of the state-of-the-art at the time of
publication [2]–[8].

One of the first decomposition problems to be studied was
that of covering a polygon with convex polygons. Pavlidis
studied this problem from a practical angle in relation to
shape analysis and pattern recognition in a series of papers
and a book, the first paper from 1968 [9]–[14]. The related
NP-complete problem of covering an orthogonal polygon
with a given number of rectangles was mentioned by Garey
and Johnson’s famous book [15, p. 232], who denoted the
problem RECTILINEAR PICTURE COMPRESSION, since a
collection of pixels can be compactly represented as their
minimum rectangle cover. For more recent practical work
involving versions of convex covering problems, see the
surveys [16], [17] and the paper [18].

O’Rourke and Supowit [19] proved that for polygons
with holes, it is NP-hard to find minimum covers using
convex, star-shaped, and spiral polygons as pieces. This was
established with and without Steiner points allowed. When
Steiner points are not allowed, the covering problems are
clearly in NP and are thus NP-complete, whereas the ones
with Steiner points allowed are not immediately seen to be
decidable at all. In the paper [20], O’Rourke proved the
convex covering problem with Steiner points to be decidable
by showing that any given instance can be expressed as a
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Tarski formula. In modern terms, we can say that he proved
∃R-membership. He gave an example of a polygon P where
Steiner points are needed and edge extensions of P are not
sufficient to form the pieces of a minimum cover. The figure
is now the logo of The Society of Computational Geometry
and often also of Symposium on Computational Geometry.

Since the NP-hardness reductions in [19] relied on poly-
gons with holes, it was still not known if the covering
problems for polygons without holes could be solved ef-
ficiently. Chazelle and Dobkin [21] showed already in 1979
that a polygon without holes can be partitioned into a
minimum number of convex pieces in polynomial time; a
problem that had also been believed to be NP-hard, so this
might have given hope for the covering problems as well.
However, it was soon proved that some covering problems
are NP-hard even for polygons without holes. The first
one was apparently the problem of covering a polygon
with a minimum number of star-shaped polygons, which
is usually known as the ART GALLERY problem. The first
proof is often attributed to Alok Aggarwal’s PhD thesis [22]
(see for instance [23]), which is unfortunately practically
unavailable. The first published proof appears to be in a
paper by Lee and Lin [24]. Then followed the proof by
Culberson and Reckhow [23] that it is likewise NP-hard to
cover polygons without holes with a minimum number of
convex pieces. The authors added the comment: “We are
unable to show that general convex covering is in NP”.
The issue that the problem is not known to be in NP has
been raised in many other papers and books [3], [4], [6],
[7], [20], [25]–[27], and was mentioned as a “long-standing
open question” already in 2001 [26]. Christ [27] proved that
deciding if a polygon can be covered by a minimum number
of triangles is also NP-hard.

In this paper, we prove that it is ∃R-complete to decide if a
polygon can be covered by a given number of convex pieces.
The problem is thus not in NP, assuming the widespread
belief that NP 6= ∃R. Our reduction uses techniques that
were developed for proving that ART GALLERY and some
versions of geometric packing are ∃R-complete [28], [29].
As a biproduct, we show that it is even ∃R-complete to find
a minimum triangle cover. The hardness holds also when
the corners of P are in general position, i.e., no three are
collinear.

A. Existential theory of the reals

In order to define the complexity class ∃R, we first define
the problem ETR in the style of Garey and Johnson [15].
Instance: A well-formed formula Φ(x1, x2, . . . , xn) using
symbols from the set

{x1, x2, . . . , xn,∧,∨,¬, 0, 1,+,−, ·, ( , ) ,=, <,≤} .

Question: Is the expression

∃x1, x2, . . . , xn ∈ R : Φ(x1, x2, . . . , xn)

true?

The complexity class ∃R consists of all problems that
are many-one reducible to ETR in polynomial time, and
a problem is ∃R-hard if there is a reduction in the other
direction. It is currently known that

NP ⊆ ∃R ⊆ PSPACE.

It is not hard see that the problem ETR is NP-hard, yielding
the first inclusion. The containment ∃R ⊆ PSPACE is highly
non-trivial, and it was first established by Canny [30].

As examples of ∃R-complete problems, we mention prob-
lems related to realization of order-types [31]–[33], graph
drawing [34]–[36], recognition of geometric graphs [37]–
[40], straightening of curves [41], guarding polygons [28],
Nash-equilibria [42], [43], linkages [44]–[46], matrix-
decompositions [47]–[49], polytope theory [31], and geo-
metric packing [29]. See also the surveys [50]–[52].

B. Results

Before stating our result, let us define the covering prob-
lem in more detail. We define a polygon P to be a compact
region in the plane such that the boundary ∂P is a closed,
simple curve consisting of finitely many line segments. We
now define the problem MINIMUM CONVEX COVER (MCC
for brevity) as follows.
Instance: A polygon P represented as an array of the
coordinates of the corners in cyclic order, and a positive
integer k. The corners have rational coordinates.
Question: Do there exist k convex polygons Q1, . . . , Qk

such that
⋃k

i=1Qi = P?

We get the problem MINIMUM TRIANGLE COVER by
requiring that each piece Qi is a triangle. We can now state
the main result of the paper.

Theorem 1: MINIMUM CONVEX COVER and MINIMUM
TRIANGLE COVER are ∃R-complete.

Recall that O’Rourke [20] proved ∃R-membership already
in 1982. Alternatively, ∃R-membership can be easily proven
using the recent framework by Erickson, van der Hoog, and
Miltzow [53]. This paper is therefore only concerned with
proving ∃R-hardness.

An implication of the result is that many natural ap-
proaches to finding small covers are bound to give subop-
timal solutions in some cases. One might attempt to make
covers consisting of pieces with corners chosen from some
discrete set of points inside the given polygon. For instance,
Eidenbenz and Widmayer [26] gave a O(log n)-factor ap-
proximation algorithm for finding a minimum convex cover
for a polygon P by choosing pieces with corners from a set
of O(n16) points. These points are obtained by first making
the arrangement of lines through all pairs of corners of P .
We then construct all lines through pairs of intersection
points in the first arrangement. The intersection points of
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this final arrangement, of which there are O(n16), are the
candidate set of corners of the pieces from which a cover is
constructed.

Eidenbenz and Widmayer showed that for this particular
set, there exists a cover consisting of at most 3 times more
pieces than in the unrestricted optimum. Our result shows
that the optimal solution cannot always be found by choosing
the corners from such a set of points, even if the process
of making new lines and intersection points was repeated
any finite number of times. It follows from our construction
that there are polygons where the corners of some pieces in
any optimal cover have irrational coordinates with arbitrarily
high algebraic degree. As an example, we can consider an
equation such as x5 − 4x+ 2 = 0 [54], which has one real
solution and that solution cannot be expressed by radicals
(that is, the solution cannot be written using integers and
basic arithmetic operations including powers and roots). We
can then transform the equation to an instance of MCC, so
that in the optimal cover, some pieces have coordinates that
cannot be expressible by radicals. We state this as a corollary
to our construction.

Corollary 2: There exists a polygon P such that in any
minimum convex cover for P , a piece has a corner with a
coordinate that is not expressible by radicals.

C. Structure of the paper and basic techniques

We prove that ETR reduces to MCC using two interme-
diate problems: RANGE-ETR-INV and MRCC, which we
define in Section II. Essentially, an instance of RANGE-
ETR-INV is a conjunction of addition constrains of the
form x + y = z and inversion constraints of the form
x · y = 1. Each variable is restricted to a tiny subinterval
of [ 12 , 2], and the goal is to decide if there exist values
of the variables that satisfy all the addition and inversion
constraints. This problem was developed recently in order
to prove ∃R-hardness of geometric packing problems [29].

The problem MRCC is a technical version of MCC
where only some crucial parts of the polygon have to be
covered, namely a specific set of marked corners and a set of
marked rectangles. The introduction of the problem MRCC
is crucial in order to keep our reductions manageable. In the
proof, we show that everything else than the marked corners
and rectangles can be covered in a generic way by adding
some spikes to the boundary of the polygon. We therefore
get an instance of MCC which is equivalent to the instance
of MRCC that we are reducing from.

In Section III, we give the reduction from RANGE-ETR-
INV to MRCC, which is the major part of the work.

One of our basic tools in the reduction to MRCC is
to represent variables using specific horizontal variable
segments contained in the constructed polygon; see Figure 1.
A segment s representing a variable x corresponds to the in-
terval [1/2, 2] of values that x can attain, with the endpoints
representing x = 1/2 and x = 2. The values of points in

between the endpoints are defined by linear interpolation. A
part of a segment s must be covered by a piece Q that also
covers a particular marked corner of the polygon. The right-
most (or left-most) point in the intersection s ∩ Q defines
the value that Q represents on s. The rest of s must then be
covered by another piece (which also covers another marked
corner).

In the bottom of the polygon, we have some base pockets
containing variable segments representing all the variables.
We describe gadgets for addition inequalities, x+y ≥ z and
x+y ≤ z, and inversion inequalities, x ·y ≥ 1 and x ·y ≤ 1,
and these gadgets are placed far to the right and above the
base pockets. The gadgets also contain variable segments.
We create some corridors that connect the gadgets and the
base pockets, and they ensure that if a cover exists, then
appropriate inequalities hold between the values represented
in the base pockets and those in the gadgets. We are therefore
able to conclude that if a cover exists, then so does a solution
to the instance of RANGE-ETR-INV that we are reducing
from.

Our reduction shares some resemblance with that
from [28], and many of the geometric tools underlying
our construction are similar to the ones used in that paper.
In [28], variables are also represented by segments in the
polygon, but the actual value is defined by the position of
a guard standing on the segment (as shown in Figure 1),
whereas in our case, it is the left- or right-most point covered
by a convex piece. The geometric principles underlying the
addition and inversion gadgets are the same in the two
papers, but again the actual realizations of the gadgets are
very different.

A key insight is that one convex piece in a base pocket can
partially cover any number of variable segments, and thus
represent numerous copies of the same variable, as sketched
in Figure 1 (right). Each of these segments will have its
own propagation corner, which is a marked corner. The
propagation corner can then be covered by a propagation
piece, which must cover the remaining part of the segment.
Each propagation piece is very long and thin and sticks into
a corridor far away. This is needed so that a variable that
appears in many addition and inversion constraints can be
copied into all the corresponding gadgets. In contrast to this,
the reduction to ART GALLERY in [28] relied on the fact
that a single guard can look into several different corridors.
That technique is not possible to realize with convex pieces,
because points in different corridors cannot see each other
and hence no convex piece covers points in more than one
corridor.

II. AUXILLIARY PROBLEMS: RANGE-ETR-INV AND
MRCC

In this section we introduce the two problems RANGE-
ETR-INV and MRCC that will be used as intermediate
problems in our reduction from ETR to MCC.
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Figure 1. Representing variables in the paper [28] and this paper. Left: A guard segment s with a guard representing the value 1. When the guard moves
to the right, more visibility is blocked due to the corner d. Middle: A piece covering the marked corner c represents the value 1 on the variable segment s.
By rotating the dashed edge around the corner d, more or less of s will be covered. Right: Several variable segments can be partially covered by a single
piece and then “copied” into different gadgets by the orange propagation pieces.

A. RANGE-ETR-INV

Definition 3: An ETR-INV formula Φ = Φ(x1, . . . , xn)
is a conjunction(

n∧
i=1

1/2 ≤ xi ≤ 2

)
∧

(
m∧
i=1

Ci

)
,

where m ≥ 0 and each Ci is of one of the forms

x+ y = z, x · y = 1

for x, y, z ∈ {x1, . . . , xn}.
We can now define the problem RANGE-ETR-INV as

follows.
Instance: A tuple I = [Φ, δ, (I(x1), . . . , I(xn))], where Φ
is an ETR-INV formula, δ > 0 is a (small) number, and, for
each variable x ∈ {x1, . . . , xn}, I(x) is an interval I(x) ⊆
[1/2, 2] such that |I(x)| ≤ δ. Define V (Φ) := {x ∈ Rn :
Φ(x)}. We are promised that V (Φ) ⊂ I(x1)× · · · × I(xn).
Question: Is V (Φ) 6= ∅?

The following theorem establishes that it suffices to make
a reduction from RANGE-ETR-INV in order to prove that
MCC is ∃R-hard.

Theorem 4 ( [29]): RANGE-ETR-INV is ∃R-complete,
even when δ = O(n−c) for any constant c > 0.

B. MINIMUM RESTRICTED CONVEX COVER (MRCC)

We now turn our attention to the problem MINIMUM
RESTRICTED CONVEX COVER (MRCC). As we will see
later in this section, MRCC can be reduced to MCC. There-
fore, ∃R-hardness for MRCC implies the same hardness for
MCC. We define MRCC as follows.
Instance: A tuple 〈P, C,R〉 consisting of the following
parts:
• A simple polygon P .
• A subset C = {c1, c2, . . . , ck} of the corners of P called

marked corners.

• A set of pairwise disjoint axis-parallel rectangles R =
{R1, . . . , Rm} contained in P , called marked rectan-
gles.

Question: Do there exist k = |C| convex polygons
Q1, . . . , Qk contained in P such that C ⊂

⋃
Qi and

R ⊂
⋃
Qi for all marked rectangles R ∈ R?

An instance of MRCC comes with a promise which we
will explain below. In order to state the promise, we need
some notation. For a corner c of a polygon P , define ∆(c)
to be the triangle with corners at c and the two neighbouring
corners of P . Note that ∆(c) may not be contained in P ,
but that will always be the case when we use the notation.

For a marked rectangle R ∈ R, define the vertical bar
Πv(R) to be the region of points that are vertically visible
from R, i.e., the points p ∈ P such that there is a point
q ∈ R where pq is a vertical line segment contained in P .
In a similar way, we define the horizontal bar Πh(R) as the
points that are horizontally visible from R; see Figure 2.

In order to define the vertical trapezoidation of a polygon
P , we consider for each corner c of P the vertical segment
that (i) contains c, (ii) is contained in P , and (iii) is maximal
with respect to inclusion. These segments partition P into
trapezoids, some of which are only triangles. The hori-
zontal trapezoidation is defined similarly, using horizontal
segments.

Promise: For the instances I = 〈P, C,R〉 of MRCC
that we will consider, we promise that the following prop-
erties hold, which we call the MRCC promise. For conve-
nience, we have named each individual point of the promise.

1) Skew triangle promise: For each marked corner c, the
triangle ∆(c) intersects the vertical and the horizontal
line containing c only at the point c.

2) Trapezoid generality promise: In any trapezoid T in
the vertical trapezoidation of P , at least one right cor-
ner of T is not a corner of P , unless the right corners
of T are coincident (so that T is a triangle). Similarly
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Πv(R)

Πh(R)

Figure 2. A polygon with a marked rectangle R the vertical and horizontal bars shown.

for the left corners. Likewise, in any trapezoid in the
horizontal trapezoidation, at least one top corner is not
a corner of P unless they are coincident, and similarly
for the bottom corners.

3) Bar intersection promise: For any two marked rectan-
gles Ri and Rj , the vertical bar of Ri and the hori-
zontal bar of Rj are either disjoint or their intersection
is contained in a marked rectangle.

4) Broad cover promise: If I has a cover, then there also
exists a cover Q for I such that ∆(c) ⊂

⋃
Q∈QQ for

all c ∈ C.

Lemma 5: Suppose that MINIMUM RESTRICTED CON-
VEX COVER is ∃R-hard, even when restricted to instances
satisfying the MRCC promise. Then MINIMUM CONVEX
COVER is also ∃R-hard.

We here give a sketch of the proof of the lemma.
Proof (sketch): Let I := 〈 P, C,R〉 be an instance

of MRCC that satisfies the promise. We here describe the
high-level idea behind our reduction to MCC. We construct
a larger polygon P ′ ⊃ P by adding some number s of spikes
to P . We add the spikes so that they can be covered by
triangles that also cover everything of P except the marked
rectangles R and regions close to the marked corners C. In
order to carry out this idea, we consider a vertical and a
horizontal trapezoidation of P except for the vertical and
horizontal bars of the marked rectangles. We add the spikes
to some of the trapezoids and make sure that nothing outside
these trapezoids can be covered when covering the spikes;
see Figure 3.

We then get the instance I ′ := 〈 P ′, k′ 〉 of MCC, where
the parameter k′ is defined as k′ := k + s with k := |C|. In
the full proof we argue that a cover for I ′ using k′ = k+ s
convex polygons contains s polygons covering the added
spikes. The spikes have been chosen so that they cannot be
covered while also covering R nor C, so the remaining k
polygons must cover R and C and thus constitute a cover for
I. On the other hand, given a cover Q for I, one can add s
convex polygons contained in P ′ that cover the spikes and
everything else of P ′ not covered by Q, and thus obtain a
cover for I ′. Therefore, the instances are equivalent. In order
to carry out the details, all the parts of the MRCC promise
turn out to be needed.

III. REDUCTION FROM RANGE-ETR-INV TO MRCC

Let I1 be an instance of RANGE-ETR-INV with an ETR-
INV formula Φ of n variables X := {x1, . . . , xn}. We show
that there exists an instance I2 := 〈 P, C,R〉 of MRCC
which can be computed in polynomial time such that Φ has
a solution if and only if I2 has a cover. Recall that a cover
Q of I2 is a set of |C| convex polygons contained in P
that together cover the marked corners C and the marked
rectangles in R. A high-level sketch of the polygon P is
shown in Figure 4.

A. Basic tools

Before describing the actual geometry of the instance I2,
we explain the basic tools that underlie our construction.

1) Invisibility property: We make sure that our con-
structed instance I2 satisfies the following invisibility prop-
erty: No two marked corners can see each other.

For a marked corner c ∈ C, let e1 and e2 be the two edges
of P incident at c. Except for one marked corner in each ≤-
inversion gadget, it holds that c is the lower endpoint of both
e1 and e2. The invisibility thus follows for all other corners.
Additionally, it holds without exception that c is either the
left endpoint of both e1 and e2 or the right endpoint of both.

Note that since a cover Q for I2 consists of |C| pieces
and no piece can cover more than one marked corner by
the invisibility property, it follows that each piece Q ∈ Q
contains exactly one marked corner c ∈ C.

2) Critical segments and the bi-cover property: In the
instance I2 that we construct, a marked rectangle R ∈ R
often contains a special line segment s which we call a
critical segment; see Figure 5. The following property turns
out to be crucial, and we call it the bi-cover property: For
each critical segment s, there are at least two and at most
three marked corners that can see s. There are three if and
only if s is not horizontal, and in that case, one of these three
corners h is a helper corner (to be described later), and h
is incident to an edge contained in the extension of s. In
particular, s is on the boundary of the visibility polygon of
h. Otherwise, if s is horizontal, then s is a variable segment,
to be described in more detail below.

A critical segment will always be contained in a marked
rectangle, but we will also make some marked rectangles
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Figure 3. The figure shows how we add spikes to trapezoids in a trapezoidation of P . The fat edges are edges of P and the dots show the corners of
P . The trapezoid generality promise is used to ensure that we can avoid making spikes where P has a corner, unless the trapezoid is a triangle. We can
therefore prevent the spikes from overlapping with P . Left: When the trapezoid has a left and a right corner that are not corners of P , we add two spikes
such that the trapezoid and the two spikes can be covered by two triangles. Middle: When both trapezoid corners in the same side are also corners of P ,
we add three spikes. Right: When the trapezoid is a triangle, we add two spikes as shown.

O(N) CN2

O(N)

CN2

Base pockets

Gadgets

`r

Figure 4. A high-level sketch of our construction. The polygon P will
have dimensions quadratic in N , which is proportional to the size of the
ETR-INV instance Φ.

that do not contain critical segments. Often these are intro-
duced to satisfy the bar intersection promise of the MRCC
instance, and they will be defined as the intersection of a
vertical and a horizontal bar of two other marked rectangles.

Consider a critical segment s and the marked rectangle R
containing s. Let c1, c2 ∈ C be the marked corners that see
s and are not helper corners. These are called lever corners,
and we say that c1 and c2 are responsible for s and for the
marked rectangle R. Since a cover for I2 must cover all of
the rectangle R, it follows from the invisibility property and
the bi-cover property that c1 and c2 must be covered by two
pieces Q1 and Q2 that also together cover s. All the marked
corners that we make will be either helper corners or lever
corners. A piece that covers a lever corner is called a lever
piece and otherwise it is a helper piece.

3) Helper corners: As mentioned above, we will make
two types of marked corners, namely lever corners and
helper corners. Furthermore, we will make two kinds of
helper corners. In general, we make a helper corner when a
marked rectangle or a part of a marked rectangle cannot be
covered by lever pieces. One situation is when we introduce
a marked rectangle with the sole purpose of satisfying
the bar intersection promise described in Section II-B; see

Figure 6 for an example.
The other situation is when we have a marked rectangle

R containing a critical segment s which is not horizontal;
see Figure 5 (right). In this case, the two pieces Q1 and Q2

covering the lever corners c1 and c2 responsible for s can
cover the part of R above or below s, but they cannot cover
everything on the other side. We then make a helper corner
h so that one of the edges incident at h is contained in the
extension of s. Thus, s is on the boundary of the visibility
polygon of h, and a piece covering h can cover the part of
R on the other side of s.

If a critical segment s is horizontal, we make the marked
rectangle R so that s is contained in the bottom or top edge
of R, as seen in Figure 5 (left). Then the pieces covering
the responsible corners c1 and c2 will be able to cover all
of R without the use of a helper corner.

4) Representing variables: Each variable x ∈ X is
represented by a collection of variable segments, which are
horizontal critical segments. Consider one variable segment
s := ab where a is to the left of b, and assume that s
represents x. The segment s can be oriented either to the
left or to the right. Each point p on s represents a value of
x in the interval [ 12 , 2], which we denote as x(s, p). If s is
right-oriented, then we define x(s, p) := 1/2 + 3‖ap‖

2‖ab‖ , and

otherwise we define x(s, p) := 1/2 + 3‖bp‖
2‖ab‖ . In particular,

x(s, ·) is a linear map from s to [ 12 , 2].
Consider a variable segment s and a lever corner c

responsible for s. In a cover Q for I2, the piece Q covering
c specifies a value at s, defined as follows. Each lever corner
comes with a pivot which is also a corner of P . Let d be
the pivot of c. It is then always the case that d has another
y-coordinate than s. For a point q ∈ s, consider the line

←→
qd

through q and the pivot d, which is never horizontal by the
previous remark, so the line has a well-defined left and right
side. Furthermore, it will be the case that whether c is to the
right or left of

←→
qd does not depend on the particular point

q. We say that c is the right-responsible or left-responsible
for s, depending on this side. For instance, in Figure 8, cc is
right-responsible and cb is left-responsible for the segment
s3.

If c is a right-responsible, then we define pQ(s, c) as
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c1

c2

s
R

c1

c2

h

Figure 5. Left: A horizontal critical segment s contained in the bottom edge of its marked rectangle R. Two pieces cover R and the responsible lever
corners c1 and c2. Right: A critical segment that is not horizontal. We use a helper corner h with an incident edge contained in the extension of s. The
three pieces cover R and the responsible lever corners c1, c2 and the helper corner h.

R2

R1

h

Rh

Figure 6. In order to satisfy the bar intersection promise, we make a
marked rectangle Rh which is the intersection of the horizontal bar of R1

and the vertical bar of R2. We then make a helper corner h so that a piece
covering h can also cover Rh.

the leftmost point in Q ∩ s (or the right endpoint of s if
Q∩ s = ∅). Otherwise, we define pQ(s, c) as the rightmost
point in Q ∩ s (or the left endpoint of s if Q ∩ s = ∅).
We now define the value represented by Q at s with respect
to c as vQ(s, c) := x(s,pQ(s, c)). We will usually use the
simplified notation p(s, c) and v(s, c) if Q is clear from the
context.

Recall that for each critical segment s, there are two
responsible lever corners c1, c2, so that in a cover for I2,
the pieces covering c1 and c2 must together cover s. It
will always be the case in our construction that one is left-
responsible and the other is right-responsible. We then have
the following observation.

Observation 6: Consider a variable segment s := ab,
where a is the left endpoint, and let c1 be the left-responsible
for s and c2 the right-responsible. Consider any cover Q.
Since the pieces covering c1 and c2 also cover s, we have
p(s, c2) ∈ ap(s, c1). It follows that if s is right-oriented,
then v(s, c1) ≥ v(s, c2). Otherwise, v(s, c1) ≤ v(s, c2).

We are now ready to state the theorem that expresses that
our reduction works as desired.

Theorem 7: Suppose that there is a solution to Φ. Then
our constructed instance I2 := 〈 P, C,R〉 has a cover, and
any cover Q of I2 specifies a solution to Φ, as described by
the following two properties.
• Each variable x ∈ X is specified consistently by Q:

For each variable segment s representing x, consider
the corners c1, c2 ∈ C that are responsible for s. Then

x(s, c1) = x(s, c2), and this value is the same for all
segments s representing x.

• The cover Q is feasible, i.e., the values of X thus
specified is a solution to Φ.

On the other hand, if there is no solution to Φ, then there is
no cover for I2. The instance I2 can be computed in time
polynomial in the input size |I1|. It thus follows that MRCC
is ∃R-complete.

5) Lever mechanism: The basic mechanism of our con-
struction is similar to that of a lever (as known from me-
chanics) and works as follows; see Figure 7. As mentioned
earlier, a marked corner will either be a helper corner or
a lever corner, and each lever corner has a pivot d, which
is also a corner of P but not a marked corner. The two
corners c and d can always see each other. There is also a
set of marked rectangles S := {R1, . . . , Rl}, l ≥ 2, for
which c is one of the responsible corners. In particular,
the rectangles S can be seen from c. One or more of the
rectangles St := {s1, . . . , sm}, m < l, are above d and one
or more Sb := {sm+1, . . . , sl} are below d. Recall that some
marked rectangles contain variable segments. The variable
segments contained in the rectangles S all represent the same
variable x ∈ X , and the variable segments in St have the
same orientation, which is the opposite of that of the variable
segments in Sl.

A piece of a cover for I2 that covers a lever corner c is
called a lever piece. A lever piece Q can cover a part of the
rectangles S, but the pivot d is preventing Q from covering
all the rectangles entirely. Suppose that we want the piece
Q to have non-empty intersection with all rectangles in S
and cover as much as possible of each one. Such a piece
must have an edge e that contains d, as we could otherwise
cover more of the top rectangles St or the bottom rectangles
Sb. We say that e is a lever edge, and e has the property
that it intersects all the rectangles S. Furthermore, the lever
piece Q contains the part of each rectangle R on the same
side of e, either to the left (if c is the left-responsible for the
rectangles S) or to the right (if c is the right-responsible). We
can now imagine that the edge e rotates around the pivot d.
Doing so, the piece Q will cover more of the top rectangles
St and less of the bottom rectangles Sb, or vice versa.

Consider the subset S ′ ⊆ S that contain critical segments
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Lever corner

Pivot

Range lines

St

Sb

Lever edge

Figure 7. A lever piece partially covering the associated marked rectangles, each of which contains a variable segment. Two overlapping and maximal
lever pieces are shown, and the lever edge of one of them is shown as a dashed segment.

(the reader can conveniently imagine the case S ′ = S; the
only exception will be in the addition gadgets). Then there
are two range lines, both of which pass through d, and
each critical segment in S ′ has an endpoint on each range
line. When the lever edge of Q coincides with a range line,
then the critical segments in one of the sets Sb or St are
completely covered, while the segments in the other set are
not covered at all.

6) Chains of inequalities: The following observation fol-
lows immediately from the description above and is one of
our main tools for copying values from one variable segment
to another.

Observation 8: Let Rt ∈ St and Rb ∈ Sb be two marked
rectangles and assume that they contain variable segments
st and sb, respectively. Suppose that the lever corner c is the
right-responsible for both st and sb. If st is right-oriented
and sb is left-oriented, then v(st, c) ≥ v(sb, c). If st is left-
oriented and sb is right-oriented, then v(st, c) ≤ v(sb, c).
If on the other hand c is the left-responsible, then the
inequalities are swapped. Equalities hold if and only if Q
has a lever edge, and then Q represents the same value on
all variable segments in S.

Using chains of lever mechanisms, we can now make
chains of inequalities of the values that the lever pieces
represent of a variable x ∈ X , using Observations 6 and 8
alternatingly. See for instance Figure 8. The observations
give v(s1, ca) ≤ v(s2, ca) ≤ v(s2, cb) ≤ v(s3, cb) ≤
v(s3, cc) ≤ v(s4, cc). The figure shows the case that
Qa, Qb, Qc all have lever edges (containing the pivots
da, db, dc, respectively) and cover s2 and s3 with no overlap,
and then we have equalities v(s1, ca) = v(s2, ca) =
v(s2, cb) = v(s3, cb) = v(s3, cc) = v(s4, cc). Otherwise,
one or more of the inequalities will be strict.

7) Infinitesimal range: Recall that each variable x ∈ X
comes with an interval I(x) ⊂ [ 12 , 2] of size |I(x)| ≤ δ, for

some small δ, such that all solutions to Φ are guaranteed
to be contained in these intervals. In this reduction, we use
δ := n−7. Consider a variable segment s representing x. Let
s′ be the part of s such that the points of s′ correspond to
the range I(x). We then call s′ the restricted range of s, and
since δ := n−7, we have that ‖s

′‖
‖s‖ = O(n−7). Since we can

assume n to be arbitrarily large, we can usually think of s′

as being just a single point on s. In our construction, we will
always show the full segment s in the figures, and we will
mark the position of the restricted range s′ as a single point
on s. We just need to ensure that the construction is generic
in the sense that it works for every possible placement of the
restricted range s′ on the full range s. In particular, when
we construct a lever corner c ∈ C, it may be needed to move
c and the edges of P incident at c depending on where the
restricted range s′ is located at s.

We need the lever corner c to be placed so that it can
see all points on the restricted range s′ of s. When that is
the case for all segments s that c is responsible for, then
a lever edge of a piece covering c will have the freedom
to rotate over all of s′, thus representing all values in the
required range I(x). See Figure 9 for examples with enough
freedom and too little freedom.

In many parts of our construction, it is obvious that c can
see all of the restricted ranges of the variable segments. The
more delicate case happens for the propagation corners, to
be described in more detail in the next section. These are
responsible for variable segments in the base pockets, but
also for critical segments in the corridors. Here, it is not
clear that the propagation corners can see enough of the
critical segments in the corridors, but as is shown in the full
version, it works for our choice of δ := n−7.

We choose the marked rectangles to be similarly tiny,
as they only need to contain the restricted ranges of the
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Figure 8. Three lever corners and lever pieces that together cover the variable segments s2 and s3.

d

c

s s′

d

c

s s′

Q Q

Figure 9. The (light and dark) blue arrows show the full variable segments representing a variable x and the dark blue parts are the parts corresponding to
the restricted range I(x). To the left, the dotted lever edge has enough freedom to rotate over the entire restricted range, since the corner c sees all points
on the restricted ranges of the variable segments. To the right, c does not see all of the upper restricted range s′, so not all values can be represented.

critical segments. Hence, the vertical and horizontal bars of
the rectangles can be thought of as vertical or horizontal line
segments contained in P .

B. High-level description of P

We are now ready to describe the actual design of the
polygon P in more detail; see Figure 4 for a sketch of the
entire polygon. In the bottom of P , there are pockets with
lever corners representing all the variables; see Figure 10.
Each pocket is a polygon in P bounded by a chain of ∂P
and from above by one horizontal chord of P . A pocket
can contain a large number of variable segments S, all
representing the same variable x ∈ X . In the lower right
corner of the pocket, there is a lever corner, which we call a
base corner, and which is the right-responsible lever corner
for all the segments S. A piece covering a base corner is
called a base piece. For each variable segment, the left-

responsible lever corner is called a propagation corner. The
pivot of a propagation corner is very far away approximately
in direction (1, 1), namely at the door of a corridor that leads
into a gadget. A piece covering a propagation corner is called
a propagation piece, and in any cover, the propagation pieces
will be very skinny and long, sticking out of the base pockets
and into the corridors, where each of them is responsible for
covering another critical segment.

The bottom part of P consists of a collection of 3n
base pockets. In order from left to right, we denote the
pockets as P1, . . . , P3n. The pockets P1, . . . , Pn represent
the variables x1, . . . , xn, respectively, as do the pockets
Pn+1, . . . , P2n, and P2n+1, . . . , P3n. At the right side of
P , there are some corridors attached, each of which leads
into a gadget. The doors to the corridors are line segments
contained in a vertical line `r (in fact, we will move the
doors slightly away from `r in order to satisfy the trapezoid
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Pivot . . .

Propagation corners and variable segments

Propagation pieces

Base corners

Base piece

13.5

Figure 10. Left: A sketch of three consecutive base pockets with various numbers of variable segments. The variable segments are shown as red dots.
Right: A closeup of three consecutive variable segments and the marked rectangles containing them.

generality promise, but that does not make any conceptual
difference). The gadgets also contain marked rectangles and
corners, and they are used to impose dependencies between
the pieces covering variable segments in the base pockets.
The corridors are used to make dependencies between the
base pockets and the gadgets. Each gadget corresponds to a
constraint of one of the types x+y ≥ z, x+y ≤ z, x·y ≥ 1,
x · y ≤ 1, and x ≤ y. The first four types of constraints are
used to encode the dependencies between the variables in
X as specified by Φ, whereas the latter constraint is used to
make sure that the three base pockets representing a variable
x ∈ X specify the value of x consistently.

The reason that we need three pockets Pi, Pi+n, Pi+2n

representing each variable xi is that in the addition gadgets,
such as the one encoding the restriction xi + xj ≥ xl, we
need the base pockets representing xl, xj , xi, that we con-
nect to the gadget, to appear in the specific order Pi′ , Pj′ , Pl′

from left to right, respectively. This is obtained by choosing
i′ := i, j′ := j + n, and l′ := l + 2n.
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book of discrete and computational geometry, third edi-
tion ed., J. E. Goodman and J. O’Rourke, Eds., 2018, ch. 30,
pp. 787–810.

[9] T. Pavlidis, “Analysis of set patterns,” Pattern Recognition,
vol. 1, no. 2, pp. 165–178, 1968.

[10] ——, “Structural pattern recognition: Primitives and jux-
taposition relations,” in Frontiers of Pattern Recognition,
S. Watanabe, Ed. Academic Press, 1972, pp. 421–451.

[11] ——, “Representation of figures by labeled graphs,” Pattern
Recognition, vol. 4, no. 1, pp. 5–17, 1972.

[12] H.-Y. F. Feng and T. Pavlidis, “Decomposition of polygons
into simpler components: Feature generation for syntactic
pattern recognition,” IEEE Transactions on Computers, vol.
C-24, no. 6, pp. 636–650, 1975.

[13] T. Pavlidis, Structural Pattern Recognition, ser. Springer
Series in Electrophysics, 1977, vol. 1.

[14] ——, “A review of algorithms for shape analysis,” Computer
Graphics and Image Processing, vol. 7, no. 2, pp. 243–258,
1978.

384

https://arxiv.org/abs/2106.02335


[15] M. R. Garey and D. S. Johnson, Computers and intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman
& Co., 1979.

[16] R. S. V. Rodrigues, J. F. M. Morgado, and A. J. P. Gomes,
“Part-based mesh segmentation: A survey,” Computer Graph-
ics Forum, vol. 37, no. 6, pp. 235–274, 2018.

[17] T. Suk, C. H. IV, and J. Flusser, “Decomposition of binary
images – A survey and comparison,” Pattern Recognition,
vol. 45, no. 12, pp. 4279–4291, 2012.

[18] S. Asafi, A. Goren, and D. Cohen-Or, “Weak convex de-
composition by lines-of-sight,” Computer Graphics Forum,
vol. 32, no. 5, pp. 23–31, 2013.

[19] J. O’Rourke and K. J. Supowit, “Some np-hard polygon
decomposition problems,” IEEE Transactions on Information
Theory, vol. 29, no. 2, pp. 181–190, 1983.

[20] J. O’Rourke, “The complexity of computing minimum convex
covers for polygons,” in 20th Annual Allerton Conference on
Communication, Control, and Computing, 1982, pp. 75–84.

[21] B. Chazelle and D. P. Dobkin, “Optimal convex decomposi-
tions,” in Computational Geometry, ser. Machine Intelligence
and Pattern Recognition, G. T. Toussaint, Ed. North-Holland,
1985, vol. 2, pp. 63–133.

[22] A. Aggarwal, “The art gallery theorem: Its variations, appli-
cations and algorithmic aspects,” Ph.D. dissertation, Depart-
ment of Electrical Engineering and Computer Science, Johns
Hopkins University, 1984.

[23] J. C. Culberson and R. A. Reckhow, “Covering polygons is
hard,” Journal of Algorithms, vol. 17, no. 1, pp. 2–44, 1994.

[24] D. T. Lee and A. K. Lin, “Computational complexity of art
gallery problems,” IEEE Transactions on Information Theory,
vol. 32, no. 2, pp. 276–282, 1986.

[25] D. S. Johnson, “The NP-completeness column: An ongoing
guide,” Journal of Algorithms, vol. 3, no. 2, pp. 182–195,
1982.

[26] S. J. Eidenbenz and P. Widmayer, “An approximation al-
gorithm for minimum convex cover with logarithmic per-
formance guarantee,” SIAM Journal on Computing, vol. 32,
no. 3, pp. 654–670, 2003.

[27] T. Christ, “Beyond triangulation: Covering polygons with
triangles,” in Algorithms and Data Structures – 12th Inter-
national Symposium (WADS 2011), 2011, pp. 231–242.

[28] M. Abrahamsen, A. Adamaszek, and T. Miltzow, “The art
gallery problem is ∃R-complete,” Journal of the ACM, 2021,
to appear. Preliminary versions presented at STOC 2018 and
SoCG 2017.

[29] M. Abrahamsen, T. Miltzow, and N. Seiferth, “Framework for
∃R-completeness of two-dimensional packing problems,” in
61st IEEE Annual Symposium on Foundations of Computer
Science (FOCS 2020), 2020.

[30] J. Canny, “Some algebraic and geometric computations in
pspace,” in 20th Annual ACM Symposium on Theory of
Computing (STOC 1988), 1988, pp. 460–467.

[31] J. Richter-Gebert and G. M. Ziegler, “Realization spaces of
4-polytopes are universal,” Bulletin of the American Mathe-
matical Society, vol. 32, no. 4, pp. 403–412, 1995.
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