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Abstract—Subgraph counting is a fundamental primitive
in graph processing, with applications in social network
analysis (e.g., estimating the clustering coefficient of a
graph), database processing and other areas. The space
complexity of subgraph counting has been studied exten-
sively in the literature, but many natural settings are still
not well understood. In this paper we revisit the subgraph
(and hypergraph) counting problem in the sketching model,
where the algorithm’s state as it processes a stream of
updates to the graph is a linear function of the stream.
This model has recently received a lot of attention in the
literature, and has become a standard model for solving
dynamic graph streaming problems.

In this paper we give a tight bound on the sketching
complexity of counting the number of occurrences of a
small subgraph H in a bounded degree graph G presented
as a stream of edge updates. Specifically, we show that
the space complexity of the problem is governed by the
fractional vertex cover number of the graph H. Our
subgraph counting algorithm implements a natural vertex
sampling approach, with sampling probabilities governed
by the vertex cover of H. Our main technical contribution
lies in a new set of Fourier analytic tools that we develop
to analyze multiplayer communication protocols in the
simultaneous communication model, allowing us to prove a
tight lower bound. We believe that our techniques are likely
to find applications in other settings. Besides giving tight
bounds for all graphs H, both our algorithm and lower
bounds extend to the hypergraph setting, albeit with some
loss in space complexity.

I. INTRODUCTION

Triangle counting is one of the most well-studied

problems in streaming graph algorithms. In the standard

“turnstile” version of this problem, one maintains a

small-space “sketch” of a graph under a stream of

insertions and deletions of edges, and at the end of the

stream outputs a (1± ε) multiplicative approximation to

the number of triangles T in the graph; unless otherwise

specified, we assume ε to be a small constant.

Turnstile streaming algorithms are almost invariably

constructed as linear sketches, where the sketch main-

tained is a linear function of the indicator vector of

edges; this makes it easy to process insertions and

deletions. Linear sketches are also useful in other settings

such as distributed computation, since sketches can be

merged. There is evidence that any turnstile streaming

algorithm can be efficiently implemented using linear

sketches [LNW14a], [AHLW16], although these results

do not quite apply to graph streams.

For worst-case graphs, counting triangles is impossible

in sublinear space: Ω(m) space is required to distin-

guish between a graph with 0 triangles and one with

T = Ω(m) triangles [BOV13]. However, the hard case is

degenerate in that all the triangles share a common edge.

If at most ΔE triangles share any single edge, then this

bound becomes Ω(mΔE/T ). In [PT12] an algorithm

was given that counts triangles with

O

(
m

(
1√
T

+
ΔE

T

))
space, where the m/

√
T term improves upon a m/T 1/3

term in [TKMF09], [TKM11]. In [KP17] this was shown

to be tight for worst-case graphs, but the hard case

is again degenerate: all the triangles share a common

vertex. If ΔV bounds the maximum number of triangles

to share a vertex, this bound becomes m
√
ΔV /T . The

algorithm in [KP17] requires

Õ

(
m

(
1

T 2/3
+

√
ΔV

T
+

ΔE

T

))
space. A natural question is whether this m

T 2/3 is neces-

sary.

A. Linear Sketching

Suppose we have a problem of the following form: we

receive a vector v ∈ Z
n as a series of updates (vi)

t
i=1,

so v =
∑t
i=1 vi, and we want to approximate some

function f(v). A linear sketch for this problem is a linear

transformation A ∈ Z
n×d and a post-processing function

g, so that g (Av) approximates f(v) (with the exact

definition of “approximates” depending on the problem).

The space complexity of such a sketch is the space

needed to store the sketch vector, which is Θ(d log n)

556

2018 IEEE 59th Annual Symposium on Foundations of Computer Science

2575-8454/18/$31.00 ©2018 IEEE
DOI 10.1109/FOCS.2018.00059



bits if the maximum size of entries of v is bounded

by some M = poly(n) (this holds even if intermediate

stages of the stream exceed M , as the sketch vector may

be stored mod M ).

In [LNW14a], it was shown that any turnstile stream-

ing algorithm (an algorithm that can solve a problem of

the above form when the updates vi are allowed to be

negative, but that is allowed to maintain arbitrary state)

can be converted into a linear sketch with only logarith-

mic loss in space complexity. In [AHLW16], this result

was extended to strict turnstile streaming algorithms, that

is algorithms which require that
∑s
i=1 vi ≥ 0 for each

s ≤ t.

These results come with two important caveats. Firstly,

they do not necessarily give an O(d log n)-space stream-

ing algorithm, as neither the linear transformation A nor

the post-processing function g is known to be calcula-

ble in O(d log n) space. However, our sketching lower

bounds will be based on communication complexity

arguments that bound the size of the sketch vector,

circumventing this issue.

Secondly, [LNW14a] assumes that the turnstile algo-

rithm in question works regardless of the value of the

partial sums
∑s
i=1 vi, while [AHLW16] only requires

that these sums be non-negative. Therefore, our lower

bounds do not rule out the possibility of a turnstile

algorithm that requires every partial sum to form a

valid graph (i.e. edges can neither be deleted before

they arrive, nor can they arrive multiple times before

being deleted). However, existing turnstile algorithms

do not typically require this property—in particular,

any sampling-based algorithm, whether adaptive or non-

adaptive, can handle it by the addition of a counter to

each stored edge.

B. Our Results

a) Lower bound.: We show that any linear sketch-

ing algorithm for triangle counting requires Ω( m
T 2/3 )

space, even for constant degree graphs. Such a result

is not true for the insertion-only model, where trian-

gles can be counted in graphs with max degree d in

O(md2/T ) space by subsampling the edges at rate d/T
and storing all subsequent edges that touch the sampled

edges [JG05].

Our result generalizes to counting the number of

copies of any constant-size connected subgraph H . Such

problems appear, for example, in estimating the size

of database joins when planning queries [AGM08]. We

show that the linear sketching complexity of distinguish-

ing between 0 and T copies of H in constant-degree

graphs is at least

Ω
( m

T 1/τ

)

where τ is the fractional vertex cover number of H , the

minimum value such that there exists f : V (H)→ [0, 1]
with

∑
v∈V (H) f(v) ≤ τ and f(u) + f(v) ≥ 1 for all

uv ∈ E(H).

b) Upper bound.: We also give a matching upper

bound: by subsampling the vertices with probabilities

dependent on their weight in the fractional vertex cover,

we give an algorithm that estimates T using O(m/T 1/τ )
words of space, as long as the graph has constant degree.

Additionally, the constant-degree restriction can be lifted

for many graphs: if an optimal fractional vertex cover of

H can place nonzero weight on every vertex (as occurs,

for example, if H is a cycle) then the algorithm works

for degree up to T 1/(2τ) graphs.

c) Hypergraph counting.: Both our upper and

lower bounds extend to counting hypergraphs H , but the

exponent on T no longer matches for all hypergraphs.

The upper bound remains O(m/T 1/τ ), while the lower

bound becomes O(m/T 1/μ) for an exponent μ that

equals the fractional vertex cover number τ on many

hypergraphs but not all.

All of our results extend to ε� 1; the full statements

of these results are given in Theorem 12 for the upper

bound, Theorem 7 for the general lower bound, and

Corollary 11 for the tight lower bound specific to non-

hypergraphs.

C. Sampling and Sketching

Our upper bounds will take the form of non-adapative
sampling algorithms. By “sampling algorithm” we mean

that the only state maintained between updates is a subset

of the input edges, and by “non-adaptive” we mean that

the probability of keeping an edge does not depend on

which other edges have been seen so far in the stream1.

Non-adaptive sampling algorithms may be modifed

into linear sketching algorithms by the use of L0-sampler

sketches. An L0-sampler sketch is a linear sketch which,

if v is the frequency vector of the input stream, returns a

non-zero co-ordinate of v, chosen uniformly at random

(more generally, an Lp-sampler samples vi with proba-

bility proportional to |vi|p). A linear sketching algorithm

for this problem was first presented in [CMR05], while

[MW10] defined Lp sampling and gave algorithms for

all p ∈ [0, 2].

In [JST11], it was shown that, if the set to be

sampled from has size n and the sample is required

1Note that this does not mean that the edges are sampled indepen-
dently of one another—for instance, if we choose a vertex at random
and keep all edges incident on that vertex, the event that we keep
the edge uv is independent of whether the edge vw is present in the
stream, but it is not independent of the event that that we keep the
edge vw.
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to be within δ of uniform for some constant δ, the

space required is exactly Θ(log2 n). In [KNP+17], the

optimal bound in terms of n and δ was shown to be

Θ
(
min

(
n, log (1/δ) log2

(
n

log(1/δ)

)))
.

Therefore, as our sketching lower bound and sampling

upper bounds match up to polylog factors, it follows that

both are themselves tight up to polylog factors.

D. Our Techniques

The core of our lower bound proof is a new set

of Fourier analytic techniques for analyzing multiplayer

simultaneous communication protocols. Our approach is

inspired by the Fourier analytic analysis of the Boolean

Hidden Matching problem, but develops several new

ideas that we think are likely to find applications beyond

subgraph counting lower bounds. We now proceed to

describe the Boolean Hidden Matching problem, the

main ideas behind its analysis, and then describe our

techniques.

The Boolean Hidden Matching problem of Gavinsky

et al [GKK+07] is a two player one way communication

problem where Alice holds a binary string x ∈ {0, 1}n
that she compresses to a message m of s bits and sends

to Bob. Bob, besides the message from Alice, gets two

pieces of input: a uniformly random matching of size

n/10 on the set {1, 2, . . . , n}, along with a vector of

binary labels we ∈ {0, 1}, e ∈ M . In the YES case

of the problem the vector w satisfies w = Mx, and in

the NO case of the problem the vector w satisfies w =
Mx⊕1|M |, where we abuse notation somewhat by letting

M denote the edge incidence matrix of the matching

M (where each column corresponds to a vertex, and

each edge to a row, with ones in the two co-ordinates

corresponding to the vertices the edge is incident to).

The Boolean Hidden Matching problem and the re-

lated Boolean Hidden Hypermatching problem of Verbin

and Yu [VY11] have been very influential in stream-

ing lower bounds: streaming problems that have re-

cently been shown to admit reductions from Boolean

Hidden (Hyper)Matching include approximating maxi-

mum matching size [EHL+15], [AKLY15], [AKL17],

approximating MAX-CUT value [KKS15], [KK15],

[KKSV17], subgraph counting [VY11], [KP17], and

approximating Schatten p-norms [LW16], among others.

Most recent streaming lower bounds (with the exception

of [KKSV17]) use reductions from Boolean Hidden (Hy-

per)Matching, without modifying the Fourier analytic

techniques involved in the proof.

In this paper we develop several new Fourier analytic

ideas that go beyond the Boolean Hidden Matching

problem in several directions:

a) Analyzing simultaneous multiplayer communica-
tion: In the Boolean Hidden Matching problem Alice is

the only player transmitting a message, but our commu-

nication problem features simultaneous communication

from multiple players to a referee. We show how to use

the convolution theorem from Fourier analysis to analyze

the effect of combining information sent by multiple

players in the one way simultaneous communication

model. While the technique of combining information

from two players using the convolution theorem was

recently used by [KKSV17] to analyze a three-player

game, to the best of our knowledge our work is the first

to analyze games with an arbitrary number of players in

this manner.

b) Analyzing a promise version of a communication
problem via Fourier analysis: While in the Boolean

Hidden Matching problem Alice’s string is sampled from

the uniform distribution, in our problem multiple players

receive correlated binary strings (conditioned on a linear

constraint over the binary field). It turns out that this

specific form of conditioning lends itself naturally to

a Fourier analytic approach due to the linearity of the

constraints imposed on the strings, and analysing such

correlated settings gives us tight bounds on the subgraph

counting version of our problem.

c) Sharing M among the players: In the Boolean

Hidden Matching problem, only Bob has the linear func-

tion M , while Alice must send her message based only

on x. In our communication problem each (hyper)edge

in H corresponds to a player, and every player receives

a linear sized set of edges, together with parities of

a hidden string x over these edges. Similarly to the

Boolean Hidden Matching problem, these parities are

either correct (YES case) or flipped simultaneously. A

crucial new component, however, is the fact that instead

of M being held by the recipient alone, each player holds

part of it, and the parts the players hold are correlated.

Analyzing such correlations is in fact necessary even

if one only wants to prove a simple lower bound on

the space complexity of ‘sampling-type’ algorithms for

triangle counting. We show how to analyze such correla-

tions when H is an arbitrary hypergraph through a purely

combinatorial lemma. The weights lemma (Section III)

is primarily concerned with the ability of the players

to co-ordinate “weight” functions. This can be used to

lower bound the space complexity of sampling-based

protocols—we apply it to bound the Fourier coefficients

of the referee’s posterior distribution on the players’

inputs when the players send arbitrary messages.
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E. Related Work

The past decade has seen a large amount of work on

the space complexity of graph problems in the stream-

ing model of computation (see, e.g. the recent survey

by McGregor [McG17]). The semi-streaming model of

computation, which allows Õ(n) space to process a

graph on n vertices, has been extensively studied, with

space efficient algorithms known for many fundamental

graph problems such as spanning trees [AGM12a], spar-

sifiers [AG09], [KL11], [AGM12b], [KLM+14], match-

ings [AG11], [AG13], [GKK12], [Kap13], [GO12],

[HRVZ15], [Kon15], [AKLY15], spanners [AGM12b],

[KW14]. Beyond the semi-streaming model, it has re-

cently been shown that it is sometimes possible to

approximate the cost of the solution to a graph prob-

lem in the streaming model even when the amount

of space available does not suffice to store the vertex

set of the graph (e.g. [KKS14], [EHL+15], [CCE+15],

[Cor17], [MV18], [PS18]). The problem of designing

lower bounds for graph sketches has received a lot of

attention recently due to the success of graph sketching

as an approach to solving dynamic graph streaming prob-

lems (e.g., [LNW14b], [AKLY15], [AKL17]). Similarly

to our approach, such lower bounds normally make use

of the simultaneous communication model.

a) Subgraph counting.: The streaming subgraph

counting problem was introduced in [BKS02] for the

case where H is a triangle. This was followed by alterna-

tive algorithms in [BFL+06], [JG05]. The lower bounds

in [BOV13] and [KP17] were achieved by reductions

to one-way communication complexity problems, the

indexing problem and the Boolean Hidden Matching

problem, respectively. Triangle detection has also been

studied as a pure communication problem, for instance

[FGO17], as well as in the adjacency-list [KMPT10],

[BFL+06], [MVV16], multi-pass [BOV13], [CJ14], and

query models [ELRS15].

Work on counting non-triangle subgraphs includes

[BFLS07], which presented an algorithm for counting

copies of K3,3, [BDGL08], which studied subgraphs

of size 3 and 4, [MMPS11], which studied cycles

of arbitrary size, and [KMSS12], which studied arbi-

trary subgraphs. The problem has also been studied

in the query [JSP15], [ANRD15], [PSV17] and dis-

tributed [ESBD15], [ESBD16] models.

b) Join size estimation.: The size of a database

join can be viewed as a “labeled” version of hypergraph

counting, where each vertex of G can only match a

particular vertex (“attribute”) of H , and each hyperedge

of G can only match a particular hyperedge (“relation”)

of H . (Both our upper and lower bounds apply in this

labeled setting.) In [AGM08] it was shown for a database

G with m hyperedges, the size of the join given by a

query H can be up to Θ(mρ), where ρ is the fractional

edge cover number of H .

This result is from a very different regime from ours

because it involves very dense graphs and ours involves

sparse ones. But one intriguing connection is through

the Ω(m/T 2/3) lower bound given in [KP17] for the

restricted class of “triangle sampling” algorithms. Gen-

eralizing that proof for arbitrary H would use [AGM08]

to get a lower bound of Ω(m( 1
Tn2ρ−|V | )

1/ρ), as opposed

to our Ω(m/T 1/τ ) bound. These are the same for some

graphs, such as odd cycles, where ρ = τ = |V |/2, and

Ω(m/T 1/τ ) is stronger for sparse graphs, but the two

bounds are incomparable in general. It seems possible

that the sample complexity for dense graphs will depend

on ρ in some fashion.

II. PROOF OVERVIEW

A. Lower Bound

For a fixed graph H with fractional vertex cover τ ,

we prove an Ω(n/T 1/τ ) lower bound for determining

whether a constant-degree graph on Θ(n) vertices has 0
or Θ(T ) copies of H . For illustration, in this section we

focus on the case where H is a triangle.

We consider the three-party simultaneous-message

communication problem illustrated in Figure 1, where

each player is associated with an edge of H . First, we

construct a set of N = Θ(n) vertices Vu for each vertex

u ∈ H . The player associated with edge e = (u, v)
receives an input consisting of n disjoint edges on

Vu × Vv , along with binary labels associated with each

edge. We are guaranteed that the three players’ inputs

collectively contain T triangles, with all the other edges

disjoint. Each set of vertices are randomly permuted

so that the players do not know which of their edges

participate in triangles.

We also guarantee that the XOR of the labels asso-

ciated with a triangle is the same for every triangle—

either every triangle has an even number of 1s, or an odd

number. The goal of the players is to send messages to

a referee who knows the edges but not their labels, and

for the referee to figure out if every triangle has an odd

number of 1 labels.

We will show that a uniformly random instance of

this problem requires Ω(n/T 2/3) communication for

the referee to succeed 2/3 of the time. At the same

time, it directly reduces to triangle counting: each player

sketches their edges labeled 0 and sends the sketch to the

referee. The referee adds the linear sketches up to get a

sketch of all 0-labeled edges in the graph. This subgraph

either contains zero triangles (if every triangle has an
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Player 1 Player 2

Player 3

(a) Input for triangle-counting before permutation. Each
player e sees n edges with associated binary labels (pictured
as solid/dashed). The edges match up into T triangles
(center) and n − T isolated edges (outside). The goal is
to determine whether every triangle has an even number of
solid edges, or an odd number.

Player 1 Player 2

Player 3

(b) In the hard distribution, we randomly permute the vertices
on top, on left, and on right. Each player sees their edges,
with associated labels, in a random order; they do not see
the pre-permutation vertex identities (represented by color).

Fig. 1: Lower bound instance for triangle counting

odd number of 1s) or very close to T/4 (otherwise), so

successfully counting triangles will distinguish the two

cases.

Our lower bound for the communication problem con-

sists of two main pieces. First, we give a combinatorial

lemma that bounds the players’ ability to co-ordinate

any assignment of “weights” to edges or subsets of

edges, based on the structure of the graph. Then we

use Fourier-analytic techniques to extend this to a lower

bound of the communication required by any protocol

for the problem.

a) Combinatorial lemma: One approach the play-

ers could take to solve the problem would be for each

player to look at their n edges and pick a p fraction to

send to the referee. If the referee receives a complete

triangle, he can solve the problem. What is the expected

number of triangles the referee receives, if the players

coordinate optimally?

The naive solution where players pick independently

at random would yield p3T triangles. Vertex sampling—

picking a
√
p fraction of vertices, for example those of

smallest index, and only sampling edges between picked

vertices—increases this to p3/2T . In [KP17], a simple

counting argument showed that “oblivious” strategies,

which decide whether to sample an edge based only on

the edge and not the rest of the player’s input, cannot

do better than this.

The combinatorial lemma we need for the Fourier-

analytic proof is a stronger, generalized version of this

sampling lemma. It considers players that receive some

private randomness ψe and partially-shared randomness

φu for each u ∈ e, and output an arbitrary deterministic

function

ge = ge(ψe, (φu)u∈e) ∈ [−1, 1]
of their inputs. If the φu are fully independent and the

ψe are (|E| − 1)-wise independent, and

max
e

E
ψ,φ

[
g2e

] ≤ p

for some p, then we show:

E
ψ,φ

[∏
e

ge

]
� p3/2. (1)

To relate this to sampling, we note that the commu-

nication problem in Figure 1 can be constructed with

randomness in the form above: φu contains the per-

mutation of the vertices Vu associated with u, and ψe
contains player e’s edge labels xe (which are 2-wise

independent) and the random order πe in which they

see their edges. Consider picking a random triangle edge

s ∈ [T ] and adding to ψe the index of s in player e’s list.

(One can show that ψe remains pairwise independent,
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despite the shared dependence on s.) If we only allow

ge ∈ {0, 1}, then we can think of ge as the event that

player e samples their edge in the sth triangle. The

condition on E
[
g2e

]
says that each player can pick at

most a p fraction of their edges, on average over their

inputs. The conclusion is that the expected fraction of

triangles completely sampled is at most p3/2.

This combinatorial lemma is different from the simple

sampling lemma of [KP17] in several ways. First, it al-

lows players to look at their entire inputs before deciding

which edges to keep. Second, while the lemma of [KP17]

was based on defining a fixed subset of edges to keep

(so the number kept depended only on which edges were

seen), in our lemma the players only need to keep a p
fraction of their inputs on average, but the players do not

have shared randomness. If they had shared randomness,

there would be a trivial counterexample: with probability

p every player samples every edge, giving the referee

pT triangles in expectation. Without shared randomness,

they can still use the correlation of their input for

nontrivial algorithms: for example, for p = 21−n they

can send their entire input if every edge has the same

label; because of the promise, if two players sample their

inputs then the third is much more likely to. But this

coordination is less effective than vertex sampling.

The combinatorial lemma is also more general, in

ways that are important for the Fourier-analytic com-

ponent of the proof. It allows for “fractional” choices of

edges ge ∈ [−1, 1], with an 	2 constraint. This allows for

alternative competitive strategies—for example, placing√
p weight on every edge also yields p3/2—but no

strictly better ones. Additionally, the lemma will extend

to cases where instead of placing weight on individual

edges, the players place weight on sets of k triangle

edges for some k ≥ 1. These will correspond to weight

k Fourier coefficients.

b) Fourier-analytic argument: Our approach for

lower bounding the communication problem is inspired

by [GKK+07]. Let xe ∈ {0, 1}n be the player e’s labels

before permutation (i.e., from Figure 1a). We consider

the referee’s posterior distribution p on the triangle

parities, x1:T1 ⊕x1:T2 ⊕x1:T3 . p is supported on {0T , 1T },
and our goal is to show that it is nearly uniform.

First, we express the referee’s posterior distribution

on the labels x = (xe)e∈E . Let fe(y) = 1 if player e’s
message to the referee is consistent with xe = y, and 0

otherwise, and let f : {0, 1}|E|n → {0, 1} be given by

f(x) =
∏
e fe(xe). The referee has two constraints on

x: the message consistency constraint f(x), and a parity

constraint q(x). His posterior distribution is uniform on

supp(fq).

The first observation we make relates the referee’s

total variation distance to the Fourier spectrum of fq.
For indicator functions g : {0, 1}m → {0, 1} it makes

sense to consider the renormalized Fourier transform

g̃(s) :=
2m

|supp(g)| ĝ(s) = E
x∈supp(g)

[(−1)s·x] .

With this normalization, we observe that

Δ := ‖p− U({0T , 1T })‖TV =
1

2
f̃ q(e1, e1, e1)

where e1 = (1, 0, . . . , 0) ∈ {0, 1}n. Using the structure

of q’s spectrum and the Fourier convolution theorem, we

turn this into

Δ = C
∑

t∈{0,1}T
|t|≡1 mod 2

∏
e

f̃e(t0
n−T )

where C is a normalising factor that is constant in

expectation over x1, x2, x3. The combinatorial lemma

applied to f̃e lets us bound the sum for a fixed |t| =k
(in expectation over the input). The bound is, for some

constant D > 0,

D

(
T

k

)⎛⎜⎜⎝max
e

1(
n
k

) E

⎡⎢⎢⎣ ∑
s∈{0,1}n
|s|=k

f̃e(s)
2

⎤⎥⎥⎦
⎞⎟⎟⎠

3/2

which can be bounded in terms of the players’ c bits

of communication by the KKL lemma (for small k) and

Parseval’s identity (for high k). See the full version of

the paper [KKP18] for statements of the bounds used.

The dominant term when summing over k is k = 1,
whence we get that the referee’s total variation distance

has

E [Δ] � T (c/n)3/2.

This implies the players must send at least n/T 2/3 bits

to distinguish the two cases with significant probability.

c) Changes for non-triangle graphs: For count-

ing general (hyper)graphs, the combinatorial lemma

as described gives a bound of pMVC1/2(H), where

MVC1/2(H) is a “modified” fractional vertex cover in

which weight can be placed directly on edges for half

price. For odd cycles such as triangles, MVC1/2(H)
equals the non-modified fractional vertex cover τ , giving

the desired Ω(n/T 1/τ ) bound.

For other graphs, such as the length-3 path,

MVC1/2(H) can be less than τ leading to a suboptimal

result. For these graphs we use a somewhat different

proof, in which the referee is identified with a particular

edge e∗ in the graph. The other players’ inputs are then

completely independent of one another, with no promise
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on the XOR of their labels. We follow a slightly different

Fourier-analytic approach that requires bounding

E

⎡⎣ ∏
e �=e∗

f̃e
2

⎤⎦ .
rather than E

[∏
e f̃e

]
. We apply the combinatorial

lemma to the f̃e
2
, on which we have an 	1 constraint,

giving us the bound

E

⎡⎣ ∏
e�=e∗

f̃e
2

⎤⎦ ≤ pMVC1(H\e∗)

where the exponent is the non-modified fractional ver-

tex cover of H \ e∗. This gives a lower bound of

Ω(n/T 1/MV C1(H\e∗)). For every connected (non-hyper-

)graph H that is neither an odd cycle nor a single edge,

this equals Ω(n/T 1/τ ) for at least one e∗.

For graphs that are single edges or odd cycles,

MVC1/2(H) = τ , and so the combination of these

bounds gives Ω(n/T 1/τ ) for every connected graph with

more than one edge. For hypergraphs, the individual

lower bounds still hold, but their maximum is not

necessarily Ω(n/T 1/τ ).

d) Dependence on ε: The above approach is a

lower bound for distinguishing T triangles from 0 trian-

gles. Distinguishing T triangles from (1− ε)T triangles

should require more space for small ε. In the non-

promise version of the proof used for graphs that are

not odd cycles, we use the noise operator, an operator

that takes a binary function and “noises” it by randomly

flipping input bits, to get an ε−2/τ dependence. In the

promise version, the bound we get is only ε−1/τ .

B. Upper Bound

For purposes of this overview, we describe a sampling

algorithm for the “labeled” version of the problem used

in join size estimation, where edges and vertices in G
correspond to edges and vertices in H , and we only want

to count subgraphs with matching labels. Since H has

constant size, we can solve the non-labeled version by

trying many random labelings.

Consider a hypergraph H with minimal fractional

vertex cover f , so f(u) ∈ [0, 1] for each vertex u ∈ VH
and

∑
u f(u) = τ . Let χ : VG → VH be the labels. For a

parameter p ∈ (0, 1) to be determined later, we sample

each vertex v ∈ VG with probability pf(χ(v)), and we

keep a hyperedge e ∈ EG if and only if we sample all

v ∈ e.
The chance we keep any given copy of H is∏
u∈H p

f(u) = pτ . Therefore, if we set p = 100/T 1/τ ,

the expected number of copies of H we see will be

pτT ≥ 100. On the other hand, the chance we keep any

single edge e is
∏
v∈e p

f(χ(v)) ≤ p, because f covers the

edge associated with e and so
∑
v∈e f(χ(v)) ≥ 1. This

gives a algorithm with O(mp) = O(m/T 1/τ ) space that

sees pτT ≥ 100 copies of H in expectation; from this

T can be estimated.

The only tricky bit is to show that the variance of the

number of sampled copies of H is small. We bound

this in terms of the maximum degree of G and the

maximum correlation between sampling two copies of

H in G. If this correlation is 1 as can happen in general,

the sampling algorithm only works for constant-degree

graphs. However, if the vertex cover places at least 0.5
weight on each vertex of H , then the correlation is at

most
√
p = Θ(1/T 1/(2τ)). This lets the algorithm work

for degree O(T 1/(2τ)) graphs. In the case of triangles,

this O(T 1/3) degree bound is the correct regime for

O(m/T 2/3) samples to be possible—above this thresh-

old, the maximum number of triangles sharing a single

vertex can be larger than T 2/3 and so the Ω(m
√
ΔV /T )

lower bound of [KP17] precludes it.

III. THE WEIGHTS LEMMA

Definition 1. For a weighted hypergraph H = (V,E)
with weights w : E → [0,∞], we define the λ-modified

fractional vertex cover number MVCλ(H,w) to be:

MVCλ(H,w) = min
f

(∑
v∈V

f(v) + λ
∑
e∈E

f(e)

)

over all f : V ∪ E → [0,∞] satisfying∑
v∈e

f(v) + f(e) ≥ w(e) ∀e ∈ E.

When w is omitted, it is assumed that w(e) = 1 for all e.
We note that MVCλ(H) equals the standard fractional
vertex cover number of H whenever λ ≥ 1 and H has
no empty hyperedges.

Definition 2 (Totally disconnected hypergraph). For a
hypergraph H = (VH , EH) we say that H is totally
disconnected if edges of H are pairwise disjoint, i.e. for
every a, b ∈ E one has a ∩ b = ∅.
Lemma 3. Consider any hypergraph H = (V,E) and
weight function w : E → [0,∞]. Suppose that H is not
totally disconnected as per Definition 2, i.e., there exist
a, b ∈ E such that a ∩ b �= ∅.

Consider any collection of random variables ge (for
e ∈ E) that can be expressed as deterministic functions
of some random variables φu (for u ∈ V ) that are
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independent, and ψe (for e ∈ E) that are independent of
the φu and (|E| − 1)-wise independent themselves, i.e.,

ge = ge(ψe, (φu)u∈e).

Let q ∈ {1, 2} and 0 < p < 1, and suppose for all
e ∈ E that |ge| ≤ 1 always and that

E [|ge|q] ≤ pw(e).

Then

E

[∏
e∈E

ge

]
≤ d|V |pMVC1/q(H,w)

where MVC1/q(H,w) is the modified fractional vertex
cover number per Definition 1, and d is the maximum
of 1 and the greatest degree of a vertex v ∈ V .

The proof is deferred to the full version of the pa-

per [KKP18].

IV. HYPERGRAPH COUNTING WITH A PROMISE

In both of the games that follow, we will assume that

the players are deterministic. This is without loss of

generality by Yao’s minimax principle since the inputs

are sampled from a fixed distribution.

A. Game

We will define a |E| + 1-player game

PromiseCounting(H,n, T, ε) (with H a hypergraph,

n, T ∈ N, ε ∈ {1/T, 2/T, . . . , 1}) , as follows: There

is one referee, who receives messages from every

other player. No other communication takes place. Each

player besides the referee corresponds to an edge e ∈ E.

Let N = T + (n − T )|E|. For each edge e ∈ E, let

Le ⊂ [N ] be an n-element set containing [T ] and n−T
elements disjoint from every other Le, so that if a �= b,
La ∩ Lb = [T ], and

⋃
e∈E Le = [N ]. For each e ∈ E,

let ρe : [n]→ Le be a fixed bijection such that ρe|[T ] is

the identity.

An instance of PromiseCounting(H,n, T, ε) is as

follows:

• For each edge e ∈ E:

– A string xe ∈ {0, 1}n.

– A permutation πe on Le.

• For each vertex v ∈ V :

– A permutation πv on [N ].

• A string τ ∈ {0εT , 1εT }
The players have the following promise:⊕

e∈E
x1:εTe = τ

We will write X for the strings (xe)e∈E , ΠE for the

permutations (πe)e∈E , and ΠV for the permutations

(πv)v∈V . They have access to the following information:

• For each player e ∈ E:

– xeρeπe
– (πv(π

−1
e (i)))v∈e,i∈Le

• For the referee:

– Π = (ΠE ,ΠV )

Given the messages received from the players, the ref-

eree’s task will be to determine whether τ = 0εT or

τ = 1εT .

B. Hard Instance

We will lower bound the complexity of this problem

under the following hard input distribution: τ is chosen

uniformly from {0εT , 1εT }, and then the strings (xe)e∈E
are chosen uniformly from:{

(xe)e∈E ∈ {0, 1}|E| :
⊕
e∈E

x1:εTe = τ

}
Every permutation πu, πe is chosen uniformly at random

and independently of each other and the strings.

C. Lower Bound

For each player e, write

me(xeρeπe, (πv(π
−1
e (i)))v∈e,i∈Le

) for the message

the player sends to the referee on seeing xeρeπe and

(πv(π
−1
e (i)))v∈e,i∈Le

.

Theorem 4. Let H be a connected hypergraph with
more than one edge. Let c ∈ [n]. Suppose that, for all
inputs (X,Π) to the game, no player sends a message
of more than c bits, and suppose that εT ≤ n/10.

Let p : {0εT , 1εT } → [0, 1] be the referee’s pos-
terior distribution on τ . Let ν be the distribution of
U({0εT , 1εT }), the uniform distribution on the two-
element set {0εT , 1εT }. Let μ = MVC1/2(H), and let
0 < δ < 1.

There exists a constant γ, depending only on H , such
that, if c ≤ γ n

(δ2εT )1/μ
:

E
X,Π

[||p− ν||TV ] ≤ δ

Corollary 5. Let H be a connected hypergraph with
more than one edge. Let c ∈ [n]. Suppose that, for
all inputs (X,Π) to PromiseCounting(H,n, T, ε), no
player sends a message of more than c bits.

Let μ =MVC1/2(H), and let 0 < δ < 1.

There exists a constant γ, depending only on H , such
that, if c ≤ γ n

(δ2εT )1/μ
, the players succeed at the game

with probability at most 1/2 + δ.
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Player 1 Player 2

Player 3

AA

A

BB

B

CC

C

DD

D

EE

E

FF

F

GG

G

HH

H

II

I

JJ

J

(a) The player’s instance ignoring the permutations. The xe

are the indices of red edges, read from inside out: x1 =
[0, 1, 1, 0, 1, 1], x2 = [1, 0, 1, 0, 0, 0], x3 = [1, 1, 0, 0, 0, 1]

Player 1 Player 2

Player 3

F
E

E

B

H

J

A

D

G

D
C

D

G

A

F

H
I

A

J

G

H

C
B

C

E

J

B

I

F

I

(b) The hard distribution permutes each set of vertices. The
players see their edges and associated labels, but not the ver-
tex colors (which represent the pre-permutation identities).

Player 1 Player 2 Player 3

x u v x u v x u v

0 E E 0 B E 0 D C

1 H J 0 D D 0 G A

1 G H 1 E F 1 H I

1 B C 0 I I 0 A D

1 D G 1 G A 1 F E

0 C D 0 J B 1 B H

(c) Each player’s input consists of their edges in (b) in a
random order. u represents the vertex counterclockwise of
the player, and v represents the vertex clockwise.

Fig. 2: Encoding of lower bound instance for triangle

counting

The proofs are deferred to the full version of the pa-

per [KKP18].

V. HYPERGRAPH COUNTING WITH NO PROMISE

We also study a slightly different game, in which the

XOR of the strings xe may take any value, but the

referee has a “target” string that is guaranteed to either

be
⊕

e∈E x
1:T
e or

⊕
e∈E x1:Te . This will give a different,

and in general incomparable lower bound for subgraph

counting. For further details, see the full version of the

paper [KKP18].

VI. LINEAR SKETCHING LOWER BOUND

Definition 6. Let A be a randomized graph streaming
algorithm, and let S be the set of possible states S of
A. We will say A has composable state if, for any fixed
random seed for A, there is a function c : S×S→ S such
that, if S1 is the state of A after receiving the stream
of edges E1 as input, and S2 is the state of A after
receiving the stream of edges E2 as input, c(S1,S2) is
the state of Aa after receiving the concatenation of E1

and E2 as input.

Theorem 7. Let H = (V,E) be a (fixed) connected
hypergraph with |E| > 1. Let T ∈ N, ε ∈ (1/

√
T , 1]. Let

A be a graph streaming algorithm that can distinguish
between graphs G presented as a stream of edges with
at least T copies of H and graphs with at most (1−ε)T
copies of H with probability 99/100, provided G has no
more than m edges. Let S(m) be the maximum space
usage of A across all m-edge inputs.

Furthermore, let A have composable state. Then, for
all m ≥ O(T ):

S(m) = Ω

(
max

(
m

(εT )1/μ2
,

m

(ε2T )1/μ1

))
where μ2 =MVC 1

2
(H) and μ1 = maxe∈EMVC1(H\

e), with constants that may depend on H but nothing
else.

We will prove this by reductions to PromiseCounting

and Counting.

Lemma 8. ∀m ≥ O(T ), S(m) = Ω
(

m
(εT )1/μ2

)
Lemma 9. ∀m ≥ O(T ), ∀e∗ ∈ E,S(m) =

Ω
(

m
(ε2T )1/μ1

)
where μ1 =MVC1(H \ e∗).

The proofs are deferred to [KKP18].

Theorem 7 then follows directly from the previous two

lemmas.
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To prove this gives tight bounds (for ε constant) for

all 2-uniform hypergraphs (that is, all graphs), we will

need the following lemma on graph covers:

Lemma 10. Let G = (V,E) be a connected graph with
|E| > 1. Then:

max(MVC2(G),max
e∈E

MVC1(G \ e)) =MVC1(G)

is the standard fractional vertex cover of G.

The proof is deferred to [KKP18].

Corollary 11. Let H = (V,E) be a connected graph
with |E| > 1. Let ε ∈ (0, 1], T ∈ N. Let A be a
graph streaming algorithm that can distinguish between
graphs G presented as a stream of edges with T copies
of H , graphs with (1−ε)T copies of H with probability
99/100, provided G has no more than m edges. Let
S(m) be the maximum space usage of A across all m-
edge inputs.

Furthermore, let A have composable state. Then:

∀m ≥ O(T ), S(m) = Ω

(
m

(εT )1/τ

)
where τ is the fractional vertex cover of H , and the
constant factor may depend on H but nothing else.

VII. UPPER BOUND

Our main result is

Theorem 12. For every hypergraph H = (VH , EH),
ε ∈ (0, 1) there exists a sketching algorithm that, for any
hypergraph G = (VG, EG) on n vertices with degrees
bounded by d, approximates the number of copies of H
in G to within a 1+ε multiplicative factor with probabil-
ity at least 99/100 using space s ≤ C · ε−2/τ ·mT−1/τ ,
where T is the number of copies of H in G and τ is the
fractional vertex cover of H and C is a constant that
depends on H .

For graphs we get a more powerful result, which allows

the graph G to have higher degrees:

Theorem 13. For every graph H = (VH , EH) that ad-
mits a minimum vertex cover that assigns nonzero weight
to every vertex, for every ε ∈ (0, 1) there exists a sketch-
ing algorithm that, for any graph G = (VG, EG) on n
vertices with degrees bounded by d ≤ C ′ε1/τT 1/(2τ),
approximates the number of copies of H in G to within
a 1 + ε multiplicative factor with probability 99/100
using space C · ε−2/τ ·mT−1/τ , where T is the number
of copies of H in G and τ is the fractional vertex cover
of H , and C,C ′ > 0 are constants that depend only on
H .

This result requires the minimum vertex cover to assign

nonzero weight to every vertex; this happens for cycles

but not stars.

Consider the fractional vertex cover of H

min
∑
a∈VH

xa

s.t.
∑
a∈e

xa ≥ 1 for all e ∈ EH ,
(2)

let x∗ ∈ R
VH denote an optimal solution and let τ denote

its value.

Fix a mapping χ : VG → VH (see Algorithm 1,

line 3). For a subset S ⊆ VG we write χ(S) ∼ H if

the subgraph induced by S equipped with labels χ(S)
contains a copy of H , i.e. for every a ⊆ S one has that

if χ(a) ∈ EH , then a ∈ EG. Note that, if A(H) is the

number of automorphisms of H , the probability that a

randomly chosen χ will give χ(S) ∼ H is A(H)/kk.

Algorithm 1 Subgraph counting by vertex sampling

1: procedure SAMPLE(H, p) � Input: hypergraph H ,

sampling probability p
2: Compute minimum vertex cover x∗ in H
3: χ ∼ UNIF ([k]VG) � Random mapping of VG

to VH = [k]
4: for u ∈ VG do
5: a← χ(u)
6: Xu ← independent Bernoulli r.v. with mean

px
∗
a

7: end for
8: E′ ← {e ∈ EG : χ(e) = |e| and

∏
u∈eXu =

1} � Keep colorful edges only

9: Z ← kk · p−τ ·∑S⊆VG:χ(S)∼H
∏
u∈S Xu �

Knowing E′ and χ suffices to compute Z
10: return Z/A(H)
11: end procedure

This result follows from a variance-based analysis. For

details, see the full version [KKP18].
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