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Abstract—Zero knowledge plays a central role in cryptog-
raphy and complexity. The seminal work of Ben-Or et al.
(STOC 1988) shows that zero knowledge can be achieved
unconditionally for any language in NEXP, as long as one is
willing to make a suitable physical assumption: if the provers
are spatially isolated, then they can be assumed to be playing
independent strategies.

Quantum mechanics, however, tells us that this assumption
is unrealistic, because spatially-isolated provers could share
a quantum entangled state and realize a non-local correlated
strategy. The MIP* model captures this setting.

In this work we study the following question: does spatial
isolation still suffice to unconditionally achieve zero knowledge
even in the presence of quantum entanglement?

We answer this question in the affirmative: we prove that
every language in NEXP has a 2-prover zero knowledge
interactive proof that is sound against entangled provers; that
is, NEXP ⊆ ZK-MIP*.

Our proof consists of constructing a zero knowledge in-
teractive PCP with a strong algebraic structure, and then
lifting it to the MIP* model. This lifting relies on a new
framework that builds on recent advances in low-degree testing
against entangled strategies, and clearly separates classical and
quantum tools.

Our main technical contribution is the development of
new algebraic techniques for obtaining unconditional zero
knowledge; this includes a zero knowledge variant of the
celebrated sumcheck protocol, a key building block in many
probabilistic proof systems. A core component of our sumcheck
protocol is a new algebraic commitment scheme, whose analysis
relies on algebraic complexity theory.

Keywords-zero knowledge; multi-prover interactive proofs;
quantum entangled strategies; interactive PCPs; sumcheck
protocol; algebraic complexity;

I. INTRODUCTION

Zero knowledge, the ability to demonstrate the validity

of a claim without revealing any information about it, is

a central notion in cryptography and complexity that has

received much attention in the last few decades. Introduced

in the seminal work of Goldwasser, Micali, and Rackoff

[1], zero knowledge was first demonstrated in the model of

interactive proofs, in which a resource-unbounded prover

interacts with a probabilistic polynomial-time verifier to the

end of convincing it of the validity of a statement.

Goldreich, Micali, and Wigderson [2] showed that every

language in NP has a computational zero knowledge inter-

active proof, under the cryptographic assumption that (non-

uniform) one-way functions exist. Ostrovsky and Wigderson

[3] proved that this assumption is necessary.

Unfortunately, the stronger notion of statistical zero

knowledge interactive proofs, where both soundness and zero

knowledge hold unconditionally, is limited. For example, if

NP had such proofs then the polynomial hierarchy would

collapse to its second level [4, 5, 6].

The celebrated work of Ben-Or et al. [7] demonstrated

that the situation is markedly different when the verifier

interacts with multiple provers, in a classical world where by

spatially isolating the provers we ensure that they are playing

independent strategies — this is the model of multi-prover

interactive proofs (MIPs). They proved that every language

having an MIP (i.e., every language in NEXP [8]) also

has a perfect zero knowledge MIP. This result tells us that

spatial isolation implies zero knowledge.

In light of quantum mechanics, however, we know that

spatial isolation does not imply independence, because the

provers could share an entangled state and realize a strategy

that is beyond that of independently acting provers. For

example, it is possible for entangled provers to win a game

(e.g., the magic square game) with probability 1, whereas

independent provers can only win with probability at most

8/9 [9].

Non-local correlations arising from local measurements

on entangled particles play a fundamental role in physics,

and their study goes back at least to Bell’s work on the

Einstein–Podolsky–Rosen paradox [10]. Recent years have

seen a surge of interest in MIPs with entangled provers,

which correspond to the setting in which multiple non-

communicating provers share an entangled state and wish to

convince a classical verifier of some statement. This notion

is captured by MIP* protocols, introduced by Cleve et al. [9].

A priori it is unclear whether these systems should be less

powerful than standard MIPs, because of the richer class of

malicious prover strategies, or more powerful, because of

the richer class of honest prover strategies.

Investigating proof systems with entangled adversaries
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not only sharpens our understanding of entanglement as

a computational resource, but also contributes insights to

hardness of approximation and cryptography in a post-

quantum world. However, while the last three decades saw the

development of powerful ideas and tools for designing and

analyzing proof systems with classical adversaries, despite

much effort, there are only a handful of tools available

for dealing with quantum entangled adversaries, and many

fundamental questions remain open.

MIP* protocols were studied in a long line of work, culmi-

nating in a breakthrough result of Ito and Vidick [11], who

in a technical tour-de-force showed that NEXP ⊆ MIP∗;1

this result was further improved in [12, 13]. However, it is

unknown whether these MIP protocols can achieve zero

knowledge, which is the original motivation behind the

classical MIP model. In sum, in this paper we pose the

following question:

To what extent does spatial isolation imply unconditional
zero knowledge in a quantum world?

A. Our results

Our main result is a strong positive answer to the foregoing

question, namely, we show that the NEXP ⊆ MIP∗ result

of Ito and Vidick [11] continues to hold even when we

require zero knowledge.

Theorem I.1. Every language in NEXP has a perfect zero
knowledge 2-prover MIP*. In more detail,

NEXP ⊆ PZK-MIP*

[
number of provers: 2
round complexity: poly(n)

communication complexity: poly(n)
soundness error: 1/2

]
.

We stress that the MIP* protocols of Theorem I.1 enjoy

both unconditional soundness against entangled provers as

well as unconditional (perfect) zero knowledge against any
(possibly malicious) verifier.

B. Other notions of quantum zero knowledge

To the best of our knowledge, this work is the first to

study the notion of zero knowledge with entangled provers, as

captured by the MIP* model. Nevertheless, zero knowledge

has been studied in other settings in the quantum information

and computation literature; we now briefly recall these.

Watrous [14] introduced honest-verifier zero knowledge

for quantum interactive proofs (interactive proofs in which

the prover and verifier are quantum machines), and studied

the resulting complexity class QSZKHV. Kobayashi [15]

studied a non-interactive variant of this notion. Damgård,

1While this is the popular statement of the result, [11] show a stronger
result, namely, that NEXP is exactly the class of languages decided by
MIPs sound against entangled provers. Their honest provers are classical,
and soundness holds also against entangled provers. This is also the case
in our protocols. It remains unknown whether entanglement grants provers
additional power: there is no known reasonable upper bound on MIP∗.

Fehr, and Salvail [16] achieve zero knowledge for NP against

malicious quantum verifiers, but only via arguments (i.e.,

computationally sound proofs) in the common reference

string model. Subsequently, Watrous [17] constructed quan-

tum interactive proofs that remain zero knowledge against

malicious quantum verifiers.

Zero knowledge for quantum interactive proofs has since

then remained an active area of research, and several aspects

and variants of it were studied in recent works, including

the power of public-coin interaction [18], quantum proofs

of knowledge [19], zero knowledge in the quantum random

oracle model [20], zero knowledge proof systems for QMA
[21], and oracle separations for quantum statistical zero

knowledge [22].

All the above works consider protocols between a single
quantum prover and a quantum verifier. In particular, they

do not study entanglement as a shared resource between two

(or more) provers.

In contrast, the MIP* protocols that we study differ from

the protocols above in two main aspects: (1) our proof

systems have multiple spatially-isolated provers that share

an entangled state, and (2) it suffices that the honest verifier

is a classical machine. Indeed, we show that, analogously

to the classical setting, MIP* protocols can achieve uncondi-
tional zero knowledge for a much larger complexity class

(namely, NEXP) than possible for QSZK protocols (since

QSZK ⊆ QIP = PSPACE).

II. TECHNIQUES

We begin by discussing the challenge that arises when

trying to prove that NEXP ⊆ PZK-MIP*, by outlining a

natural approach to obtaining zero knowledge MIP* protocols,

and considering why it fails.

A. The challenge

We know that every language in NEXP has a (perfect)

zero knowledge MIP protocol, namely, that NEXP ⊆
PZK-MIP [7]. We also know that every language in

NEXP has an MIP* protocol, namely, that NEXP ⊆
MIP∗ [11]. Is it then not possible to simply combine these

two facts and deduce that every language in NEXP has a

(perfect) zero knowledge MIP*?

The challenge is that the standard techniques used to

construct zero knowledge MIP protocols do not seem

compatible with those used to construct MIP* protocols

for large classes.2 In fact, the former are precisely the type

of techniques that prove to be very limited for obtaining

soundness against entangled provers.

In more detail, while constructions of MIP (and PCP)

protocols typically capitalize on an algebraic structure,

known constructions of zero knowledge MIPs are of a

combinatorial nature. For example, the zero knowledge

2For example, Crépeau et al. [23] showed that the commitment scheme
in [7] is not sound against entangled adversaries.
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MIP in [7] is based on a multi-prover information-theoretic

commitment scheme, which can be thought of as a CHSH-

like game. The zero knowledge MIP in [24] is obtained

via the standard transformation from zero knowledge PCPs,

which is a form of consistency game. Unfortunately, these

types of constructions do not appear resistant to entangled

provers, nor is it clear how one can modify them to obtain

this resistance without leveraging some algebraic structure.

Indeed, initial attempts to show that NEXP ⊆ MIP∗

(e.g., [25, 26, 27]) tried to apply some black box transforma-

tion to an arbitrarily structured (classical) MIP protocol to

force the provers to behave as if they are not entangled, and

then appeal to standard MIP soundness. These works were

only able to obtain limited protocols (e.g., with very large

soundness error).

In their breakthrough paper, Ito and Vidick [11] overcame

this hurdle and showed that NEXP ⊆ MIP∗ by taking a

different route: rather than a black box transformation, they

modified and reanalyzed a particular proof system, namely

the MIP protocol for NEXP in [8], while leveraging and

crucially using its algebraic structure. (Subsequent works

[12, 13] improved this result by reducing the number of

provers and rounds to a minimum, showing MIP* protocols

for NEXP with two provers and one round.)

In sum, the challenge lies in the apparent incompatibility

between techniques used for zero knowledge and those used

for soundness against entangled provers.

B. High-level overview

Our strategy for proving our main result is to bridge

the aforementioned gap by isolating the role of algebra in

granting soundness against entangled provers, and developing

new algebraic techniques for zero knowledge. Our proof of

Theorem I.1 thus consists of two parts.

1) Lifting lemma: a black box transformation from

algebraically-structured classical protocols into corre-

sponding MIP* protocols, which preserves zero knowl-

edge.

2) Algebraic zero knowledge: a new construction of zero

knowledge algebraically-structured protocols for any

language in NEXP.

The first part is primarily a conceptual contribution, and it

deals with quantum aspects of proof systems. The second

part is our main technical contribution, and it deals with

classical protocols (it does not require any background in

quantum information). We briefly discuss each of the parts,

and then provide an overview of the first part in Section II-C

and of the second part in Section II-D.

In the first part of the proof, we build on recent advances in

low-degree testing against entangled provers, and provide an

abstraction of techniques in [11, 12, 13]. We prove a lifting
lemma (see full version [28] for a precise statement) that

transforms a class of algebraically-structured classical proto-

cols into MIP* protocols, while preserving zero knowledge.

This provides a generic framework for constructing MIP*

protocols, while decoupling the mechanisms responsible for

soundness against entangled provers from other classical

components.

In the second part of the proof, we construct an

algebraically-structured zero knowledge classical protocol,

which we refer to as a low-degree interactive PCP, to which

we apply the lifting lemma, completing the proof. At the

heart of our techniques is a strong zero knowledge variant

of the sumcheck protocol [29] (a fundamental subroutine

in many probabilistic proof systems), which we deem of

independent interest. In turn, a key component in our zero

knowledge sumcheck is a new algebraic commitment scheme,

whose hiding property is guaranteed by algebraic query

complexity lower bounds [30, 31]. These shed more light on

the connection of zero knowledge to algebraic complexity

theory.

C. Part I: lifting classical proof systems to MIP*

The first step towards obtaining a generic framework for

transforming classical protocols into corresponding MIP*

protocols is making a simple, yet crucial, observation.

Namely, while the result in [11] is stated as a white box

modification of the MIP protocol in [8], we observe that

the techniques used there can in fact be applied more

generally. That is, we observe that any “low-degree interactive

PCP”, a type of algebraically structured proof system that

underlies (implicitly and explicitly) many constructions in

the probabilistic proof systems literature, can be transformed

into a corresponding MIP* protocol.

The first part of the proof of Theorem I.1 formalizes this

idea, identifying sufficient conditions to apply the techniques

of [11, 12], and showing a lifting lemma that transforms

protocols satisfying these conditions into MIP* protocols.

We relate features of the original protocol to those of the

resulting MIP* protocols, such as round complexity and,

crucially, zero knowledge.

To make this discussion more accurate, we next define

and discuss low-degree interactive PCPs.
1) Low-degree interactive PCPs: An Interactive PCP

(IPCP), a proof system whose systematic study was initiated

by Kalai and Raz [32], naturally extends the notions of a

probabilistically checkable proof (PCP) and an interactive

proof (IP). An r-round IPCP is a two-phase protocol in which

a computationally unbounded prover P tries to convince a

polynomial-time verifier V that an input x, given to both

parties, is in a language L . First, the prover sends to the

verifier a PCP oracle (a purported proof that x ∈ L ),

which the verifier can query at any time. Second, the prover

and verifier engage in an r-round IP, at the end of which

the verifier either accepts or rejects.3 Completeness and

soundness are defined in the usual way.

3Alternatively, an IPCP can be viewed as a PCP that is verified
interactively (by an IP, instead of a randomized algorithm).
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In this work we consider a type of algebraically-structured

IPCP, which we call a low-degree IPCPs. This notion

implicitly (and semi-explicitly) underlies many probabilistic

proof systems in the literature. Informally, a low-degree

IPCP is an IPCP satisfying the following: (1) low-degree
completeness, which states that the PCP oracle sent by the

(honest) prover is a polynomial of low (individual) degree;

(2) low-degree soundness, which relaxes soundness to hold

only against provers that send PCP oracles that are low-degree

polynomials.

Low-degree completeness and soundness can be viewed

as a promise that the PCP oracle is a low-degree polynomial.

Indeed, these conditions are designed to capture “compatibil-

ity” with low-degree testing: only protocols with low-degree

completeness will pass a low-degree test with probability 1;

moreover, adding a low-degree test to an IPCP with low-

degree soundness results (roughly) in an IPCP with standard

soundness.

2) From low-degree IPCP to MIP*: We show that any

low-degree IPCP can be transformed into a corresponding

MIP* protocol, in a way that preserves zero knowledge (for

a sufficiently strong notion of zero knowledge IPCP). To

this end, we use an entanglement-resistant low degree test,

which allows us to essentially restrict the provers usage of

the entangled state to strategies that can be approximately

implemented via randomness shared among the provers.

Informally, the idea is that by carefully invoking such a

test, we can let one prover take on the role of the PCP

oracle, and the other to take the role of the IPCP prover, and

then emulate the entire IPCP protocol.

In more detail, we show a zero-knowledge-preserving

transformation of low-degree IPCPs to MIP* protocols, which

is captured by the following lifting lemma.

Lemma II.1 (informally stated, see full version [28]). There
exists a transformation T that takes an r-round low-degree
IPCP (P ′, V ′) for a language L , and outputs a 2-prover
(r∗+2)-round MIP* (P1, P2, V ) := T (P ′, V ′) for L , where
r∗ = max{r, 1}. Moreover, this transformation preserves
zero knowledge.4

We stress that the simplicity of the lifting lemma is a key

feature since, as we describe below, it requires us to only

make small structural changes to the IPCP protocol. This

facilitates the preservation of various complexity measures

and properties, such as zero knowledge.

To prove this lemma, a key tool that we use is a new

low-degree test by Natarajan and Vidick [13],5 which adapts

the celebrated plane-vs-point test of Raz and Safra [33] to

4More accurately, we require the given IPCP to be zero knowledge with
query bound that is roughly quadratic in the degree of the PCP oracle. See
full version [28] for details.

5If we do not aim to obtain the optimal number of provers in our MIP*

protocols, then it it suffices to use (an adaptation of) the low-degree test in
[12].

the MIP* model. A low-degree test is a procedure used to

determine if a given function f : Fm → F is close to a

low-degree polynomial or if, instead, it is far from all low-

degree polynomials, by examining f at very few locations.

In the plane-vs-point test, the verifier specifies a random

2-dimensional plane in F
m to one prover and a random point

on this plane to the other prover; each prover replies with

the purported value of f on the received plane or point; then

the verifier checks that these values are consistent.

Informally, the analysis in [13] asserts that every entangled

strategy that passes this test with high probably must satisfy

an algebraic structure; more specifically, to pass this test

the provers can only use their shared entangled state to

(approximately) agree on a low-degree polynomial according

to which they answer. We use the following soundness

analysis of the this protocol. (See full version [28] for the

standard quantum notation used in the theorem below.)

Theorem II.2 ([13, Theorem 2], informally stated). There
exists an absolute constant c ∈ (0, 1) such that, for every
soundness parameter ε > 0, number of variables m ∈ N,
degree d ∈ N, and finite field F, there exists a low-degree
test T for which the following holds. For every symmetric

entangled prover strategy and measurements {Az
α}z∈F,α∈Fm

that are accepted by T with probability at least 1− ε, there
exists a measurement {LQ}Q, where Q is an m-variate
polynomial of degree d, such that:

1) Approximate consistency with {Az
α}:

Eα∈Fm

∑
Q

∑
z �=Q(α)

〈Ψ|Az
α ⊗ LQ |Ψ〉 ≤ εc

.
2) Self-consistency of {LQ}:∑

Q

〈Ψ|LQ ⊗ (Id− LQ) |Ψ〉 ≤ εc

.

In fact, we actually use a more refined version, which

tests a polynomial’s individual degree rather than its total
degree. In the classical setting, such a test is implicit in

[34] via a reduction from individual-degree to total-degree

testing. Informally, this reduction first invokes the test for

low total degree, then performs univariate low-degree testing

with respect to a random axis-parallel line in each axis. We

extend this reduction and its analysis to the setting of MIP*.

(See full version [28] for details.) The analysis of the low

individual degree test was communicated to us by Thomas

Vidick, to whom we are grateful for allowing us to include

it here.

With the foregoing low-degree test at our disposal, we are

ready to outline the simple transformation from low-degree

IPCPs to MIP* protocols. We begin with a preprocessing step.

Note that the low individual degree test provides us with

means to assert that the provers can (approximately) only use

their entangled state to choose a low-degree polynomial Q,
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and answer the verifier with the evaluation of Q on a single,

uniformly distributed point (or plane). Thus, it is important

that the IPCP verifier (which we start from) only makes a

single uniform query to its oracle. By adapting techniques

from [32], we can leverage the algebraic structure of the

low-degree IPCP and capitalize on the interaction to ensure

the IPCP verifier has this property, at essentially the cost of

increasing the round complexity by 1.6

Thus we have a low-degree IPCP, with prover P and

verifier V , in which the verification takes place as follows.

Both P and V receive an explicit input x that is allegedly in

the language L . In addition, V is granted oracle access to a

purported low-degree polynomial R, whose full description is

known to P . The parties engage in an r-round interaction, at

the end of which V is allowed to make a single uniform query

to R and decide whether x ∈ L (with high probability).
We transform this IPCP into a 2-prover MIP* by con-

sidering the following protocol. First, the verifier chooses

uniformly at random whether to (1) invoke a low-degree test,

in which it asks one prover to evaluate R on a random plane

or axis-parallel line and the other prover to evaluate R on a

random point on this plane or line, or (2) emulate the IPCP

protocol, in which one prover plays the role of the IPCP

prover and the other acts as lookup for R.
We use the approximate consistency condition of The-

orem II.2 to assert that the lookup prover approximately

answers according to a low-degree polynomial, and use the

self-consistency condition to ensure that both provers are

consistently answering according to the same low-degree

polynomial.7

We remark that preserving zero knowledge introduces some

subtle technicalities (which we resolve), the main of which

is that because the analysis of the entanglement-resistant

low individual degree test requires that the provers employ

symmetric strategies, we need to perform a non-standard

symmetrization (since standard symmetrization turns out to

break zero knowledge in our case). See full version [28] for

details.
3) Towards zero knowledge MIP* for nondeterministic

exponential time: Equipped with the lifting lemma, we are

left with the task of constructing classical zero knowledge

low-degree IPCPs for all languages in NEXP. We first

explain why current constructions do not suffice for this

purpose.
The first thing to observe is that the classical protocol

for the NEXP-complete language Oracle 3SAT by Babai,

Fortnow, and Lund [8] (neglecting the multilinearity test) can

be viewed as low-degree IPCP. Indeed, in [8] the protocol

6Indeed, if the original IPCP verifier makes a single uniform query to
its oracle, then we can save a round in Lemma II.1; that is, we obtain an
MIP* with round complexity r∗ + 1, rather than r∗ + 2.

7Since the players are allowed the use of entanglement, we cannot hope
for a single function that underlies their strategy. Indeed, the players could
measure their entangled state to obtain shared randomness and select a
random R according to which they answer.

is stated as an “oracle protocol”, which is equivalent to an

IPCP. The oracle is encoded as a low-degree polynomial, and

so low-degree completeness is satisfied. Alas, the foregoing

protocol is not zero knowledge. We remark that since the

MIP* protocol in [11] relies on the protocol in [8], the former

inherits the lack of zero knowledge from the latter.

Proceeding to consider classical zero knowledge proof

systems, for example the protocols in [24, 35, 36], we

observe that while some of these proof systems can be viewed

as IPCPs, they are not low-degree IPCPs. This is because

they achieve zero knowledge via combinatorial techniques

that do not admit the algebraic structure that we require.

We stress that the natural way of endowing an IPCP with

algebraic structure by taking the low-degree extension of the

PCP oracle does not necessarily preserve zero knowledge.8

Correspondingly, the MIP* protocols in [12, 13], which rely

on applying the low-degree extension code to a PCP, do not

preserve zero knowledge for this reason.

Finally, we observe that recent advances in algebraic zero

knowledge [37] (building on techniques from [38]) already

provide us with a classical proof system that is compatible

with our framework, and can thus be used to derive a zero

knowledge MIP* protocol, albeit only for languages in #P.

To strengthen the aforementioned result and show that

NEXP ⊆ PZK-MIP* (matching the NEXP ⊆ MIP∗

containment, and showing that zero knowledge can, in a sense,

be obtained for “free” in the setting of MIP* protocols), we

need to construct a much stronger zero knowledge low-degree

IPCP. The second part of Theorem I.1, which is our main

technical contribution, provides exactly that. We proceed

to provide an overview of the techniques that we use to

construct such protocols.

D. Part II: new algebraic techniques for zero knowledge

The techniques discussed thus far tell us that, if we wish

to obtain a zero knowledge MIP* for NEXP, it suffices to

obtain a zero knowledge low-degree IPCP for NEXP (an

IPCP wherein the oracle is a low-degree polynomial). Doing

so is the second part of our proof of Theorem I.1, and for

this we develop new algebraic techniques for obtaining zero

knowledge protocols. Our techniques, which build on recent

developments [38, 37], stand in stark contrast to other known

constructions of zero knowledge PCPs and interactive PCPs

(such as [24, 35, 36]). We remind the reader that this part of

our work only deals with classical protocols, and does not

require any knowledge of quantum information.

1) A zero knowledge low-degree IPCP for NEXP: Our

starting point is the protocol of Babai, Fortnow, and Lund [8]

(the “BFL protocol”). We first recall how the BFL protocol

works, in order to explain its sources of information leakage

and how one could prevent them via algebraic techniques.

8Intuitively, a single point in the encoded oracle can summarize a large
amount of information from the original oracle (e.g., very large linear
combinations).
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These are the ideas that underlie our algebraic construction of

an unconditional (perfect) zero knowledge low-degree IPCP

for NEXP.
The BFL protocol, and why it leaks: Oracle 3SAT

(O3SAT) is the following NEXP-complete problem: given

a boolean formula B, does there exist a boolean function A
(a witness) such that

B(z, b1, b2, b3, A(b1), A(b2), A(b3)) = 0

for all z ∈ {0, 1}r, b1, b2, b3 ∈ {0, 1}s ?

The BFL protocol is an IPCP for O3SAT that is then

(generically) converted to an MIP. In the BFL protocol, the

honest prover first sends a PCP oracle Â : Fs → F that is the

unique multilinear extension (in some finite field F) of a valid

witness A : {0, 1}s → {0, 1}. The verifier must check that

(a) Â is a boolean function on {0, 1}s, and (b) Â’s restriction

to {0, 1}s is a valid witness for B. To do these checks, the

verifier arithmetizes the formula B into an arithmetic circuit

B̂, and reduces the checks to conditions that involve Â, B̂,

and other low-degree polynomials. A technique in [39] allows

the verifier to “bundle” all of these conditions into a single

low-degree polynomial f such that (with high probability

over the choice of f ) the conditions hold if and only if f
sums to 0 on {0, 1}r+3s+3. The verifier checks that this is the

case by engaging in a sumcheck protocol with the prover.9

We observe that the BFL protocol is not zero knowledge

for two reasons: (i) the verifier has oracle access to Â and,

in particular, to the witness A; (ii) the prover’s messages

during the sumcheck protocol leak further information about

A (namely, hard-to-compute partial sums of f , which itself

depends on A).
A blueprint for zero knowledge: We now describe the

“blueprint” for an approach to achieve zero knowledge in

the BFL protocol. The prover does not send Â directly, but

instead a commitment to it. After this, the prover and verifier

engage in a sumcheck protocol with suitable zero knowledge

guarantees; at the end of this protocol, the verifier needs to

evaluate f at a point of its choice, which involves evaluating

Â at three points. Now the prover reveals the requested values

of Â, without leaking any information beyond these, so that

the verifier can perform its check. We explain how these

ideas motivate the need for certain algebraic tools, which we

later develop and use to instantiate our approach.
(1) Randomized low-degree extension: Even if the

prover reveals only three values of Â, these may still

leak information about A. We address this problem via a

randomized low-degree extension. Indeed, while the prover

in the BFL protocol sends the unique multilinear extension

of A, one can verify that any extension of A of sufficiently

low degree also works. We exploit this flexibility as follows:

9The soundness of the sumcheck protocol depends on the PCP oracle
being the evaluation of a low-degree polynomial, and so the verifier in [8]
checks this using a low-degree test. In our setting of low-degree IPCPs a
low-degree test is not necessary.

the prover randomly samples Â in such a way that any

three evaluations of Â do not reveal any information about

A. Of course, if any of these evaluations is within the

systematic part {0, 1}s, then no extension of A has this

property. Nevertheless, during the sumcheck protocol, the

prover can ensure that the verifier chooses only evaluations

outside of {0, 1}s (by aborting if the verifier deviates), which

incurs only a small increase in the soundness error.10 With

this modification in place, it suffices for the prover to let Â
be a random degree-4 extension of A: by a dimensionality

argument, any 3 evaluations outside of {0, 1}s are now

independent and uniformly random in F. We are thus able

to reduce a claim about A to a claim which contains no
information about A.

(2) Algebraic commitments: As is typical in zero

knowledge protocols, the prover will send a commitment
to Â, and then selectively reveal a limited set of evaluations

of Â. The challenge in our setting is that this commitment

must also be a low-degree polynomial, since we require

a low-degree oracle. For this, we devise a new algebraic

commitment scheme based on the sumcheck protocol; we

discuss this in Section II-D2.

(3) Sumcheck in zero knowledge: We need a sumcheck

protocol where the prover’s messages leak little information

about f . The prior work in [37] achieves an IPCP for

sumcheck that is “weakly” zero knowledge: any verifier

learns at most one evaluation of f for each query it makes to

the PCP oracle. If the verifier could evaluate f by itself, as

was the case in that paper, this guarantee would suffice for

zero knowledge. In our setting, however, the verifier cannot
evaluate f by itself because f is (necessarily) hidden behind

the algebraic commitment.

One approach to compensate would be to further randomize

Â by letting Â be a random extension of A of some well-

chosen degree d. Unfortunately, this technique is incompatible

with our low-degree IPCP to MIP* transformation: such a

low-degree extension is at most d-wise independent, whereas

our lifting lemma, and more generally low-degree testing,

requires zero knowledge against any Ω(d2) queries.

We resolve this by relying on more algebraic techniques,

achieving an IPCP for sumcheck with a much stronger

zero knowledge guarantee: any malicious verifier that makes

polynomially-many queries to the PCP oracle learns only a

single evaluation of f . This suffices for zero knowledge in

our setting: learning one evaluation of f implies learning

only three evaluations of Â, which can be made “safe” if

Â is chosen to be a random extension of A of sufficiently

high degree. Our sumcheck protocol uses as building blocks

both our algebraic commitment scheme and the “weak” zero

knowledge sumcheck in [37]; we summarize its construction

in Section II-D3.

10The honest verifier will be defined so that it always chooses evaluations
outside of {0, 1}s, so completeness is unaffected.
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2) Algebraic commitments from algebraic query complex-
ity lower bounds: We provide a high-level description of an

information-theoretic commitment scheme in the low-degree

IPCP model (i.e., a low-degree interactive locking scheme
[36]). See full version [28] for details.11

In this scheme, the prover commits to a message by sending

to the verifier a PCP oracle that perfectly hides the message;

subsequently, the prover can reveal positions of the message

by engaging with the verifier in an interactive proof, whose

soundness guarantees statistical binding.

Committing to an element: We first consider the simple

case of committing to a single element a in F. Let k be a

security parameter, and set N := 2k. Suppose that the prover

samples a random B in F
N such that

∑N
i=1 Bi = a, and

sends B to the verifier as a commitment. Observe that any

N − 1 entries of B do not reveal any information about

a, and so any verifier with oracle access to B that makes

fewer than N queries cannot learn any information about a.

However, as B is unstructured it is not clear how the prover

can later convince the verifier that
∑N

i=1 Bi = a.

Instead, we can consider imbuing B with additional

algebraic structure. Namely, the prover views B as a function

from {0, 1}k to F, and sends its unique multilinear extension

B̂ : Fk → F to the verifier. Subsequently, the prover can

reveal a to the verifier, and then engage in a sumcheck

protocol for the claim “
∑

�β∈{0,1}k B̂(�β) = a” to establish

the correctness of a. The soundness of the sumcheck protocol

protects the verifier against cheating provers and hence

guarantees that this scheme is binding.

However, giving B additional structure calls into question

the hiding property of the scheme. Indeed, surprisingly, a

result of Juma et al. [31] shows that this new scheme is

in fact not hiding (in fields of odd characteristic): it holds

that B̂(2−1, . . . , 2−1) = a · 2−k for any choice of B, so the

verifier can learn a with only a single query to B̂!

Sending an extension of B has created a new problem:

querying the extension outside of {0, 1}k, the verifier can

learn information that may require many queries to B to

compute. Indeed, this additional power is precisely what

underlies the soundness of the sumcheck protocol. To resolve

this, we need to understand what the verifier can learn about

B given some low-degree extension B̂. This is precisely the

setting of algebraic query complexity [30].12

Indeed the foregoing theory suggests a natural approach

for overcoming the problem created by the extension of B:

instead of considering the multilinear extension, we can let

11We use the commitment scheme perspective to illustrate the key ideas
in our construction. In the technical sections, we prove the zero knowledge
property directly using algebraic query complexity lower bounds, without
explicitly using any commitment scheme.

12Interestingly, in [30] a connection between algebra and zero knowledge
is also exhibited. Namely, to show that the result NP ⊆ CZK [2]
algebrizes, it is necessary to exploit the algebraic structure of the oracle to
design a zero knowledge protocol for verifying the existence of certain sets
of query answers.

B̂ be chosen uniformly at random from the set of degree-d
extensions of B, for some d > 1. It is not hard to see that

if d is very large (say, |F|) then 2k queries are required to

determine the summation of B̂ on {0, 1}k. However, we need

d to be small to achieve soundness. Fortunately, a result of

[31] shows that d = 2 suffices: given a random multiquadratic

extension B̂ of B, one needs 2k queries to B̂ to determine∑
�β∈{0,1}k B̂(�β).13

Committing to a polynomial: The prover in our zero

knowledge protocols needs to commit not just to a single ele-

ment but rather to the evaluation of an m-variate polynomial

Q over F of degree d > 1. We extend our ideas to this setting.

We follow a similar general approach, however, arguing the

hiding property now requires a stronger algebraic query

complexity lower bound than the one proved in [31]. Not

only do we need to know that the verifier cannot determine

Q(�α) for a particular �α ∈ F
m, but we need to know that the

verifier cannot determine Q(�α) for any �α ∈ F
m, or even any

linear combination of any such values. We prove that this

stronger guarantee holds in the same parameter regime: if

d > 1 then 2k queries are both necessary and sufficient. See

the discussion full version [28] for a more detailed overview.
Decommitting in zero knowledge: To use our commit-

ment scheme in zero knowledge protocols, we must ensure

that, in the decommitment phase, the verifier cannot learn

any information beyond the value a := Q(�α), for a chosen

�α. To decommit, the prover sends the value a and has to

convince the verifier that the claim “
∑

�β∈{0,1}k B̂(�α, �β) = a”

is true. However, if the prover and verifier simply run the

sumcheck protocol on this claim, the prover leaks partial sums∑
�β∈{0,1}k−i B̂(�α, c1, . . . , ci, �β), for c1, . . . , ci ∈ F chosen

by the verifier, which could reveal additional information

about Q. Instead, the prover and verifier run on this

claim the IPCP for sumcheck of [37], whose “weak” zero

knowledge guarantee ensures that this cannot happen. (Thus,

in addition to the commitment, the honest prover also sends

the evaluation of a random low-degree polynomial as required

by the IPCP for sumcheck of [37].)
3) A zero knowledge sumcheck protocol: We describe the

“strong” zero knowledge variant of the sumcheck protocol

that we use in our construction. The protocol relies on the

algebraic commitment scheme described in the previous

section. We first cover some necessary background, and

then describe our protocol.
Previous sumcheck protocols: The sumcheck protocol

[29] is an IP for claims of the form “
∑

�α∈Hm F (�α) = 0”,

where H is a subset of a finite field F and F is an m-variate

polynomial over F of small individual degree. The protocol

has m rounds: in round i, the prover sends the univariate

polynomial gi(Xi) :=
∑

�α∈Hm−i F (c1, . . . , ci−1, Xi, �α),
where c1, . . . , ci−1 ∈ F were sent by the verifier in previous

13This is the main reason why our application to constructing MIP*

protocols requires low-degree test against entangled provers, rather than just
a multilinearity test, as was used in [11].
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rounds; the verifier checks that
∑

αi∈H gi(αi) = gi−1(ci−1)
and replies with a uniformly random challenge ci ∈ F. After

round m, the verifier outputs the claim “F (c1, . . . , cm) =
gm(c1, . . . , cm)”. If F is of sufficiently low degree and does

not sum to a over the space, then the output claim is false

with high probability. Note that the verifier does not need

access to F .

The “weak” zero knowledge IPCP for sumcheck in [37]

modifies the above protocol as follows. The prover first

sends a PCP oracle that (allegedly) equals the evaluation of a

random “masking” polynomial R; the verifier checks that R
is (close to) low degree. Subsequently, the prover and verifier

conduct the following interactive proof. The prover sends

z ∈ F that allegedly equals
∑

�α∈Hm R(�α), and the verifier

responds with a uniformly random challenge ρ ∈ F
∗. The

prover and verifier now run the (standard) sumcheck protocol

to reduce the claim “
∑

�α∈Hm ρF (�α)+R(�α) = ρa+ z” to a

claim “ρF (�c)+R(�c) = b”, for a random �c ∈ F
m. The verifier

queries R at �c and then outputs the claim “F (�c) = b−R(�c)
ρ ”.

If
∑

�α∈Hm F (�α) 	= a, then with high probability over ρ and

the verifier’s messages in the sumcheck protocol, this claim

is false.

A key observation is that if the verifier makes no queries

to R, then the prover’s messages are identically distributed

to the sumcheck protocol applied to a random polynomial

Q. When the verifier does make queries to R, simulating the

resulting conditional distribution involves techniques from

Algebraic Complexity Theory, as shown in [37]. Given Q,

the verifier’s queries to R(�α), for �α ∈ F
m, are identically

distributed to Q(�α)− ρF (�α). Thus, the simulator need only

make at most one query to F for every query to R; that is,

any verifier making q queries to R learns no more than it

would learn by making q queries to F alone.

As discussed, this zero knowledge guarantee does not

suffice for the application that we consider: in the NEXP
protocol, the polynomial F is defined in terms of the NEXP
witness. In this case the verifier can learn enough about F to

break zero knowledge by making only O(deg(F )) queries

to R.
Our sumcheck protocol: The “strong” zero knowledge

guarantee that we aim for is the following: any polynomial-

time verifier learns no more than it would by making one
query to F , regardless of its number of queries to the PCP

oracle.

The main idea to achieve this guarantee is the following.

The prover sends a PCP oracle that is an algebraic commit-
ment Z to the aforementioned masking polynomial R. Then,

as before, the prover and verifier run the sumcheck protocol

to reduce the claim “
∑

�α∈Hm ρF (�α) +R(�α) = ρa+ z” to

a claim “ρF (�c) +R(�c) = b” for random �c ∈ F
m.

We now face two problems. First, the verifier cannot simply

query R at �c and then output the claim “F (�c) = b−R(�c)
ρ ”,

since the verifier only has oracle access to the commitment

Z of R. Second, the prover could cheat the verifier by having

Z be a commitment to an R that is far from low degree,

which allows cheating in the sumcheck protocol.

The first problem is addressed by the fact that our algebraic

commitment scheme has a decommitment sub-protocol that

is zero knowledge: the prover can reveal R(�c) in such a way

that no other values about R are also revealed as a side-effect.

As discussed, this relies on the protocol of [37], used as a

subroutine.

The second problem is addressed by the fact that our

algebraic commitment scheme is “transparent” to low-degree

structure; that is, the algebraic structure of the scheme implies

that if the commitment Z is a low-degree polynomial (as in

a low-degree IPCPs), then R must also be low degree (and

vice versa).

Overall, the only value that a malicious verifier can learn is

F (�c), for �c ∈ Im of its choice (where I is some sufficiently

large subset of F, fixed in advance). More precisely, we prove

the following theorem, which shows a strong zero knowledge

sumcheck protocol.

Theorem II.3 (Informally stated, see full version [28]).
There exists a low-degree IPCP for sumcheck, with respect
to a low-degree polynomial F , that satisfies the following
zero knowledge guarantee: the view of any probabilistic
polynomial-time verifier in the protocol can be perfectly and
efficiently simulated by a simulator that makes only a single
query to F .

Our sumcheck protocol leaks a single evaluation of F .

We stress that this limitation is inherent: the honest verifier

always outputs a true claim about one evaluation of F , which

it cannot do without learning that evaluation. Nevertheless,

this guarantee is strong enough for our application, as we

can ensure that learning a single evaluation of F does not

harm zero knowledge.

We remark that our strong zero knowledge sumcheck

protocol can be transformed into a standard IPCP, by the

standard technique of adding a (classical) low-degree test to

the protocol.

III. DISCUSSION AND OPEN PROBLEMS

The framework that we use to prove that NEXP ⊆
PZK-MIP* elucidates the role that algebra plays in the

design of proofs systems with entangled provers. Namely,

we show that a large class of algebraic protocols (low-

degree IPCPs) can be transformed in a black box manner

to MIPs with entangled provers. This abstraction decouples

the mechanisms responsible for soundness against entangled

adversaries from other classical components in the proof

system. In turn, this allows us to focus our attention on

designing proof systems with desirable properties (zero

knowledge, in this work), without having to deal with the

complications that arise from entanglement, and then derive

MIP* protocols from these classical protocols.
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These ideas also enable us to re-interpret prior construc-

tions of MIP* protocols at a higher level of abstraction. For

example, the protocol in [11] can be viewed as applying our

lifting lemma to the (low-degree) IPCP in [8]. As another

example, one can start with any PCP for some language L ,

low-degree extend the PCP, and then apply our lifting lemma

to obtain a corresponding MIP* protocol for L ; in fact, the

protocol in [12] can be viewed in this perspective.

In more detail, we say that a transformation from IPCP

to MIP* is black box if it maps an IPCP protocol into

an MIP* protocol whose verifier can be expressed as an

algorithm that only accesses the queries and messages of

the IPCP verifier, but does not access its input (apart from

its length). The following corollary shows that any IPCP

protocol can be transformed into an MIP* protocol via a

black box transformation. While a proof of this fact is implicit

in [12, 13], the framework developed in this paper allows

us to crystallize its structure and give a compellingly short

proof of it.

Corollary III.1. There is a black box transformation that
maps any r-round IPCP protocol for a language L to a
2-prover (r + 1)-round MIP* for L

The round complexity of r+1 in Corollary III.1 is less than

in our lifting lemma (r+ 2), because now we do not require

that zero knowledge is preserved. We make the foregoing

discussion precise in the full version [28].

We conclude this section by discussing several open

problems.

In this work we show that there exist perfect zero

knowledge MIP* protocols for all languages in NEXP,

with polynomially-many rounds. Since round complexity is a

crucial resource in any interactive proof system, it is essential

to understand whether zero knowledge MIP* protocols

with low round complexity exist. (After all, without the

requirement of zero knowledge, every language in NEXP
has a MIP* protocol with just one round [12, 13].) We remark

that the “oracularization” technique of Ito et al. [26] reduces

the round complexity of any MIP* to one round, but this

technique does not preserve zero knowledge.

Open Problem 1. Do there exist constant-round zero

knowledge MIP* protocols for NEXP?

At the beginning of this section, we reflected on the

fact that known results that establish the power of MIP*

protocols rely on algebraic structure, which enables classical-

to-quantum black box transformations of protocols. But

is algebraic structure inherently required, or does some

combinatorial structure suffice?

Open Problem 2. Is there a richer class of classical protocols

(beyond low-degree IPCPs) that can be black-box transformed

into MIP* protocols?

For instance, could we replace low-degree polynomials

with, say, error correcting codes with suitable local testability

and decodability properties? One place to start would be to

understand whether local testers for tensor product codes

[40] are sound against entangled provers.

Open Problem 3. When suitably adapted to the multi-prover

setting, is the random hyperplane test in [40] for tensor

product codes sound against entangled provers?

ACKNOWLEDGMENT

We are grateful to Thomas Vidick for multiple technical

and conceptual suggestions that greatly improved our results

and their presentation. We thank Claude Crépeau for useful
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[4] R. B. Boppana, J. Håstad, and S. Zachos, “Does co-NP
have short interactive proofs?” Information Processing Letters,
vol. 25, no. 2, pp. 127–132, 1987.

[5] L. Fortnow, “The complexity of perfect zero-knowledge
(extended abstract),” in Proceedings of the 19th Annual ACM
Symposium on Theory of Computing, ser. STOC ’87, 1987,
pp. 204–209.
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[23] C. Crépeau, L. Salvail, J. Simard, and A. Tapp, “Two provers in
isolation,” in Proceedings of the 17th International Conference
on the Theory and Application of Cryptology and Information
Security, ser. ASIACRYPT ’11, 2011, pp. 407–430.

[24] C. Dwork, U. Feige, J. Kilian, M. Naor, and S. Safra, “Low
communication 2-prover zero-knowledge proofs for NP,” in
Proceedings of the 11th Annual International Cryptology
Conference, ser. CRYPTO ’92, 1992, pp. 215–227.

[25] T. Ito, H. Kobayashi, D. Preda, X. Sun, and A. C. Yao, “Gener-
alized Tsirelson inequalities, commuting-operator provers, and
multi-prover interactive proof systems,” in Proceedings of the
23rd Annual IEEE Conference on Computational Complexity,
ser. CCC ’08, 2008, pp. 187–198.

[26] T. Ito, H. Kobayashi, and K. Matsumoto, “Oracularization
and two-prover one-round interactive proofs against nonlocal
strategies,” in Proceedings of the 24th IEEE Annual Confer-
ence on Computational Complexity, ser. CCC ’09, 2009, pp.
217–228.

[27] J. Kempe, H. Kobayashi, K. Matsumoto, B. Toner, and
T. Vidick, “Entangled games are hard to approximate,” SIAM
Journal on Computing, vol. 40, no. 3, pp. 848–877, 2011.

[28] A. Chiesa, M. A. Forbes, T. Gur, and N. Spooner, “Spatial
isolation implies zero knowledge even in a quantum world,”
CoRR, vol. abs/1803.01519, 2018.

[29] C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan, “Algebraic
methods for interactive proof systems,” Journal of the ACM,
vol. 39, no. 4, pp. 859–868, 1992.

[30] S. Aaronson and A. Wigderson, “Algebrization: A new barrier
in complexity theory,” ACM Transactions on Computation
Theory, vol. 1, no. 1, pp. 2:1–2:54, 2009.

[31] A. Juma, V. Kabanets, C. Rackoff, and A. Shpilka, “The
black-box query complexity of polynomial summation,” Com-
putational Complexity, vol. 18, no. 1, pp. 59–79, 2009.

[32] Y. Kalai and R. Raz, “Interactive PCP,” in Proceedings of the
35th International Colloquium on Automata, Languages and
Programming, ser. ICALP ’08, 2008, pp. 536–547.

[33] R. Raz and S. Safra, “A sub-constant error-probability low-
degree test, and a sub-constant error-probability PCP charac-
terization of NP,” in Proceedings of the 29th Annual ACM
Symposium on Theory of Computing, ser. STOC ’97, 1997,
pp. 475–484.

[34] O. Goldreich and M. Sudan, “Locally testable codes and
PCPs of almost-linear length,” Journal of the ACM, vol. 53,
pp. 558–655, July 2006, preliminary version in STOC ’02.

[35] J. Kilian, E. Petrank, and G. Tardos, “Probabilistically check-
able proofs with zero knowledge,” in Proceedings of the
29th Annual ACM Symposium on Theory of Computing, ser.
STOC ’97, 1997, pp. 496–505.

[36] V. Goyal, Y. Ishai, M. Mahmoody, and A. Sahai, “Interactive
locking, zero-knowledge PCPs, and unconditional cryptog-
raphy,” in Proceedings of the 30th Annual Conference on
Advances in Cryptology, ser. CRYPTO’10, 2010, pp. 173–
190.

[37] E. Ben-Sasson, A. Chiesa, M. A. Forbes, A. Gabizon, M. Ri-
abzev, and N. Spooner, “Zero knowledge protocols from
succinct constraint detection,” in Proceedings of the 15th
Theory of Cryptography Conference, ser. TCC ’17, 2017, pp.
172–206.

[38] E. Ben-Sasson, A. Chiesa, A. Gabizon, and M. Virza,
“Quasilinear-size zero knowledge from linear-algebraic PCPs,”
in Proceedings of the 13th Theory of Cryptography Conference,
ser. TCC ’16-A, 2016, pp. 33–64.

764



[39] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy, “Checking
computations in polylogarithmic time,” in Proceedings of the
23rd Annual ACM Symposium on Theory of Computing, ser.
STOC ’91, 1991, pp. 21–32.

[40] E. Ben-Sasson and M. Sudan, “Robust locally testable codes
and products of codes,” Random Structures and Algorithms,
vol. 28, no. 4, pp. 387–402, 2006.

765


